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Preface

Dear Conference Participant,

Welcome to the International Hybrid Conference on Mathematical Development and Applications (ICOMAA-23) we organized the sixth.
First of all, | would like to start my words by reminding one of G. H. Hardy's words:

"Mathematics, more than any other art or science, is a young man's game."

This phrase he expressed in his book “A Mathematician's Apology” is quite meaningful. Because Newton discovered his biggest ideas,
fluxions and the law of gravitation, when he was just 24 years old. He found the 'elliptic orbit' at 37 years old. Also, Galois (at twenty-
one), Abel(twenty-seven), Ramanujan (thirty-three), and Riemann(at forty) had passed away in their youth.

That's why we thought we should continue this series of conferences that brings together exciting and productive young mathematicians.
So, we aim to bring together scientists and young researchers from all over the world and their work on the fields of mathematics and
applications of mathematics, to exchange ideas, to collaborate and to add new ideas to mathematics in a discussion environment. With
this interaction, functional analysis, approach theory, differential equations and partial differential equations and the results of
applications in the field of Mathematics are discussed with our valuable academics, and in mathematical developments both science and
young researchers are opened. We are happy to host many prominent experts from different countries who will present the state-of-
the-art in real analysis, complex analysis, harmonic and non-harmonic analysis, operator theory and spectral analysis, applied analysis.

I would like to express my gratitude to those who see and appreciate our efforts and innovative steps that we have made to improve
our conference every year, to our dear invited speakers and to all our participants. | owe a debt of gratitude to the Scientific committee,
organizing committee, local organizing committee and for their efforts throughout this conference series.

The conference brings together about 203 participants and 9 invited speakers from 22 countries (Azerbaijan, India, Algeria,
Bangladesh, Georgia, Greece, India, Iran, Iraq, Italy, Kazakhstan, Kosovo, Malaysia, Mexico, Morocco, Pakistan, Poland, Saudi Arabia,
Turkey, United Arab Emirates, Uzbekistan, Yemen).

It is also an aim of the conference to encourage opportunities for collaboration and networking between senior academics and graduate
students to advance their new perspective. Additional emphasis on ICOMAA-23 applies to other areas of science, such as natural sciences,
economics, computer science, and various engineering sciences, as well as applications in related fields

The conference program represents the efforts of many people. | would like to express my gratitude to all membership the scientific
committee, external reviewers, sponsors and, honorary committee for their continued support to the ICOMAA. | also thank the
invited speakers for presenting their talks on current researches. Also, the success of ICOMAA depends on the effort and talent
of researchers in mathematics and its applications that have writtenand submitted papers on a variety of topics. So, | would
like to sincerely thank all participants of ICOMAA-2023for contributing to this great meeting in many different ways. | believe
and hope that each of you will get the maximum benefit from the conference.

Prof. Dr. Yusuf ZEREN

Chairman
On behalf of the Organizing Committee
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SOME PROPERTIES OF GRILL SO o
TOPOLOGICAL SPACES VIA G*O(X)

Amin Saif* A. Mahdi«
! Department of Mathematics, Faculty of Sciences, Taiz University, Taiz, Yemen

? Department of Mathematics, University of Saba Region, Yemen, ORCID: 0009-0008-6282-3818
* Corresponding Author E-mail: ahidere@gmail.com

Abstract:

The main idea of this work is to introduce and investigate a new class of open sets in grill topological spaces, namely open G —
sets, which is considered as a strong form of the class of G —open sets and it is induced topology by the collection of G&—open
sets. Next, we study the separation axioms in the collection of G5 —open sets.

Keywords: Grill topological space, induced topology, separation axioms.
AMS Subject Classification 2020: 54A05, 54A20, 54D99.

1 Introduction

Some classes of weak or strong forms of open sets in topological spaces are structured, investigated, and introduced as important studies in
the general topology. In 1963, [19] Levine introduced the class of semi-open sets in topological spaces as a weak form of the class of open
sets. In 1965, Njastad [9] introduced the class of av—open sets in topological spaces as a class stronger than semi-open sets and weaker than
the class of open sets. In 1982, Hdeib [6] introduced the class of w—open sets as weaker than the class of open sets in topological spaces. In
1982, [8] Mashhour et al., introduced the class of pre-open sets, and the weak form of the class of a—open sets in topological spaces. In 1983,
[2] Abd El-Monsef et al., introduced a weak form of pre-open sets which is called S—open sets. In 2009, [10] T. Noiri et al., introduced the
classes of 8 — w—open sets and o« — w—open sets. In 2016, [11] Rajasekaran et al., introduced the classes of semi—w—open sets, which are
new generalized classes of w—open sets in topological spaces, such as & — w—open sets weeker than the class of «—open sets, w—open sets
and stronger than the class of semi-w—open sets. The concept of grill on a topological space, [3] given by Choquet. Roy and Mukherjee, [12],
are introduced in 2007, on a typical topology induced by a grill. On the concept of a grill topological space, Hatir, and Jafari, [5] defined and
investigated the notions in this part such as G-pre-open set. Al-Omari and Noiri, [1] introduced the notions of G-semi-open sets, Ga—open sets
such as the class of Ga—open sets, which are week forms of the class of open sets in the topological spaces (X, 7). Also the class of Ga—open
sets strong of the class of a—open sets in the topological spaces and the class of G-semi-open sets in the grill topological spaces. In 2020, [17]
they introduced the class of G* —open sets in grill topological spaces as a weaker than the class of w—open sets, and stronger than the class of
3 — w-open sets in the topological spaces.

This work consists of five sections, which are organized as follows:

In the Preliminaries, we recalled some of the basic facts and definitions about topological spaces and grill topological spaces, which will be
used throughout this work.

In the third section, we introduced the concepts of the open G — sets and their relationships with the other known concepts of openness. We
next give the notions of the closure operator of open G — sets.

In the fourth section the separation axioms are investigated and introduced by the collection of G —open sets.

2 Preliminaries

For a topological space (X, 7) and A C X, throughout this paper, we mean CI(A) and Int(A) the closure set and the interior set of A,
respectively.

Theorem 1. [7] For a topological space (X, 7) and A, B C X.If B is an open set in (X, 7), then CI(A) N B C CI(AN B).
Theorem 2. [7] For a topological space (X, 7),

1. CI(X — A) = X — Int(A) forall A C X.
2. Int(X — A) = X — Cl(A) forall A C X.

© CPOST 2023 1



Definition 1. [9] A subset A in a topological space (X, T") is called: An a—open setif A C Int(Cl(Int(A))). The complement of an a—open
set is called an a—closed set. The set of all a—closed sets in (X, 7) is denoted by aC'(X') and the set of all «—open sets in (X, 7) is denoted
by aO(X).

Definition 2. [18] A subset A of a topological space (X, 7) is called a regular open (simply r—open) set if A = Int(CI(A)). The complement
of an r—open set is called a regular closed (simply an r—closed) set.

Theorem 3. [18] A subset A of a topological space (X, 7) is an 7—closed set if and only if A = Cl(Int(A)).

Definition 3. [6] A subset A in a topological space (X, T) is called an w—open set if for each x € A, there is an open set U, containing x such
that Uy — A is a countable set. The complement of w—open set is called an w—closed set. The set of all w—closed sets in (X, 7) is denoted by
wC (X, 7) and the set of all w—open sets in (X, 7) is denoted by wO(X'). The w—interior operator of Ais defined as the union of all w—open
sets which is a contained in A and denotes Int., (A), the w—closure operator of A is defined as the intersection of all w—closed sets which
contain A and denotes Cly,(A).

Theorem 4. [6] For a topological space (X, 7), every open set is an w—open set.

Definition 4. [3] A non-null collection G of subsets of a topological spaces (X, 7) is said to be a grill on X if G satisfies the following
conditions:

(i) A€ Gand A C Bimpliesthat B € G

(i) A,BC X and AUB € G impliesthat A € Gor B € G.

Definition 5. [13] Let X be a nonempty set and ) # A C X. Then the collection [A] = {B C X : AN B # (} isa grill on X and it is called
the principal grill on X generated by A, (easily G 4)) on X.

For a grill topological space (X, 7, G), the operator ® : P(X) — P(X) from the power set P(X) of X to P(X) was defined in [12] in the
following manner : For any A € P(X),

®(A)={z € X :UnNA e g, foreach open neighborhood U of z}.

This operator is called the operator associated with the grill G and the topology 7.
Then the operator ¥ : P(X) — P(X), given by W(A) = AU ®(A), for A € P(X), was also shown in [12] to be a Kuratowski closure
operator. So for a grill topological space (X, 7, G) there exists a topology 7¢ on X is defined by

7g={UCX:¥(X-U)=X-U},

where 7 C 7¢ and for any A C X, ¥(A) = Clg(A) such that Clg(A) denotes the set of all G—closure points of A. A point z € X is called
a G—closure point of A if for every open set U in (X, 7¢) containing z, U N A # (. A point z € A is called a G—interior point of A if there
is an open set U in (X, 7¢) such that z € U C A. The set of all G—interior points of A is denoted by intg(A).

Theorem 5. [12] Let (X, 7, G) be a grill topological space. Then for A, B C X, the following properties hold:

A C B implies that <I>(A) ®(B);
(AU B) = ®(A) Ud(B);

D(B(4)) C B(A) = CUB(A)) C CU(A);
IfU € 7then U N ®(A) C ®(U N A).

el o

Theorem 6. [12] Every closed set in (X, 7), is a closed setin (X, G, 7).

Definition 6. [17] A subset A of a grill topological space (X, 7,G) is called a G¥—open set if A C Cl(Inty(¥(A))). The complement of
G“ —open set is called a G* —closed set.

Theorem 7. [17] Every G“ —open set in a grill topological space (X, 7, G) is a B, —open set in the topological space (X, 7).

Definition 7. [14] A subset A of a grill topological space (X, 7, G) is called a G —open set if A C Int(¥(Int,(A))). The complement of
G —open set is called a G —closed set. The set of all G —open sets in (X, 7, G) is denoted by G5 O(X) and the set of all G —closed sets in
(X, 7,G) is denoted by G5 C(X).

Theorem 8. [14] For any grill topological space (X, 7,G) with a countable set X. Then every G —open set in a grill topological space
(X, 7,G) is an w—open set.

Theorem 9. [14] Every G5 —open set in a grill topological space (X, 7, G) is a G“ —open set in a grill topological space (X, 7,G).
Theorem 10. [14] Every Ga-open set in a grill topological space (X, 7, G) is a G5 —open set in the grill topological space (X, 7,G).

Theorem 11. [14] Let A, be any G —open set in a grill topological space (X, 7,G), for each € I. Then U,,cy A, is a G —open set in the
grill topological space (X, 7, G), where I is an index set.

Definition 8. [15] A function f : (X, 7,G) — (Y, 0) of a grill topological space (X, 7,G) into a space (Y, o) is called a G5 —continuous
function if f~1(A) is a GZ—open set in (X, 7, G) for every open set A in (Y, o).
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Definition 9. [15] Let (X, 7, G) be a grill topological space and (Y, o) be a topological space. Then the function f : (X,7,G) — (Y, 0) is
called:

e A G5 —closed function if f(U) is a closed set in (Y, o) for every G —closed set U in (X, 7, G).
e A G —open function if f(U) is an open set in (Y, o) for every G —open set U in (X, 7, G).

Definition 10. [4] A topological space (X, 7) is called:

1. A Tp—space if for two points = # y € X, there is an open set G in (X, 7) such thatz € G and y ¢ G.

2. A Ty —space if for two points z # y € X, there are two open sets G and U in (X, 7) suchthatz € G,y ¢ G,y €¢ Uandz ¢ U.

3. A Ty—space or Hausdorff space if for two points x # y € X, there are two open sets G and U in (X, 7) such that x € G, y € U and
UnG=0.

4. A regular space if for each closet set F'in (X, 7) and each = ¢ F, there are two open sets G and U in (X, 7) such that FF C G, z € U and
U NG = (). A topological space (X, 7) is called A T5—space if it is a regular space and T —space.

5. A normal space if for each two disjoint closed sets F' and M in (X, ), there are two open sets G and U in (X, 7) suchthat ¥ C G,M C U
and U N G = 0. A topological space (X, 7) is called a Ty —space if it is a normal space and T —space.

Theorem 12. [18] A topological space (X, 7) is a T} —space if and only if {z} is a closed set in (X, 7) forall z € X.

Theorem 13. [18] A topological space (X, 7) is a regular space if and only if for each € X and for each open set NV in (X, 7) containing x,
there is an open set M in (X, 7) containing z such that C1(M) C N.

Theorem 14. [16] Let (X, 7,G) be a grill topological space and A C X. Then A is not G —open set in (X, 7,G) if and only if A ¢ H C
U (Inty,(A)), for each open set H in (X, 7).

Corollary 1. [16] Let (X, 7, G) be a grill topological space, A and B C X. Then A N B is a G —open set in (X, 7, G) if and only if there is
an open set H in (X, 7) such that

ANBCH CVY(Int,(AN B)).
Theorem 15. [16] Let (X, 7, G) be a grill topological space, A C X. If A is G5 —open set, then W(A) = U(Int,(4)),in (X, 7,G).

Theorem 16. [16] Let (X, 7, G) be a grill topological space. If (X, 7) is a door space, then every G —open set in the grill topological space
(X, 7,G) is an open set in (X, 7).

Theorem 17. [16] Let (X, 7, G) be a grill topological space, A C X. Then A is G —open set if and only if there is an open set H in (X, 7)
such that A C H C ¥(Intw(A)).

From all the previous relationships in the background studied, we have the following figure.

3  G*—Induced space

n the section, we introduced the concepts of an open GS — sets and their relationships with the other known concepts of openness. We next give
the notions of the closure operator of an open G — sets.

3.1 OpenGS—sets

Definition 11. For a set of all G5 —open sets G O(X) in a grill topological space (X, 7,G), and A C X. A set A is called an open G, —set, if
for each Gy —open set B there exists an open set H in a topological space (X, 7) such that, AN B C H C ¥(Int,(AN B)). The complement
of A is called a closed G, —set in the topological space (X, 7, G). The set of all open G, —set is denoted by OGS (X)), and the set of all closed
G —set is denoted by CGS (X).

Theorem 18. Let (X,7,G) be a grill topological space, and A C X. Then A is an open G5 —set if and only if ANB €
GSO(X) for each G —open set B in the grill topological space (X, 7, G).

Proof: Suppose that A is an open G5 —set in (X, 7,G). Let B be a G5 —open setin (X, 7,G), H € (X, 7). Since A € OGS (X), by definition
of open G, —set, Corollary (1) and for each G —open set B, we have AN B € G5O(X).

Conversely, since AN B € GO(X) for each G — open set B in the grill topological space (X, T, G), by Corollary (1), there is an open set
H in a topological space (X, 7) such that

ANBCH C ¥(Int,(AN B)), foreach G — open set B.
Hence A is an open G —set in the grill topological space (X, 7, G). (]

Corollary 2. Let (X, 7,G) be a grill topological space, A C X. A set A is not G5 —set in a grill topological space (X, 7, G) if and only if
there is a G —open set B such that AN B ¢ G5O(X).

Proof: Let A not be to an open G5 —set and B be a G, —open set in a grill topological space (X, 7,G). Suppose that AN B € G5O(X) for
each G —open set B. Then, by Theorem (18), A is an open G —set. This is a contradiction by hypothesis. Hence, AN B ¢ G O(X).

© CPOST 2023 3
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Fig. 1: Relation for open sets
Conversely, since AN B ¢ G5O(X), by Theorem (14) ,wegetAN B ¢ H C ¥(Int,(AN B)), for each open set H in a topological space
(]

(X, 7). Hence, by Definition (18), we have A is not an open G —set in the grill topological space (X, 7, G).

Theorem 19. Let (X, 7,G) be a grill topological space and A C X. If A is not a G —open set, then A is not an open G —set in the grill
topological space (X, 7, G).

Proof: Let A C X and A ¢ G5 O(X). By Theorem (14), we get
A=ANX ¢ H C ¥(Int,(A)) = ¥(Intw(AN X)),

for each open set H in (X, 7). So there is a G$ — open set X such that AN X ¢ G5 O(X). Hence A is not an open G —set in the topological
space (X, 7, Q). O

Corollary 3. Every open G —set is a G5 —open set in the grill topological space (X, 7, G).

Proof: Let A C Xand A be an open G —set in (X, 7,G). Suppose that A ¢ G5O(X). Since by Theorem (19), we have A is not an open
G —set in (X, 7,G), by hypothesis, which is a contradiction. Hence every open G —set is a G5 —open set in the grill topological space
(X,7,6).

The converse of Corollary ( 3) need not be true.

Example 1. Let (X, 7,G) be a grill topological space on the set of X = {1,2,3,4} with 7 = {0, {1,2,3}, X} and G = P(X) — {0}. The
set A = {1,2,4} is a G —open set, which is not an open G —set in the grill topological space (X, 7, G).

Theorem 20. Every open set in a topological space (X, ), is an open G, —set in the grill topological space (X, 7, G).

Proof: Let A be any open set in (X, 7) and B € GJO(X). Since by Theorem (??), AN B is a G —open set, we get every open set in a
topological space (X, 7) is an open G, —set in the grill topological space (X, 7,G). d

The converse of Theorem (20) need not be true.

Example 2. Let (X, 7, G) be a grill topological space on the set of X = {1,2,3,4} with 7 = {0,{1,2,3}, X} and G = P(X) — {0}. Then
the set A = {1, 2} is an open G5 —set in the grill topological space (X, 7, G), but it is not an open set in a topological space (X, 7).

Remark 1. Let (X, 7,G) be a grill topological space, A and B be two G —open sets. If AN B ¢ GSO(X), then A and B are not G, —sets
in the grill topological space (X, 7, G).

4 © CPOST 2023



Proof: Since AN B ¢ G5O(X), by Theorem (2) for a set A there is at least a G —open B such that AN B ¢ G5 O(X). Similarly, for a set
B, there is at least a G —open A such BN A ¢ GSO(X). Hence A, B ¢ OGS (X). O

Theorem 21. Let (X, 7,G) be a grill topological space and A C X. Then A is an open G —set in a grill topological space (X, 7, G) if and
only if for each G — openset B, gaCI(X — (AN B)) = X — (AN B).

Proof: Suppose that A is an open G —set in (X, 7, G). By Theorem (2) AN B € OGJ(X) for each G —open set B, then
X—-(ANB)=X — galnt(ANB) = gaCl(X — (AN B))
. Conversely, it is similar to the above argument. ]

Theorem 22. For the set of all G5 — open set G5 O(X) in a grill topological space (X, 7, G), there is a topology on X equivalent the set of
all open G —sets OGS (X)) defined by

Tga ={AC X : gaCl(X — (AN B)) = (X — (AN B)) for each G, — open set B.}
Proof:
1. If A= X.Then foreach a G5 — open set B.
GaCl(X — (X NB)) =X — (XN B) = gaCl(X — B) = X — B,
Also if A = . Then for each G — open set B in (X, 7,G).
GaCl(X — (0N B)) =X — (0N B) = ga CU(X — ) = X — 0.
Hence X, € 1ga.
2. Let Ay, Ay € Tga, this mean that A1, Az € OGS (X) by Theorem (21). Suppose that A} N Ay ¢ OGS (X). Now by Corollary (3)
A1,A9 € GSO(X), then A1, A2 ¢ OGS (X), by Remark (1). Therefore this is a contradiction. Hence, A1 N Ay € TG
3. Let A; € 7ga foreach i € A. Then by Theorem (21) 4; € OGS (X) foreachi € A.So A; N B C A; € GSO(X) by Theorem (18). Now
foreach i € A and for each a G5 — open set B, we get U;ca (Ai N B) C Ujea (Ai) € G5 O(X) by Theorem (11). Since
(UieaAi) N B = Ujea(AiN B) € G5O(X).
foreach B € G5O(X). Hence U;cpn A; € Tga, foreachi € A.
From 1, 2, 3 the collection 7ga is a topology on X. ]
Remark 2. The triple (X, 7, GS), (easily(X, 7, TG ) is called a G —topological space, if OGS (X) ( easily Tga ) is a topology on X.
Remark 3. The concepts of openness in (X, 7o ) and openness in (X, 7g) are independent.
Example 3. Let (X, 7,G) be a grill topological space on the set X = {1,2, 3,4} with 7 = {0, {2, 1}, {2}, X}. If G = G|{4 1}), then

G = {0’ {25 1}7 {2}v {1}7 {1’3’4}5 {174}7 {17274}3X}a

TGy = QL’O(X) = OQZ‘(X) = {(Z)v {2,1},{2},{1,2,3},{1,2,4}, X }.
Now the set {1,2,3} € OGg, but {1,2,3} ¢ 7g. Also the set {1,3,4} € 7g, but it is not open in the G5 —topological space (X, 7, Tga ).
3.2 GST—space

Definition 12. A grill topological space (X, 7,G) is called a G5 T —space if the intersection of any two arbitrary G —open sets A and B is
G& —open set in the grill topological space (X, 7, G).

Theorem 23. Let (X, 7,G) be the grill topological space, and A be the subset of X. If CI(A) C ge CI1(A), then the grill topological space
(X,7,G) is a GST—space.

Proof: Let A be any subset of X in the grill topological space (X, 7,G) and Cl1(A) C ga CI(A). Since ga Cl(A) C CI(A) and by hypothesis
Cl(A) C gaCl(A), we get CI(A) = gaCl(A), for any subset A of X.
Now, let G and H be two arbitrary G —open sets. Then G¢ and H are G —closed sets. So

g Cl(G°UH®) = CI(G°U H")

is a closed set in a topological space (X, 7), also ga C1(G° U H€) is a GG —closed set in the grill topological space (X, 7,§G). Therefore
X — (G°UH®) =GN H is a G —open set. Hence the grill topological space (X, 7, G) is a G5 T'—space. O
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Theorem 24. Let (X, 7, G) be a grill topological space and (X, 7) be a door space. Then the grill topological space (X, 7, G) is a G T—space.
Proof: Let (X, 7) be a door space, A and B be two G —open sets in the grill topological space (X, 7, G). Since by Theorem (16 )

galInt(A) = Int(A) = A, gaInt(B) = Int(B) = B,
then AN B = Int(AN B) = galInt(AN B) € GGO(X). Hence the grill topological space (X, 7,G) is a G5T —space. O
Theorem 25. Let (X, 7,G) be a grill topological space. Then (X, 7, G) is a G5 T —space, if every G —open set is a closed set in (X, 7, G).
Proof: Let A, B be two sets which are both G —open sets and closed sets in the grill topological space (X, 7,G). Since A = ¥(A), B = ¥(B),

we get
A C Int(A) = Int(VU(A)), B C Int(B) = Int(¥(B)).

So
A = Int(A) = Int(¥(A)), B = Int(B) = Int(V(B)).
Therefore
ANB=1Int(ANB) = galnt(AN B) € G5O(X).
Hence the grill topological space (X, 7, G) is a G5 T —space. O

Theorem 26. A grill topological space (X, 7, G) is a G&T—space if and only if the finite union of G —closed sets in (X, 7, G), is a G5 —closed
set.

Proof: Suppose that (X, 7, G) is a G5 T—space. Let B; be arbitrary G —open set, i = 1,2...,n € N, where the set of natural numbers N. Since
by hypothesis

Ni'(Bi) € G50(X), X — B; € G5C(X),
then
X — (N{(Bi)) = Ui (X — By).

is a G —closed set. Hence the finite union of G —closed sets in (X, 7, G) is a G —closed set. Conversely, similar to the above argument.
O

Theorem 27. A grill topological space (X, 7, G) is a G T'—space if and only if GSO(X) = OGS (X).

Proof: Suppose that (X, 7, G) is a G T—space. Let A, B be two arbitrary G —open sets, Since AN B € G5O(X), forany A, B € G5O(X)
there is an open set H in (X, 7) suchthat AN B C H C V(Intw, (AN B)). Therefore A, B € OGS (X) by Definition (11). Hence G5 O(X)
C OGS (X). Itis well known that OGS (X) C GJO(X). Therefore, we obtain that OGS (X) = G5 O(X).

Conversely, let A, B be an arbitrary two GJ —open sets. Since A and B € OGS (X), by Theorem (18). So by hypothesis AN B € GJO(X).
Hence a grill topological space (X, 7,G) is a G T'—space. O

Theorem 28. A grill topological space (X, 7, G) is a G5T —space if and only if the set of all G —open set G5 O(X) is a topology on X .
Proof: Suppose that (X, 7,G) is a GT—space. Now

1. X,0 € GSO(X).

2. Let A and B be two G —open sets. We have by hypothesis, (A N B) € G5O(X).

3. Let A; € GSO(X) foreach i € A. Then (U;ea Ai) € GSO(X), by Theorem (11). From 1, 2, 3, the collection G5 O(X) is a topology on
X.

Conversely, let A and B be two arbitrary Gy —open sets . Since G$O(X) is a topology on X, then (AN B) € G5O(X). Hence (X, 7,G) isa
GST—space. O

3.3  G&—Induced Operators

Definition 13. Let (X, 7, G) be a grill topological space and z € X, A C X. The set A is called a G —neighborhood ( (easily. G5 — nhd))
of z in the grill topological space (X, 7, G) if there exists a G —open set B containing x such that x € B C A. The set of all G nhd of x is
denoted ga Ny The set of all ga Ny. is denoted ga Nx, where ga Ny = {A C X : Ais G5 — nhd of 2} and ga Nx = {ga Nz : 2 € X}

Theorem 29. Let (X, 7,G) be a grill topological space , z, y € X, A and B C X. Then the following hold:

Foreachz € X, ga Nz # 0.

If A€ goNythen'z € A.

If A€ gaNy, AC Bthen B € gaNg.
If A€ ga Ny, then BUA € ga Ny

Ll

Proof:
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. Foreachz € X, ge N contains G& —open set X which is containing .

. Since A € ga Ny, we get thereis a G —open set B containing x such that z € B C A.

. Since A € ge Nz, and A C B, we obtain that there is a G5 —open set H containing = such that H C A C B. Therefor B € ge Ny .
. Since A € ga Nz, and A C BU A, we have BU A € ga Ny.

AW N —

O

Remark 4. Let (X, 7, Tgs) be a G —topological space. If for z in X and for each G —open set B, containing z, then X N By is a
G — mbh of x in a grill topological space (X, 7,G).

Remark 5. Let (X, 7, Tgs) be a G —topological space. If for z in X and for each G —open set B, containing z, then ) N By is not
G& — mbh of x in a grill topological space (X, 7, G).

Theorem 30. Let (X, 7,G) be a grill topological space and A C X. Then A is a G —open set if and only if A is a G5 — nbh of it is points.

Proof: Let x be any point in X and A be a G —open set containing x in (X, 7, G). Since by Definition (13), we have for any A is a G — nbh
of z. Therefor A is a G5 — nbh of it is points in (X, 7, G).
Conversely, Since A is a G5 — nbh of it is points, we get by Definition (13) a G& —open set A contains z, such that z € Ay C A. Therefor
UzeaAz = A. By Theorem(11), we have A is a G5 —open in (X, 7,G).

d

Definition 14. Let ga Nz be a set of all G — nbh of a point z € X in the grill topological space (X,7,G) and (X,7,7ga) be a
G& —topological space.
1. The closure point operator of a subset A of X in (X, 7, 7ga ) is denoted by T (A) and defined by
T(A) = {z € X : 3G — open set By containing x such that A“ N By ¢ ga Nz }.
Theorem 31. Let (X, 7, 7ga) be a G —topological space, (X, 7,G) be a grill topological space, A and B C X. Then the following hold:

if and only if A = ().

=
>

T

= 0 X IN Nk W=
: =838
Q= ININ

Proof:

1. Since ) C A for every subset A of X, then @ C Y(0). Conversely, Since z € Y((), we get there is an G —open set Bz containing a point
x such that X N By ¢ G5 — nhd of zin (X, 7, G), then by Remark (4 ) = (). Hence Y () C 0. Therefore § = Y(().
2. Since for every subset of X, we have T(X) C X. Let = be any point in X. Since for z € X3 G5 —open set B, containing z such that
X—-X=0NnB; ¢G5 —nhdof zin (X, 7,G), then by Definition 14, z € T(X). Hence X C X. Therefore X = T (X).
3. Let = be any point in X. Since = ¢ (X — A) N Bz for G —open set B, containing z, by Definition 14, we get € T(A). Hence
ACT(A).
4. Let x be any pointin X and A C G C X. Suppose that z € T(A). Since X — G C (X — A) and (X — A) N Bz ¢ G — nbh of z, by
part (3) of Theorem (29), we get (X — G) N By ¢ G5 — nbh of x. Therefore z € T(G). Hence T(A) C Y(G).
5. Itisclear that Y(A N B) C T(A) N Y(B), by part(4 ).
6. e Itis clear that T(A) UY(B) C T(AU B), by part(4 ).
o Letz ¢ Y(A)UT(B).Sincex € X — (T(A)UY(B)), thenz € (T(A))°N (YT(B)).Sox € (T(A))°;x € (T(B)). Therefore there
exist G5 — sets G, H containing x such that G N By C A°N By, H N By C B° N By, G and H are G& — nbh of x for each G —open set
Bg.Sincex € (GN H) N By C (A°N B°) N Bz and (G N H) N By is G5 — nbh of itis points, by Definition (14), we have 2 ¢ T(A U B).
Hence T(AU B) = T(A) U Y(B).
7. e Itisclear that T(A) C YT(Y(A)), by part(3 ).
e Letz € T(Y(A)), thenz € T(A) by Definition (14) and Theorem (??). Therefore T(T(A4)) C T(A)
Hence T(A) = T (Y (A))
8. Letx € gaCl(A),thenx € Aorz € A Sox € A°N By # 0. Now if 2 ¢ Y (A), then by Theorem (??) and Definition (13), there is a
Gi —open set G C A° containing a. Therefore z ¢ ga Cl(A). That is contradiction. Hence x € T (A) and go C1(A) C T(A).
9. e Itisclear that Y(A) C Y(ga Cl(A)), by part(3).
e Letz € T(gaCl(A)), then T(ga Cl(A)) C T(T(A)) C T(A), by parts (8) and (7).
Hence Y(gaCl(A)) = T(A).
10. e Itis clear that T(A) C ga CI(Y(A)), by G —closure operator.
o Letz € gaCl(T(A)), thenz € T(ga CU(T(A)) C T(Y(T(A))) € T(Y(A)) C Y(A),by parts (8) and (7). Therefore Y (ga CI1(T(A)) C
T(A).
Hence g CI(Y(A)) = T(A).
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Corollary 4. Let (X, 7,G) be a grill topological space. Then T (A) is G5 —closed set for any subset A of X in (X, 7,G).

Proof: Let A be a subset of X. Since ga CI(T(A)) = Y(A), by last theorem, then Y (A) is G —closed set. O

4 G~—Separation axioms.

In the section the concepts of the separation axioms are investigated and introduced by the collection of G —open sets, as G&TY —space,
G&Tor—space, G T3 —space and G5 Ty —space. We give their relationships with the other known concepts of separation axioms.

4.1  G5Ti—space and GSTo—space

Definition 15. A grill topological space (X, 7,G) is called a GJT7 —space if for each two element z # y € X there are two G —open sets
Hand ,Gsuchthatz € H,y ¢ G, y € Handx ¢ G.

Definition 16. A grill topological space (X, 7,G) is called a G, T» —space if for each two element x # y € X there are two G —open sets
Hand G suchthatz € Hyy € Gand GNH = (.

Theorem 32. For grill topological space (X, 7, G), every G To—space is a GJT1 —space.

Proof: Let (X, T,G) be a Gy To —space. Then for each two element z # y € X there are two G — open sets H, G suchthatz € H,y € G and
G N H = (. Thus there are two sets G — open H, G suchthatz € H,y ¢ H andy € G,z ¢ G, for each two element z # y € X. Therefore
by Definition (15), (X, 7,G) is a G511 —space. |

The converse of the Theorem (32) need not be true.

Example 4. Let (X, 7,G) be a grill topological space. If 7 is the co- finite topology 7, ¢, withe maximal G = {X}. Then, (X, 7,G) is a
G&Ty —space which is not G&Th —space.

Theorem 33. A grill topological space (X, 7, G) is a G To— space if and only if for each z # y € X, there is a G —open set B in (X, 7, G)
containing z such that y ¢ go Cl(B).

Proof: Suppose that (X, 7,G) is a GJTa— space. Let z # y € X. Then there are two G —open sets G and U in (X, 7, G) such that z € G,
y € UandU NG = (). Take H = G. Then, H is a G;; —open set in (X, 7, G) containing z andsoy ¢ H C ga CI(H) C X —U.

Conversely, let z # y € X be any points in (X, 7,G). And by the hypothesis, there is a G5 —open set H in (X, 7,G) containing x such
that y ¢ ga C1(H). Then, X — ga Cl(H) is a G5 —open sets in (X, 7, G) containing y such that x € H,y € X — gaCI(H) and H N [X —
G CI(H)[ = 0. Hence (X, 7,G) is a G&Ts— space. O

Theorem 34. Let f: (X, 7,G) — (Y,0) be a G5 —continuous injective function from a grill topological space(X, 7, G) to a topological
space (Y, o) and (Y, o) be a T1 —space. Then, (X, 7, G) is a GJT1 —space.

Proof: Let x # y € X be any points in X and (Y, o) be a T1 —space . Since f is injective, we have f(x) # f(y) € (Y, o), also there are two
open sets B and H in (Y, o) such that

f(x) € B, f(y) € H, f(x) ¢ Hand f(y) ¢ B.
Then, we obtain:
v f By wg [ (H) andy & f(B),
Since B and H are open sets in (Y, o) and f is G —continuous, we get f ~(H) and f~!(B) are G —open sets in (X, 7, G). Hence (X, 7, G)
is a G5T1 —space. O

Theorem 35. Let f: (X,7,G) — (Y,0) be a G —continuous injective function from a grill topological space(X, 7, G) to a topological
space (Y, o) and (Y, o) be a T —space. Then, (X, 7, G) is a G T»—space.

Proof: Let x # y € X be any points in X and (Y, o) be a To—space . Since f is injective, we have f(x) # f(y) € (Y, o), also there are two
open sets B and H in (Y, o) such that f(z) € B, f(y) € Hand HN B = 0. So

zef T (B),ye f (H)ad f~(ANB) = f1(B)nfH(H) = 0.

Since B and H are open sets in (Y, o) and f is GS—continuous, we get: f~1(H), f~1(B) € GO(X) in (X,7,G). Hence (X,7,G) is a
G& Ty —space. O

42  GSTz—space and GST,—space
Definition 17. A grill topological space (X, 7,G) is called a G5 —regular space (G5 r—space ) if for each € X and each closed set A

in (X, 7) not containing x there are two G& — open sets H and G such that z € H; A C G and G N H = (. If the grill topological space
(X, 7,G) is a G5 —regular space and (X, 7) is a 17 —space, then (X, 7, G) is called a G T5—space.

8 © CPOST 2023



Definition 18. A grill topological space (X, 7,G) is called a G —normal space if for each two disjoint closed sets A, B in (X, 7) there are
two G5 — open sets H and G such that A C G, B C H and G N H = (). If the grill topological space (X, 7,G) is a G5 —normal space and
(X, 7) is a T} —space, then (X, 7, G) is called a G T —space.

Theorem 36. If(X,7) is a regular space, then (X, 7, G) is a G5 r—space for each grill G.

Proof: Let = be any point € X, and (X, 7) be a regular-space . By hypothesis in (X, 7), for each € X and for each a closed set F’
not containing x there are two open sets H and G such that z € H, F C G and G N H = (). Since H and G are G5 —open sets in the grill
topological space (X, 7, G), for each z € X and each closed set F'in (X, 7) not containing x there are two G — open sets H and G such that
z € H,F C Gand G N H = (. Therefore by Definition (17) (X, 7, G) is a G r—space. |

Theorem 37. Every normal space is a G5 —normal space.
Proof: Similar to the proof of the above theorem. O
Theorem 38. Every T;—space is a G$T; —space, i = 2,3 and 4.

Proof: Let (X, 7,G) be a T;—space, ¢ = 1,2, 3 and 4. Since every open set in (X, 7) is a G —open set in (X, 7, G),by part one of Definition
10 and Definition 16, we have every T —space is a G$T5 —space, by part two of Definition 10 and Definition 16, we have every Ts —space is
a G5Tr—space. By part four of Definition 10 and Definition 17, we get every T5—space is a G5 T—space. And also by part five of Definition
10, and Definition 18, we have every Ty —space is a G Ty —space. O

Theorem 39. A grill topological space (X, 7,G) is a G$r— space if and only if for each € X and for each open set A in (X, 7) containing
x, there is a G —open set B in (X, 7,§G) containing z such that g« C1(B) C A.

Proof: Suppose that (X, 7, G) is a GJr—regular space. Let x be any point in X and A be any open set in (X, 7) containing x. Since X — A is
a closed set in (X, 7) and = ¢ (X — A). By hypothesis, there are two G_ —open sets G and B in (X, 7,G) such that (X — A) C G,z € B
and BNG = 0. Now z € B € G5O(X) in the grill topological space (X, 7, G) containing z. Then B C (X — G), that is

GaCl(B) C gaCl(X —G) C (X - G) C A.

Conversely, let z be any point in X and F be any closed set in (X, 7) non containing . Then = € (X — F') and (X — F) is an open
set in (X, 7) containing x. By the hypothesis, for the open set (X — F') there is a G —open set B in (X, 7,G) containing x such that
GaCl(B) C (X — F). Then F C X — gaCl(B) and X — ga Cl(B)is a G —open setin (X, 7,G). Since B is a G5 —open set in (X, 7, G)
containing z, we have B N [X — ga Cl(Bﬁ] = (). Then (X, 7,G) is a G —regular space. O

Theorem 40. Every G5T3— space is a G5 Th— space.

Proof: Let (X, 7,G) be a G5 T35 space and  # y € X be any points in X. Since (X, 7) is a T3 —space, by Theorem (12), {z} is a closed set
in (X, 7) and y ¢ {z}. Since (X, 7, G) is a G r—regular space, there are two G —open sets G and U in (X, 7, G) such that z € {z} C G,
y € UandUNG = 0. Hence (X, 7,G) is a G T» space. |

Theorem 41. Every G5Ty— space is a G T3 space.

Proof: Let (X, 7,G) be a GJTy space. Let F be any closed set in (X, 7) and ¢ F be any point in X. Since (X, 7) is a 71 —space, then by
Theorem (12), {x} is a closed set in (X, 7) and F' N {z} = . Since (X, 7,G) is a G5 —normal space, there are two G —open sets G and U
in(X,7,G)suchthatz € {x} CG, F CUand U NG = 0. Hence (X, 7,G) is a G, T3 space. O

Theorem 42. A grill topological space (X, 7,G) is a G —normal space if and only if for each the closed set F' in (X, 7) and for each the
open set G in (X, 7) containing F', there is a G —open set H in (X, 7, G) containing F" such that g« CI(H) C G.

Proof: Suppose that (X, 7,G) is a G —normal space. Let F be any closed set in (X, 7) and G be any open set in (X, 7) containing F'.
Then X — G is aclosed setin (X, 7) and F' N (X — G) = 0. Since (X, 7, G) is a G —normal space, there are two G —open sets H and U
in (X,7,G) suchthat (X —G) CU, FC Hand UN H = (). Take V = H is a G5 —open set in (X, 7,G) containing F. Then V = H C
(X — U), this implies,

GaCl(V) C ga CU(X —U) C (X —U) C G.

Conversely, let F' and H be any two closed sets in (X, 7) such that F N H = (. Then H C (X — F) and X — F is an open set in (X, 7)
containing closed set . By the hypothesis, there is a G5 —open set V' in (X, 7) containing H such that ga CI(V) C (X — F). Then F' C
X —gaCl(V) and X — gaCI(V) is a G5 —open set in (X, 7,G). Since V' is a G5 —open set in (X, 7,§) containing H and V N (X —
gaCl(V)) = 0, we have (X, 7,G) is a G —normal space. O

Theorem 43. Let f : (X, 7,G)

— (Y, o) be G —continuous injective function. If (Y, o) is a regular space and f is a G§ —closed function ,
then the grill topological space (X, 7, G)

,G) is a G5 —regular space.

Proof: Suppose that (Y, o) is a regular space, f is a G5 —closed function, z € X and A is any open set in (X, 7) containing z. Then X — A is
aclosed setin (X, 7) and x ¢ (X — A). Take F' = (X — A). By hypothesis, f(F’) is a closed set in (Y, o) not containing f(x), and there are
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two open sets H and B in (Y, o) such that f(F) C H, f(x) € Band H N B = (). Now since f is G& —continuous injective, we get: f 1 (H)
and f~1(B) are G&—open sets in (X, 7, G). Also

FCf Y (H),zecf'(B)
and
FFHHE) N fFNB) =N HNB) = f7H0) = 0.
Hence by Definition (17), (X, 7, G) is a G —regular space. |

Theorem 44. Let f: (X, 7,G) — (Y, o) be G5 —continuous injective function. If (Y, o) is a regular space and f is a G —open function ,
then the grill topological space (X, 7, G) is a G5 —regular space.

Proof: The proof is similar to that of the above theorem. 0

Theorem 45. Let f : (X, 7,G) — (Y, 0) be G$ —continuous injective function from the grill topological space (X, 7, G) to a regular space
(Y,0).If fis a G5 —closed function and (X, 7) is a T —space, then (X, 7, G) is a G T3 —space.

Proof: Since (Y, o) is aregular space and f is a G —closed function, we have (X, 7, G) is a G —regular space by Theorem (43). Since (X, 7)
is a T} —space, we get (X, 7,G) is a G5 T —space, by Definition (17).

Theorem 46. Let f: (X, 7,G) — (Y, 0) be G —continuous injective function from the grill topological space (X, 7, G) to a normal space
(Y,0). If fisa G —closed and (X, 7) is a T} —space, then (X, 7, G) is a G Ty —space.

Proof: The proof is similar to that of Theorem (45). O

5 CONCLUSIONS
From this work, we have the following conclusions:

e On openness properties.
1. For a grill topological space (X, 7,G) the concept of openness of open G — set is a strong form of the concept of openness of open G —
set, but it is an independent form of openness of a topology 7g.
. The concept of openness of open G5 — set is week form of the concept of openness of open set in (X, 7).
On G — space induced property.
. The set of all open G — set OGS (X)) is form topology on a set X.
. The concept of G&T —space is strong form of G* —induced space.
On separation axioms properties.
. The concept of G T;—space, is strong form of the concept of G T; 1 —space, i = 1,2, 3.
. The concept of G5 T; —space, is week form of the concept of T; —space, i = 1,2, 3, 4.

N~ e o~ e N

(=]
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Abstract: The paper considers the space of generalized fractional-maximal function, constructed on the basis of a rearrangement-
invariant space. Two types of cones generated by a nonincreasing rearrangement of a generalized fractional-maximal function and
equipped with positive homogeneous functionals are constructed. The question of embedding the space of generalized fractional-
maximal function in a rearrangement-invariant space is investigated. This question reduces to the embedding of the considered
cone in the corresponding rearrangement-invariant spaces. In addition, conditions for covering a cone generated by generalized
fractional-maximal function by the cone generated by generalized Riesz potentials are given. Cones from non-increasing rear-
rangements of generalized potentials were previously considered in the works of M. Goldman, E. Bakhtygareeva, G. Karshygina
and others.

Keywords: covering of cones, cones generated by generalized fractional-maximal function, non-increasing rearrangements of
functions, rearrangement-invariant spaces.

1 Introduction

In this work introduced two types of cones of non-negative monotonically non-increasing functions on the positive semiaxis generated by
generalized fractional maximal functions and equipped with corresponding positively homogeneous functionals. We give the conditions on the
function ®, under which there are pointwise mutual covering of these cones.

In the work of Hakim D.I., Nakai E., Savano Y. [1], Mustafaev R., Bilgicli N. [2], Kuchukaslan A. [3], Gogatishvili A. [4] a generalized
fractional-maximal functions of another type were defined, a particular case of which is the classical fractional-maximal function.

It is known that the maximal function is a very important operator in the theory of functions. With their help, many important issues of the
theory of function and harmonic analysis are solved. The generalized fractional-maximal functions are also closely related to the generalized
Riesz potentials, considered in the works of Goldman M.L. [5-7] (see also [8-10]).

The study of various properties of operators using a generalized fractional-maximal function is sometimes easier than the study of such
operators using a generalized potential.

In this paper, we aim to determine the cones of non-negative measurable functions generated by a generalized fractional-maximal function
and to investigate the properties of such cones.

2 Definitions, notation and auxiliary statements

Let (S, X, i) be space with a measure. Here is X is o-algebra of subsets of the set S, on which is determined a non-negative o- finite, o—
additive measure . By Lo = Lo (S, 3, i) denotes the set of u-measurable real-valued functions f : S — R, and by Lar a subset of the set Lo
consisting of non-negative functions:

L§ ={f€Lo: f>0}

By L(')"(O, 00; J) we denote the set of all non-increasing functions belonging to La'.

Definition 1. [/1] A mapping p : La" — [0, 00] is called a functional norm (short: FN), if the next conditions are met for all f,g, fn €
L, neN:
(P1) p(f) =0= f =0, u— almost everywhere (briefly: u— a.e.);
plaf) = ap(f),a > 0;p(f +g) < p(f) + p(g) (properties of the norm);
(P2) f<g,(p—ae)= p(f) < p(g) (monotony of the norm);
(P3)  fu 1 f= p(fn) = p(f)(n — 00) (the Fatou property);
(P4) 0< (o) <oo= [ fdu<cop(f),f € LY. (Local integrability);

g
(P5) 0< pu(o) <oo= p(xe) < oo (finiteness of the FN for characteristic functions (xo ) of sets of finite measure).
Here fn 1 f means that fn < fpni1, le fn=1f (u—ae.)
n o0
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Definition 2. Let p be a functional norm. The set of functions X = X (p) from Lo, for which p(|f|) < oo is called a Banach function space
(briefly: BFS), generated by the FN p. For f € X we assume

Ifllx = p(l£1])-

Let Lo = Lo(R™) be the set of all Lebesgue measurable functions f : R™ — C; Lo = LO(R") be the set of functions f € Lg, for which
the non-increasing rearrangement of the f* is not identical to infinity. Non-increasing rearrangement f* is defined by the equality:

fr)y =inf{y €[0;00) : Ap(y) <t}, t € Ry = (0;00),

where
Af(y) = pn{z € R": |f(x)] >y}, yel0,00)

is the Lebesgue distribution function. It is known that f* is a non-negative, non-increasing and right-continuous function on Ry; f* is
equimeasurable with | f|, i.e.

p{t€Ry: f1(t) >y} =pn{z e R": [f(x)] >y},
here p is the Lebesgue measure (on R™ or on R, respectively, see [1]).

Let f # . R™ — R" denote a symmetric rearrangement of f, i.e. a radially symmetric non-negative non-increasing right continuous function
(as a function of r = |z|, x € R™) that is equimeasurable with f. That is

1

) = F ™) £ @) = ((i)ﬁ), rt € Ry,

Un

here vy, is the volume of the n-dimensional unit ball.
The function f** : (0, 00) — [0, o0] is defined as

| =

It is clear that f** is an a non-increasing function on R .
Really, let ¢1 < ¢, then

to t1 to t1
* % _ i * _ i * i * i * * . t2 tl
7o) = | £ = if (r)dr + Jf (rydr < if (rydr -+ 1" (0) - 2
Hence, we have
1 t1 t1 1 t1 1 t1
* K * t2 - tl * t2 - tl * _ * _ pX¥
7(12) < tzif (r)ar + 2= lf (rar < (1 +221) ! £rnr = J £ = 1 (1)

Definition 3. A functional norm p is said to be rearrangement-invariant if

[ <g" = p(f) <plg).

Banach function space X = X (p), generated by a rearrangement invariant functional norm p will be called a rearrangement invariant space
(in short: RIS).

1
u

Example 1. Ler S = R", i = pn, be the Lebesgue measure in R", 1 < p < 0o; u € Lo(R"), 0 < u < 00, (p-a.e.); u € Li,oc(Rn), €

loc/pny 1 1
Lloe(r), L4 L =1,
The space X = Lp o (R™) withanorm fx = fr,_ _ ie.

p,u

1
P
1fllx = < | IfU\pdu) L 1<p<oss |fllx = Ifullp, p=oo

R™

is a BFS. Associated space:

Everywhere in this work, we denote rearrangement invariant space (in short: RIS) by E = FE(R"), and by E=F (R™) the associated
rearrangement-invariant space and £ = E(Ry), E = E (R ) their Luxembourg representation, i.e. such RIS that

Ifle =1 Mg lglg =gz, (1)

Let Qg be a set of all nonnegative, finite on R, decreasing and right continuous functions:

Qo ={g9: Ry = [0;00); g, g(t+0)=g(t), t € Ry}

12 © CPOST 2023



Definition 4. A function f : R4 — Ry is called quasi-decreasing and is denoted by f | (quasi-increasing and is denoted by f 1) if there
exists C' > 1, such that

flte) < Cf(t1) ifts < ta.
(f(t1) < Cf(ta) ifts < t2)

Throughout this work we will denote by C, C1, C2 positive constants, generally speaking, different in different places.
By the notation f(x) = g(x) we mean that there are constants C7; > 0, Cy > 0 such that

C1f(t) <g(t) < Caf(t), t€R4.

Definition 5. Lern € Nand R € (0; co|. We say that a function ® : (0; R) — R4 belongs to the class An(R) if:
(1) ® is non-increasing and continuous on (0; R);
(2) the function ®(r)r™ is quasi-increasing on (0, R).
For example, ®(t) =t~ € An(o0), 0 < a <n.

Definition 6. [12] Letn € N and R € (0; 00]. A function ® : (0; R) — R4 belongs to the class By (R) if the following conditions hold:
(1) ® is non-increasing and continuous on (0; R);
(2) there exists C > 0 such that

J@(p)p"*dp < CP(r)r™, r e (0,R). (2)
0

For example,

_ R
B(p) = p* " € Bn(c0) (0 < a <n); ®(p) = zn% € Bu(R),R € Ry.

For ® € By (R) the following estimate also holds
T
J@(p)p”_ldp >nto(r)r", r e (0,R).
0

Therefore

jcwp)p"‘ldp ~ &(r)", r € (0, R), 3)
0

®EBu(R)={0< DL ®(r)r". 1, r € (0,R)}. (4)

Definition 7. Ler ® € A;,(00). The generalized fractional-maximal function Mg f is defined for the function f € Lllo (R™) by

(Mo f)(z) = sup &(r) j 1F@)ldy,

r>0
B(w,r)

where B(x,r) is a ball with the center at the point x and radius r. That is, consider the operator Mg: LZIOC(R") — LO(R”).

In the case ®(r) = 7", a € (0; n) we obtain the classical fractional maximal function M, f:

(Maf)(x) = sup ——— j 1F(v)ldy.

r>07T
B(z,r)
We denote by M % = Mg (R™) the set of the functions u, for which there is a function f € E(R") such that
u(z) = (Ms f)(z),

lullpre = inf{llflle: f € E(R"Y), Mef=u} ()

such a space Mg will be called an space of generalized fractional-maximal function.
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Note that in the works of Goldman M.L., Bakhtigareeva E.G [4-5], the generalized Riesz potential was considered using the convolution
operator:

A: E{(R") — Lo(R"),

Af(@) = (G o) =207 | Glo— ) F )y,
B
where the kernel G(x) satisfies the conditions:
G(z) =2 ®(|z]), =€ R" (6)

® € Bp(o0); Jec€ Ry.
The kernel of the classical Riesz potential has the form
G(z) =[2|*7", a € (0;n).

Note that, unlike the operator A the operator Mg is not linear.
Definition 8. Define S = {K(T')} for T € (0, 0] as a set of cones considering from measurable non-negative functions on (0, T'), equipped
with positive homogeneous functionals pg pr(7y : K(T') — [0, 00) with properties:

(1) he K(T), a20=ahec K(T), pgr)(ah)=oapgm)(h);

(2) pr(r)(h) = 0= h =0 almost everywhere on (0, T).

Definition 9. [5] Let K(T'), M(T) € 1. The cone K(T) covers the cone M (T') (notation: M(T) < K(T)) if there exist Co = Co(T') €
R, and C; = C1(T) € [0, 00) with C1(c0) = 0 such that for each hy € M (T') there is hy € K (T) satisfying

pi (1) (h2) < Coparery(h), hi(t) < ho(t) + Cipprery(ha), t€(0,T).
The equivalence of the cones means mutual covering:
M(T)~ K(T) < M(T) < K(T) < M(T).

Let E is rearrangement-invariant space (briefly: RIS). We consider the following two cones of decreasing rearrangements of generalized
fractional maximal function equipped with homogeneous functionals, respectively:

Ki=KMg :={heLT(Ry):h(t)=u*(t), t e Ry, uc Mp},
prc, (h) = inf{{lull e : u € Mg; u'(t) = h(t), t € Ry }; (7)

Ko=KMp :={h:h(t)=u"*(t), t e Ry, ue Mp},

prcs(h) = inf{ullpyn = w € ME; w* (1) = ht), t € Ry ). (8)

This means that the cones K7 and K2 consist of non-increasing rearrangements of generalized fractional maximal functions.
Note that in the works of Goldman M.L. [5], Bokayev N.A., Goldman M.L., Karshygina G.Zh. [9-10] cones generated by generalized
potentials are considered. They study the space of potentials Hg =H S(R”) in n-dimensional Euclidean space:

HER™) ={u=Gxf:feER")},
where F(R") is an rearrangement invariant space (RIS).

lull g = nf{||fllg : f € ER"); G * f = u},

M(T) = KME(T) = {h(t) = u*(t),t € (0;T),u € Hg},
parry(h) = inf{[[ull g w € HE;u'(8) = h(t),t € (0;T)};
M(T) = KME(T) = {h(t) = u™*(t),t € (0;T) : u € HE},

prr(h) = inf{llull g < u € HE;u™(6) = h1)).t € (0:T)).

In the following Theorem 1 [13] gives the estimate for a non-increasing rearrangement of a generalized fractional maximal function (Mg f)
by non-increasing rearrangement of the function f.
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Theorem 1. Let ® € Ay, (00). Then there exist a positive constant C, depending from n € N such that

(Maf)*(t) < C sup s®(s™/™)f*(s), t € (0,00),
t<s<oo

forevery f € L}, (R™).

In the following theorem we give the compares of the cone generated by a generalized fractional-maximal function and the cone generated
by the generalized Riesz potential.

Theorem 2. Let ® € By, (c0) and kernel G(x) satisfies the condition (6). Then cone generated by the generalized potential covers the cone
generated by the generalized maximal function, i.e. K M g < KM g

Lemma 1. The following covering takes place

K < Ka.
Theorem 3. Let ® € By, (00). The embedding
Mg (R") = X(R") (9)
is equivalence to the next embedding
KiME(Ry) — X(Ry) (10)

3 Conclusion

In this paper, we considered the space of generalized fractional maximal functions and investigated the various cones generated by nonincreasing
rearrangement of generalized fractional maximal function. Equivalent descriptions of such cones and conditions for their mutual covering
are given. Then these cones are used to construct a criterion for embedding the space of generalized fractional maximal functions in the
rearrangement invariant spaces (RIS).
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Abstract:

Locally coherent modules play a central role in algebraic geometry, as they provide a framework for studying the structure of vari-
eties and schemes. Their dual counterparts, locally co-coherent modules, are less well-known, but they are nonetheless important
in a variety of mathematical contexts. In the seminal paper [19], the authors introduced the notion of a locally coherent module
and studied its properties. In this work, we introduce a dual notion, which we call a locally co-coherent module, and investigate
its fundamental characteristics. Furthermore, we provide a comprehensive and rigorous study of locally co-coherent modules. We
begin by introducing the definition and basic properties of these modules. We then examine their relationship to locally coherent
modules and other algebraic objects. Finally, we discuss some of the applications of locally co-coherent modules in other areas of
mathematics.

Keywords: finitely cogenerated module, finitely copresented module, co-coherent module, and locally co-coherent module.
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1 Introduction

The theoretical foundations and notation employed in the current investigation are informed by seminal contributions delineated in refer-
ences [1], [2], [3], [4], [5], [6], [7], [8], [9], and [10]. Specifically, these sources provide foundational descriptions and formalizations of the
key concepts studied herein, including coherent functors [2], locally coherent modules [3], Cohen-Macaulay modules [4], and the relation-
ship between coherent functors and Gorenstein categories [10]. Moreover, they establish structural typologies, categorical frameworks, and
mathematical properties germane to properly contextualizing the study’s analytical objectives and modeling approach. By drawing upon these
scholarly works, the requisite terminology, structural postulates, and problem conceptualizations are delineated for systematically interrogating
the impact of graph operations on relational transformations and attendant complexity shifts. In summation, the cited literature furnishes the
theoretical apparatus and notational conventions underscoring the methodology and interpretation of results within the present investigation.
Firas and Karim [11] delineate properties of local modules, an important construct in the study of coherent structures. Meanwhile, Nam, Tri,
and Dong [12] examine properties of generalized local cohomology modules with respect to ideal pairs, shedding light on their categorical
properties and behaviors. By drawing upon the formalizations and examinations of such algebraic notions presented in these sources, the req-
uisite terminology, structural postulates, and analytical objectives employed herein are properly defined and contextualized. This prior work
therefore establishes the theoretical foundations and notational conventions underpinning the methodology and interpretation of findings within
the present research.

Throughout this paper, R means a ring with an identity element and all modules are unital R-modules. In [19] R-MOD denote a category of
unital right R-modules and o [M] is a subcategory of R-MOD and its objects are submodules of M-cogenerated is studied. Similarly to ’finitely
presented’, *finitely copresented’ also depends on the category referred to (c[M], R-MOD) see [19].

The notion of locally coherent modules was introduced and studied in [19], such that it is defined as the following : Let M be an R-module.

A module N € o[M] is called a coherent module in o[M] if it is finitely generated and every finitely generated submodule of N is a finitely
presented in o[M]. If all finitely generated submodules of a module N € o[M] are coherents, then N in o[M] is called a locally coherent
module.
In this paper, we introduce and study the dual notion of the locally coherent module which is called a locally co-coherent module in o[M] and
is defined as the flowing: Let M be an R-module. A module N € o[M] is called a co-coherent module if it is finitely cogenerated and every
finitely cogenerated factor module of N is finitely copresented in o[M]. If all finitely cogenerated factors modules of module N € o[M] are
co-coherents, then N is called a locally co-coherent module in o[M].

In (Lemma 1.) gives characterization of locally co-coherent module € o[M] such that A module T is called locally co-coherent module in
o[M] if and only if it is finitely cogenerated and every finitely cogenerated factor module of 7" is finitely copresented in o[M]).

In (Proposition 1.) explain that every finitely cogenerated submodule of a locally co-coherent module is locally co-coherent in o[ M].

In (Theorem 1.) We study some properties and behavior of the notion of locally co-coherent module € o[M] on short exact sequences such
that if R isaring andlet 0 - X — K — L — 0 be a short exact sequence of modules, then we have:

If K is locally co-coherent and L is finitely cogenerated, then X is locally co-coherent in o[M].

If X and L are locally co-coherents, then K is locally co-coherent in o[M].

If K = X @ L, then K is locally co-coherent in o[M] if and only if X and L are locally co-coherent in o[M].

If K is locally co-coherent in o[M] and N, H are finitely cogenerated submodules of K, then N (] H is finitely cogenerated.
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See also the duality of this theorem in [17] As a conseqance of (Theorem 1.) we get (Corollary 2.) such that if N1, Na...... , Ny, are submodules

of N in o[M], then @', N; is locally co-coherent module if and only if N1, Na......, Ny, are locally co-coherent submodules of N in o[M].
Also in (Proposition 2.) if f: L — N is a homomorphism between locally co-coherent modules L, N in o[M], then we proved that

Kerf,Imf, andCokef are locally co-coherent modules.

In (Proposition 3.) Let X to be locally co-coherent and Y, Z to be finitely cogenerated factor modules of X. If

X 9% v

7| |
z 2P
is a pushout diagram, then we proved that P is finitely cogenerated.

In section 5 we study Properties such that if M be an R-module, U finitely copresented module in o[M] and N € o[M]. If every submodule
of N is U-cogenerated, then the following is proved:

N is locally co-coherent in o[M] if and only if for every f € Hom(N,U k)7 k € N, the submodule Ker f is finitely cogenerated (Imf is

finitely copresented) if and only if (1) for any f € Hom(N,U), the submodule Ker f is finitely cogenerated and (2) the intersection of any
two finitely cogenerated submodules of NV is finitely cogenerated.
In section 6 we study Characterizations of locally co-coherent modules in R — M OD where For an R-module N the following is proved:
N is locally co-coherent in o[M] if and only if for every f € Hom(N,U"), k € N, the submodule Ker f is finitely cogenerated (Imf is
finitely copresented); if and only if (i) for any f € Hom(N,U), the submodule Ker f is finitely cogenerated, and (ii) the intersection of any
two finitely cogenerated submodules of N is finitely cogenerated.

Recall some important definitions which are basic in this work. An R-module M is called finitely generated, if for any family (M;);c of
submodules of M with Zie[ M; = 0, there is a finite subset J of I such that ZjeJ M; =0 (see[13, 18, 19]).

As in the classical case, finitely presented module M is defined as a module that is finitely generated such that, for every short exact sequence
0 — K — L — M — 0, if L is finitely generated, then K is also finitely generated (see [18, 19]).

Dually and similarly, for a ring R, an R-module M is called finitely cogenerated if for every family {M;};c; of submodules of M with
MNic1 M; = 0, there is a finite subset J C I such that (), ; N; = 0.

A module M is said to be finitely copresented if it is finitely cogenerated and for every short exact sequence 0 — M — L — K — 0,
with L is finitely cogenerated, then also K is finitely cogenerated (see [19], pages 248-249).

2  Locally co-coherent modules

Definition 1. Ler M be an R-module. A module N € o[M] is called co-coherent module if it is finitely cogenerated and every finitely
cogenerated factor module of N is finitely copresented in o[M]. If all finitely cogenerated factors modules of the module N € o[M] are
co-coherents, then N in o[M] is called a locally co-coherent module.

The following result gives a characterization of a locally co-coherent modules.
Lemma 1. Let M be an R-module. A module T' € o[M] then the following tow conditions are equivalents:

1. T is locally co-coherent module in o[ M].
2. T is finitely cogenerated module in o[M| and every finitely cogenerated factor module of T is finitely copresented in o[M] that is meaning
For every short exact sequence 0 — N =T /H — L — K — 0, in o[M] with L is finitely cogenerated, then K is finitely cogenerated.

Proof: (1) = (2) Suppose that T is locally co-coherent, then it is finitely cogenerated and every factor module of 7" is also finitely cogenerated
and there exists an exact sequence 0 — N =T /H — L — K — 0 with, L is finitely cogenerated, then K is finitely cogenerated in
o[M]) where H is a submodule of T'.

(2) = (1) is seen dually to the proof of 25.1 in[19]: Suppose that T is finitely cogenerated module in o[M] and let 0 — N — B —
¢ — 0 be a short exact sequence with B is finitely cogenerated we obtain with a pushout the commutative exact diagram :

— O

0O — N=T/H — — K — 0
0 — — — K — 0

O+ Q<+ W+
o+ Q+ g+ ~<+o

If B is finitely cogenerated, then D and C are finitely cogenerated, then N = T'/ H is finitely copresented in o[M] and T is a locally co-coherent
module in o[M]. O

Proposition 1. Every finitely cogenerated submodule of a locally co-coherent module is locally co-coherent in o[M]

Proof: : Let N be a locally co-coherent module, then it is finitely cogenerated, and let L be a submodule of N so L is finitely cogenerated and
N /L is finitely copresented ( because NN locally co-coherent module in o[M] ) and therefore it is finitely cogenerated. let K be a submodule
of L
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so L /K is finitely cogenerated and it is a submodule of N /L so L /K is finitely copresented module and hence L is locally co-coherent
module. ]

Now we study in the following theorem some properties and behavior of a locally co-coherent module in o[M] on a short exact sequence;
see more [16, 17, 19]

Theorem 1. Let R be a ring and let M be a R-module. Let 0 — X — K — L — 0 be a short exact sequence of modules in o[M].
Then we have the following.

If K is locally co-coherent and L is finitely cogenerated then X is locally co-coherent in o[ M].

If X and L are locally co-coherent if and only if K is locally co-coherent in o[ M].

If K = X @ L, then K is locally co-coherent in o[M] if and only if X and L are locally co-coherent in o[ M].

If K is locally co-coherent in o[M] and N, H are finitely cogenerated submodules of K, then N (| H is finitely cogenerated.

b

Proof: :(1) Suppose that K is locally co-coherent and L is finitely co-generated in o[M]. Let X — Y be (epic, i.e., homomorphism surjective)
and Y be finitely cogenerated. Forming a pushout, we obtain the commutative exact diagram

0 —- X —» K L — 0
4 4 I

0O —Y - D —- L — 0

we have Y and L are finitely cogenerated, then D is finitely cogenerated and — by assumption finitely copresented and from 30.2, (1) in [19]
Y is also finitely copresented, hence X is locally co-coherent module in o'[M].

(2) Suppose that X and L are locally co-coherents in o[M]. Let K — Z be epic and Z finitely cogenerated. By forming a pushout, we
get the exact commutative diagram

0O - X - K —- L — 0

1 ! !
0O - Y —»- Z2 - H — 0
! !
4 4
0 0

Here K is finitely copresented and H is finitely cogenerated, hence finitely copresented and Z is also finitely copresented, K is locally
co-coherent module in o [M].

(3) This follows immediately from (2) in 1 and From 1.

(4) Under the given assumptions, X' = N + L is locally co-coherent in o[M], then K/N and K/L are co-coherents and from 2 K/N &
K/L, then there is an exact sequence 0 — K/N @ K/L — K — NN L — 0 and hence N N L has to be finitely cogenerated in
o|M]. O

Corollary 1. Let M be an R-module. A module N € c[M) and Let N1, Ns......, Ny, are submodules of N in o[M], then @ _; N; is locally

co-coherent module if and only if N1, Na...... , Np, are locally co-coherent submodules of N in o[M].
Proof: Let N1, Na...... , Np, be locally co-coherent submodules of N in o[M]. We have a short exact sequence
n n—1
0—>Nn—>@Ni—>€BNi—>O
i=1 i=1

and by induction if n = 2, then we get

2
0*)N2*>@Ni4)N1 —0
i=1

from 1 (4) the asseration is true. Now we suppose that N1, Na...... , Ny, are locally co-coherents if and only if ;" ; N; is locally co-coherent
module and we prove it when n+1. The short exact

n+1

0—>Nn+1—>@Ni—>N1 — 0
i=1

and from 1 (2) implies that M, 1 is locally co-coherent module (because /N7 is locally co-coherent). We have also

n+1 n
0= Noy1 > PN — PN —0
i=1 i=1

, then from 1 (3) @?:"'11 N; is locally co-coherent module and it follows that N1, Na...... , Np, are locally co-coherents if and only if @?:1 N;
is locally co-coherent module for every n in o[M]. (]

Corollary 2. Let M be an R-module. A module N € o[M] and N1, Ns...... , N, are modules. If N1, Na...... , N, are locally co-coherent
modules in o[M), then (\_, N; is locally co-coherent modules in o[ M].
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Proof: : Where (_; N; is a submodule of N; fori=1,2,...... ,m which are locally co-coherent modules in o[M] , then by 1 () NV, is
locally co-coherent modules in o[M] . O

Proposition 2. If f : L — N is a homormorphism between locally co-coherent modules L, N in o[M], then Kerf,Imf and Cokef are
also locally co-coherent modules.

Proof: : Since f is homomorphism between locally co-coherent modules L, N implies that ker f is a submodule of L and Im f also a submodule
of N, then, Kerf and I'mf are finitely cogenerated modules in o[M] and by 1 implies that Ker f and Im f are locally co-coherent modules
in o[M]. And we know that coker f = N/Imf so there is a short exact 0 — I'mf — N — cokerf = N/Imf — 0, then coker f is
finitely cogenerated module and it is finitey copresented, hence by 1 coker f is locally co-coherent modules in o[M]. ]

Proposition 3. Assume X to be locally co-coherent and Y, Z are finitely co-generated factor modules of X. If

X —Y

Lo

Z —— P

is a pushout diagram, then P is finitely cogenerated.

Proof: : The given diagram can be extended to the commutative exact diagram

0 - K - X —- Y — 0
4 4 4

0O - L —» Z —» P — 0
4 4 4
4 4 4
0 0 0

and X is locally co-coherent and Y is finitely cogenerated, then K is locally co-coherent by (1) from 1, and hence L is finitely copresented.
Therefore, P is finitely cogenerated. ]

2.1  Properties of locally co-coherent M in o[M]

Theorem 2. Assume the R-module M to be locally co-coherent in o[M]. Then

1. Every module in o[ M) is finitely cogenerated by co-coherent modules.
2. Every finitely copresented module is co-coherent in o[M].

Proof: : (1) By 26.1, in [19] as a dially M Nis locally co-coherent and the finitely co-generated submodules form a set of cogenerators of
co-coherent modules in o [M].

(2) If N is finitely copresented, then it is finitely cogenerated and by (see [19], pages 248-249) , there is an exact sequence

OHNH@U,;—)KHO
i<k

and also the central expression co-coherent and K is finitely cogenerated, then, by 1 1 N it is locally co-coherent and it is co-coherent in
o[M]. O

2.2 Finitely copresented cogenerators and co-coherent modules

Theorem 3. Let M be an R-module, U a finitely copresented module in o[M] and N € o[M]. If every submodule of N is U-cogenerated,
then the following assertions are equivalent:

1. N is locally co-coherent in o[M];
2. Forevery f € Hom(N, Uk), k € N, the submodule Ker f is finitely cogenerated (Im f is finitely copresented);

3. (a)Forany f € Hom(N,U), the submodule Ker f is finitely cogenerated and
(b)The intersection of any two finitely cogenerated submodules of N is finitely cogenerated.

Proof: :

e (1) < (2) Under the given assumptions, for every finitely cogenerated submodule K C U k asa dually of 26.3 there is an epimorphism
f: N — K, forsome k € N.

e (1) = (3) follows from 1,(4) and 2.

e (3) = (2) We prove this by induction on k& € N. The case k = 1 is given by (a).
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Assume that, for £ € N, all homomorphic images of N in U* are finitely copresented, and consider g € Hom(N, Uk). In the exact sequence
0— g(N) — g(N) @ g(L) — g(L) N g(N) — 0

(where L is a submodule of N) the central expression is finitely copresented by assumption and g(N) N g(L) is finitely cogenerated because
of (b) hence Im f is finitely copresented and Ker f is finitely cogenerated.

d

2.3 Characterizations of locally co-coherent modules in R — M OD

Theorem 4. For an R-module N the following assertions are equivalent:

1. N is locally co-coherent in R-MOD;

2. Forevery f € Hom(N, Rk), k € N, the submodule Ker f is finitely cogenerated (Im f is finitely copresented);
3. (a)Forany f € Hom(N,U), the submodule Ker f is finitely cogenerated and

(b)The intersection of any two finitely cogenerated submodules of N is finitely cogenerated.

Proof: : For locally co-coherence in R — M O D we obtain from the proof of 3. O

Conclusion

This study sought to introduce and explore the concept of locally co-coherent modules, a novel dual notion. Initially, the definition and basic
properties of locally co-coherent modules were established. Their relationship to locally coherent modules and other algebraic structures was
then investigated. Specifically, connections were drawn between locally co-coherent modules and previously established concepts. A rigorous
examination of the fundamental characteristics of locally co-coherent modules was undertaken. In sum, the foundational aspects and theoretical
significance of locally co-coherent modules were delineated through a comprehensive theoretical analysis. While requiring further empirical
validation, this work provides a conceptual framework for advancing the understanding and utility of this dual algebraic notion.
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Abstract: In our study, which is based on the lack of applications and problems in the literature, the aim is to develop different
methods by approaching 7 different analytical geometry problems using the particle swarm optimization method. Besides its strong
theoretical structure, a method has been designed that can be used in many real-life applications. It has been demonstrated that
effective solutions can be generated in a short time in architectural, landscaping, cadastral and land-sharing, urban planning, water
distribution, and other design-oriented areas through the software.The method used in our study can be transformed into a design
that can be used in complex systems and problems containing many variables. Mathematical expressions are then converted into
functions to which Particle Swarm Optimization is applied, allowing integration of any problem that can be written as a function of
multiple variables. The theoretical solutions have been tested and proven accurate. At the same time, from the generated graphics,
it has been demonstrated how important the number of iterations is to approach the correct solution.

Keywords: Area problems, Analytical geometry, Particle Swarm Optimization

1 Introduction

Particle Swarm Optimization (PSO) represents an optimization technique devised by Kennedy and Eberhart (1995), drawing inspiration
from the collective movement of fish and insects in swarms. It serves as a fundamentally swarm intelligence-based algorithm, capitalizing on
the observation that random movements exhibited by animals within swarms, particularly in contexts involving food and safety, enhance their
ability to achieve objectives.

In the context of Particle Swarm Optimization, individual problem-solving entities are referred to as "particles," and collectively, they form
the "population." To begin, the swarm members designated to search for the solution and the essential parameters are initially determined.
A fitness function is utilized to evaluate the proximity of each particle to the sought-after solution. Subsequently, a change rate function
guides each particle’s movement towards a closer solution. The process iterates, repeatedly evaluating proximity to the solution with the fitness
function, until the desired outcomes are attained. It is widely applied to target tracking, positioning and navigation, mode identification etc. by
virtue of its advantages of simple concept, ease in actualization, fewer parameters, and effectiveness in solving complicated optimization and
so on.[2] With an increasing number of iterations, the solution set’s elements progressively approach the actual values of the solution. Given an
infinite number of iterations, the optimization converges towards these ideal values.

2 Materials and Methods

The main methodology in this paper is forming proper equations for each problem by using basic analytic geometry knowledge, as it was
used for creating the equation of lines, finding the intersection points of lines, calculating the area of polygons with known coordinates, creating
parabolas, and using definite integral for parabolic area calculations. In the software part of our study, the particle swarm optimization method
was implemented using Python. The "matplotlib" library was utilized to create necessary graphics, and GeoGebra was used for testing solutions
and visualising problems.

2.1 Calculating the Area of a Triangle or Quadrilateral in Analytical Plane

In the analytical plane, the area of the triangle ABC, defined by the coordinates of its edges as A (za,ya), B (xp, yp), and C (z¢, ye), can
be calculated as follows:

A(ABC) = < [(zayp + TpYe + TcYa) — (TpYa + TcYp + Taye)| (1)

N
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Similarly, by selecting the edges in a counterclockwise direction, the area of the quadrilateral ABC'D, defined by the coordinates of its
vertices as A (Za, Ya) , B (p,vp) , C (z¢, ye), D (24, yq) can be calculated as follows:

A(ABCD) = | (xayb + TpYc + TcyYq + mdya) - (xbya + ZcYp + TqYet+ Tayaq) | (2)

NO| —

3 Problems

3.1 Problem 1

For which values of m and n, the division of the ABC triangle into three equal-area parts by the [BD and [BE rays satisfies the equality
S1 =89 = S3?

Fig. 1: Problem 1 Model

For the solution, we start by finding the equation of the BC' line:

Ya — Ye
e =24 I 3
Vo Ye= - (x—zc) (3)

Yd — Yec =

mag — ye = S (xg — xc) (5)

La — Tc
(Ta — xe)MmTg — Ye(Ta — Te) = (Ya — Yc)Td — TcYa + TeYe  (6)

(mza — Mxe — Ya + Ye)Td = YeTa — YeTe — TeYa + Teye  (7)

Yela — TcYa 8) Yo = m( YeTa — TcYa 9)
e =
MTg — MTec — Ya + Ye MmTg — MTec — Ya + Ye

Tq =

The point E (z¢, ye) is also on the line BC and on the line y = nz, so we can express the coordinates of point E as the intersection of these

two lines.
YcZa — TcYa YcZa — TcYa
10 =n 11
Ta — NTe — Ya + Ye (10) e (xa—na:c—ya+yc)( )

Te =

We can calculate the area of triangle ABC using the equation numbered as .S (1), as shown below.

[(zayp + TpYe + TcYa) — (TpYa + TcYp + Taye)|  (12)

S = % |(xcya) - (mayc)\ (13)

N[ =

A(ABC) =S =
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For the areas of the other three smaller triangles to be equal, satisfying the equation S; = Sg = S3, each of their areas must be % We can
also calculate the areas of triangles ABD, DBE, and EBC' as shown below.

1
A(ABD) = 81 = 3 [(ZaYp + TpYd + Tq¥a) — (TpYa + Tayp + Taya)| (14)

1
A(DBE) = 52 = 5 [(zayp + zpYe + Teya) — (@pya + Teyp + zaye)|  (15)
1
A(EBC) = S5 = ) [(zeyp + Tpye + TeYe) — (TpYe + Teyp + Teye)|  (16)
1 S 1 S
S1=3 [(zaya) — (xaya)| = 3 N S2=73 |(xeya) — (Taye)| = 3 (18)
1 S
83 = 5 (zeye) — (zeye)| = 5 (19)
After obtaining these equations, we can define the function Fy(m,n).
S S S
Fi(m,n) = |51 — g‘ + |S2 — g‘ + |S3 — g‘ (20)

Using particle swarm optimization, we can solve for the values of m and n that make our function equal to 0. This way, we can find the
values of m and n that satisfy previous equations.

Fi(m,n) — 0 (21)
When solving this problem with the values A(0,4) and C(4.47,0) using our software, we obtained the following graph and solution set

below.
For the key (m, n), we obtain the values (1.789, 0.447). We also observe that as the iteration count increases, the solution gets closer.
(Used code for the problem 1 can be found in subsection 4.2)

3.2 Problem 2

For the ABC triangle with the side | BC'| lying on the x-axis, which values of m and x. allow the division of the triangle into four equal-area
parts by two perpendicular lines, one with the equation y = ma and the other intersecting the x-axis at point x¢ ?

Fig. 2: Problem 2 Model

In this problem, firstly, we should find the slope of the line GE. Since it is perpendicular to the line DB, its slope can be calculated as %
Knowing that it passes through point E, we can express the equation of the line as follows:

y_ye:w (22) E(we,0), y= o

Te — T

(23)

To find the coordinates of point D (x4, y4), we should examine the intersection of lines AC and BD. For this purpose, based on equation
(4), we can express it as shown below:

Ya = Yo = 22 (2q —ae)  (24)
a C
TcYa TcYa
xrqg = 25 =m 26
d (mze + ya — Mxq;) (25) ya <(mxc + Yo — mxa)) (26)

To find the coordinates of point G (x4, yy), we should examine the intersection of lines BA and GE. For this purpose, if we start from
equations (4) and (23), we can express it as follows:
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vo = g —m) (27) = (29)
for B(0,0), yg—g—‘;mg (29)
Te= %9 _ Yo, (30)
m Ta
vy = s B w = S (32)

To be able to calculate the areas that are formed, finally, we can find the coordinates of point F (x Y f) as the intersection of lines BD and
GE.

Te — T
yr = eTf (33) Yp=mxy (34)
mxy = % (35)
m2m =Te— T 36
f f
—__Te _ _MTe
Ty = 21 1) (37) yr m 2 + ) (38)

We can calculate the area of triangle ABC' as shown below.

[

A(ABC) = S = - [(za¥p + TpYe + Tcya) — (TpYa + TeYp + TaYe)|  (39)

=N

A(ABC)=S= 5 |zeyal  (40)

The areas of triangles GBF and F BE, with coordinates B(0,0), E (z¢,0) ,F (z£,yf), and G (24, yg), can be calculated as below.

1
A(GBF) = 51 = 5 |(zgyp + zoys + 2 5yg) — (Toyg + Ty + xgyys)|  (41)
1
S1=75 [(zryg) — (zgys)| (42)
1 TelYa Telq MmTe
S1 == — 43
=5 (e o)~ (s wern)|
1
A(FBE) =52 = 5 |(z s + xpye + zeys) — (Tpyf + Teyp + Tpye)|  (44)
1
So = 5 [(weyys)|  (45)
_! __MTe
SQ— 9 ’(me(m2+1)>‘ (46)

The areas of quadrilaterals AGFD and DFEC, with coordinates A (a,¥a),C (z¢,ye),D (24,y4),E (ze,0),F (mf, yf), and
G (zg4,yg), can be calculated using equation (2) as shown below.

1
A(AGFD) = 53 = 3 |(:rayg +x9ys +Tryq + a:dya) — (wgya +zryg +Tqyp + :rayd)‘ (47)

A(DFEC) = 84 = % ’(l’dyf + T fye + xeye + Teya) — (Tpya + Teys + Teye + xdyC)‘ (48)

g =1 | q— el TaZa  MTc Te MTcYa TcYa ya)—
379 “Mya +Ta  mya+zamZ+1 mZ+1mxe+ye—MmLa  MTe+ Yo — MLa
TaZa Te TelYa TcYa mIc
— 49
MYa + Ta Ya ¥ m2 +1mya +xa  MTc+Ya —mre m? +1 T @amcya(me +yo —mea) | (49)
1 TcYa mxe TcYa Te TclYa maxe
Si == - 50
4 2mxc—|—ya—mxam2+1+xcmmxc—|—ya—mxa) m2+1mmxc—|—ya—mxa+me (m)‘ (50)

After obtaining these equations, we can define the function F» (m, z¢). Since it’s desired that all areas are equal, each region’s area should
be % We can define this function as shown below and solve the problem using the particle swarm optimization method to find values where
the function approaches 0.

P = =5 = oo o -

(51)
Fy(m,ze) — 0 (52)

(Used code for the problem 2 can be found in subsection 4.3)
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3.3 Problem 3

For the ABC triangle with point B at the origin, which values of m, x,, and z; allow the division of the triangle into four equal-area parts
by two perpendicular lines: one with slope m and intersecting the x-axis at point x, and the other intersecting the x-axis at point x; ? (The
case 0 < xj, < x will be examined.)

Fig. 3: Problem 3 Model

Similar to Problem 2, by considering that the slopes of the known perpendicular lines DH and GI must multiply to -1, we can deduce that

the slope of line Gl is Tnl . The equation of line GI can be expressed as follows:

T; — &

vou= "0 ) fori(e,0) y= (54)

To find the coordinates of point D (24, y4), we need to examine the intersection of lines AC' and H D. Deriving from equation (4), we can
express it as follows:

Ya — Ye

Tag — Tc

2y = mzp, (Ta — Tc) + TalYe — TelYa (56) yq = m(fayc — TclYa + ThYe — xbyc) (57)
m(Ta — Te) — Ya + Ye m(Ta — Te) — Ya + Ye

Yd — Ye = (g —xc) (4) yg=m(zq—xzp) (55)

To find the coordinates of point G (x4, yg), we should examine the intersection of lines BA and GI. By starting from equations (27) and
(54), we have the following expression:

Ya — Yp T — g
gy = 22 b — 27 =— (54
Yg — Yb P (xg —xp) (27) yg (54)

for B(0, 0) yg:i—axg (58)
a

Ti — Tg Ya

=2 59
m Ta zg  (59)
TiTa TjYa
Lg (mya‘i’ﬂfe) ( ) Yg (mya+$a) ( )

To find the coordinates of point J (:cj, yj) , we need to examine the intersection of lines BC and DH:

Yj—Yp = iz%zl; (zj—ap) (62) yj=m(x;—xyp) (63)

for B(0,0) yj:%xj (64)

C
m (zj —xp) = %ij (65)
MTeTj — MTexpy, = Yer; (66)
1y = I (67) g, = I (gy)

mIec — Ye mTec — Ye

To find the coordinates of point E (z¢, ye), we need to examine the intersection of lines BC and GI. By using equations (62) and (54), we
can express it as follows:
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Ve = Tt (we— ) (69) ye= "1 T (T0)
for B(0,0) ye = %xe (71)

C

Ti —Te _ Ye (72)

= Z“Te
m Te
TiTe TiYc
Te = ———"F"— (73 =——— (74
= e t 70 (73) e . (74)

To calculate areas, we can find the coordinates of point (m Y f) as the intersection of lines DH and G1I:

LAy (75) Line DH : yy=m(zy—=z,) (76)

Line GI :  y; = -
xZ; 7$f B _
— =m(zp—azp) (77)
T —Tp = m2:cf —m2z, (78)
2
_ mTrp + _ Mmx; — mxp
=Ty ) WS gy @0

We can calculate the area of triangle ABC' using equation (1) as shown below.
1
A(ABC) =S = by [(Zayp + TvYe + Teya) — (TpYa + Teyp + Taye)| (1)

1
S = 5 | Tcya — Taye | (81)
The area of triangle J FF’ with coordinates J (:cj , T j) ,F (m Y f) , and E (z¢, ye) can be calculated as shown below.

1
A(JEF) = 82 = 5 |(2jye + zeys + zpy;) — (zey; + zpye + 25y5)|  (82)

T;Te  MT; — MITh QOh +T; MIhYec )

g, — 1 | ( MILTe TiYc
279 MTe — Yo MYe + Te  Mye +xc (M2 +1) (m2+1) mae —ye
( TiTe mTLYe m2zy + Te  T1ye MITpTe MITL — m:ch> | (3)
Mye + Te MTe — Ye (m2+1) myc+xe mze—ye (M2+1)

The areas of quadrilaterals AGF D, DFEC, and GBJF with coordinates A (4, ya) ,B(0,0), C(z¢,ye) , D (24, ¥4q) , E (e, ye) ,
F (zg,yf),and G (zg,yg),J (7;,y;) can be calculated using equation (2) as shown below:

|(zgyb + xpy; + 25y + 2 5yg) — (2oyg + x5y + 2 5y; +2gys)|  (84)

ZYa > B m2ay, + T; mTpye TTq mz; — mxy (85)
(m?+1) mze —ye  (Mya+za) (M +1)

N =

A(GBJF) = 8; =

S1=

MIpTe MIT; — MIp m2xh + x;
2

mze —yYe (M2 +1) (m2+1) (mya + xa)

A(DFEC) = 83 = % |(zays + T pye + Teye + veya) — (Tfyq + Teys + Teye + Taye)|  (86)

1 maxp, (Te — Te) + TeYe — TeYe MT; — MT m2:1ch +T;  xye TjTc TaYe — TeYa + ThYa — TRYe
2 ) + Ye + Tcm -

m (Ta — Tc) — Ya + Ye) (m?2+1) (m2+1) myc+xc myc+ xc m (Ta — Tc) = Ya + Yc)

TqYe mzy, (Te — Tc) + TeYe — TeYe yc> | (s7)

m (Za — Te) — Ya + Ye)

TiTe MTi —MTp
myc +zc (m? +1) “myec + zc

<m2l’k +x; (wayc — ZcYa + ThYe — xbl]o) +
(m?2+1) m (Ta — Tc) — Ye + Ye)

1
A(AGFD) = S, = 5 |(Zayg + Tgyf + T Ya + Tqya) — (Tg¥a + Tfyg + Tays + Taya)| (88)

TaYe — TeYa + ThYa — TpYe
m (Ta — Tc) — Ya + Ye)
TaYe — TeYa + TpYa — ThYc )) ‘ (89)

m (za — Tc) — Ya + Ye

) mxy, (Ta — Tc) + TaYe — xcya) _
m (Ta — Te) — Ya + Ye)

S, — 1 | (m ZTalYa TiTa mz; —mz, miz, + (
* 2 “ (Mmya + xa) (Mya + Ta) (m2 +1) (m2 +1)
T;Tq m2xb +x; TjYa mxy (ZL‘a - ch) + TalYec — TcYa M
5 5 + xagm
( (m? +1) (mya + Ta) m (Ta — Tc) — Ya + Ye (m? +1)

MYa + a) "

After obtaining these equations, we can define the function F3 (m, x;,xp,). Since it’s desired that all areas are equal, each region’s area
should be % We can define this function as shown below and solve the problem using the particle swarm optimization method to find values
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where the function approaches 0.

S
17
F3 (m,l’i,l'h) —0 (91)

Py (m,i,wn) = S = 3| + |82 = 5| +]s = 2| + |54 - 3| (90)

(Used code for the problem 3 can be found in subsection 4.4)

3.4 Problem 4

For the trapezoid ABC'D with point B at the origin and side | BC/| lying on the x-axis, which values of x},, = ¢, and m allow the division of
the trapezoid into four equal parts by a line with slope m intersecting the x-axis at point z. and a line perpendicular to it intersecting the y-axis
at point y¢?

Fig. 4: Problem 4 Model

Similar to Problem 2, by considering that the slopes of the known perpendicular lines £.J and F'I must multiply to -1, we can deduce that

the slope of line F'[ is ;Ll . The equation of line F'I can be expressed as follows:

y_yf:y (92)

for F (0,yf) y= %‘Fyf (93)

We can calculate the equations of the lines AD, BA, and DC as follows in the figure:

Ya — Yo Ya
- for B(0,0)y = — 94
B (o) o B(O.0 = o (0)

line BA y—yp =

line DC y—yczw(m—xc), for C (x¢, 0) y:yid(m—;rc)(95) line AD y—yazw(x—xa)(QG)
R Tqg — Tc Ta — Xd

The coordinates of point H (xy,, y5,) can be found as the intersection of lines E.J and F'I.

line FI yp = % +yr (97) line EJ yp = m(zp — xe) (98)
—h g yp=m(ap— o) (99)
—xp +myy = m2xy, —m%ze  (100)

m2ze + myy = m2xy, + zp, (101)

mzwe + myy
(m? +1)

mzyf — MTe

Tp = (103)
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To find the coordinates of point J (x4, y4), we need to examine the intersection of lines AD and EJ. By deriving from equation (96), we
can express it as follows:

Yj — Ya = Yo = Yd (zj —wa) (104) y; =m(zj —xe) (105)
La — Tq
Yo = Ud (j — xa) + ya =m (zj —ze) (106)

Ta — Tyqg

LTd — Lald—MTe (g — T,
x; = Jotd— Tald e (Za = 2q) (107) yj:m(
Ya = Yd — MTa + mrq

YeXdd — Tald — TelYa + xeyd) (108)
Ya — Yd — MTa + My

To find the coordinates of point G (z4,yg), we need to examine the intersection of lines BA and F'I. By deriving from equation (94), we
can express it as follows:
Ya —Zg
=22 109 = —= 110
Yo = %9 (109) g o TYs (110)
Ya —Zg
—rg = —= 111
P m TYs (111)
MYaTy + Talyg = MTayf (112)
MTayf myay s

—— (113 =
MmyYa + Ta (113) vy MYa + Ta

Tg = (114)

To find the coordinates of point I (z;,y;), we need to examine the intersection of lines DC' and F'I. By deriving from equation (95), we can
express it as follows:

Ya i
Yi = Tq — Te (i —we) (115) yi = ml +yr (116)

—T; Yd
— = — 117
ety = (@ —we) (1U7)

(zq — xc) (myf — x5) = myq (z; —xc)  (118)
z; (e — q) + TgMyp — macyy = myqr; — myqre (119)

MTcYf — TgMyy — MY4T YdTe — MYqyys
(120) y; = ——m——
(Te — g — MYq) (Te — g — MYq)

(121)

Ty =
The area of the trapezoid ABC' D can be calculated using equation (2) as shown below.

A(ABCD) =S = - [(wayp + ZpYe + TeYq + Ta¥a) — (TpYa + ZcYp + Taye + 2ayq)|l  (2)

N~ N =

S = |(@eyd + Taya) — (zaya)| (122)

The areas of the quadrilaterals GBEH, HECI, JHID, and AGH J with coordinates A (24, ya) ,B(0,0), C (z¢,0),D (24,yq) , E (ze,0),
F(0,9f),G (g, yg) ,H(xn,yn),1(xi,y;), and J (2, y;) can be calculated using equation (2) as shown below:

1
A(GBEH) =51 = 3 [(zgyp + Toye + Teyn + Thyg) — (Tpyg + Teyp + Thye + Tgyp)|  (123)

m2yf —mze mize+ myy Myayf MmTayf m2yf — MTe
e - (124)

(m2+1) (m2+1) mys+ za mya +xq (M2+1)

1
A(HECI) = Sy = 3 [(xhye + Teye + zcYi + Tiyn) — (Teyn + Teye + Tiye + Tpys)|  (125)

(126)

" YdTc — MYqys T MmIcYf — TgMYyf — MYqTc m2yf — MTe _ m2yf — MZe m2xe + myf YdTc — MYqdyys
“(ze —za — mya) (e = Ta — mya) (m?+1) ©(m2+1) (m?+1)  (zc = xq — Mya)

A(JHID) = S3 = = |(zjyn + 2pyi + Tiya + zqy;j) — (2ny; + 2y + xays + zj9a)|  (127)

N | =

Sa — 1 | YaTd — TaXqg_ — MTe (Ta — Tq) mzyf —mze mize + MyYs YdTe — MYy MIcYp — TgMmyy — mydmcy n
°7 2 Ya — Yd — MTa + mzg (m? +1) (m?+1)  (zc — x4 — mya) (ze — x4 — MYya) ¢

o (yaxd — TaTq — TeYa + xeyd)) B m2ze +my; (yaxd — TaTg — TeYa + :veyd> | MTYf T TaMyy — MyaTe mze
d Ya — Yqg — MTa +MTy (m2+1) Ya — Yq — MTq + My (e — g — myy) (m2+1)

YdTe — MYJYf I YaZd — Talq — MTe (Lo — xd)yd> | (128)

X
4 (we — 24 — mya) Ya — Yd — MTa + Mg
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1
A(AGHJ) =84 = 3 ’(xayg + xgyp + Tny; + asjya) — (:cgya +xpyg +xiyn + xayj)‘ (129)

Sy= L | g MWays | _MTayy mPy; —mze  mze +myy m ((YaTd = TaTd = TeYa + Teyd
2" mye + Ta | Mya+za mZA+1 m2+1 Ya — Yqg — MTa +MTy
YaTq — TaTg_mTe(Ta — Tq) _ MTayy B m2ze + mys MYyaYf  YaTd — Talg — MTe (Ta — mq) My — MTe .
Ya — Yd — MTa + MIq “ mya—l—a:aya m2 +1 MmYa + Ta Ya — Yd — MTa + Mxyg m2 41

Tam (Wd ~ Tald = TeYa + meyd) | (130)
Ya — Yd — MTa + My

After obtalnlng these equations, we can define the function Fy (m Te, Yy f) Since it’s desired that all areas are equal, each region’s area

should be . We can define this function as shown below and solve the problem using the particle swarm optimization method to find values
where the functlon equals 0.

Fy (m,ze,yy) =

S
51—2’4—

5_,‘ |5 - ‘+(s—§ (131)
Fy(m,xe,yf) — 0 (132)

(Used code for the problem 4 can be found in subsection 4.5)

If we examine the case where ABCD is a right trapezoid and calculate the values of points H, J, I, and G when we have
A(0,2),B(0,0),C(6,0),D(4, 2).

Fig. 5: ABCD right trapezoid

S mayy 0 g YaZd — TaXd—MTe(Ta — Uﬁd) 24 maze o Zmyf —12m — mzxe + myy
9 mya +xa J Ya — Yg — MTq + My - m T (2—-2m) h = (m2+1)
2
myay Yad — Tald — TeYa + TeYd 12 — 2myy mYy — me
Y Mmyq + Ta vr Y ( Ya — Yqg — MTa + My ) Yi (2 —2m) Yh (m2+1)

The total area of the trapezoid ABCD can be calculated as shown below.

1
A(ABCD)=S= Hmcyd + Zqya| = §|12+8| =10

The areas of the four regions can be calculated as shown below.

- m2yf — MTe n m2;re + myy¢
SRS CEE S

A(GBEH) = 5, :%

A(HECI) = S, :%

12 = 2myy = 2myy — 12m mzyf — Me m2yf —mze mize+ myyr 12 — 2myy
(2 —2m) (2 —2m) (m2+1) © (m2+1) (m2+1) (2-2m)

2 2
- + 12 -2 2 —12
A(JHID) = S3 _% | <2+mwem Yf —MmTe M Te+mys my g mys m +8m>

I+l | mE+l) @2-2m) ° @2—2m)

I T T em) it 2—2m) m

A(AGHJ) = Sy =

(m :Ee+myf2m 2myy — 12m mnyfmace 12 — 2myy 2+m$e> |
1
2

(m2+1) m2+1) m (mZ+1)

<m me+myf2 +22+mxe)_<m2me+myf 2+mxem2yf—mxe>‘
m
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3.5 Problem 5
For the pentagon ABC D J with point B at the origin, side | AB| lying on the y-axis, and side | BC| lying on the x-axis, which values of z.,

z f, and m allow the division of the pentagon into four equal parts by a line with slope m intersecting the |JD| side and the x-axis at point ze,
and a line perpendicular to it intersecting the | A.J| side and the x-axis at point s ?

y=m(x — X,

Fig. 6: Problem 5 Model

The slope of the line F'G can be determined as -1 by considering that it intersects perpendicular to known lines EI and F'G in a manner
similar to Problem 2, where the product of their slopes should be -1. The equation of the line F'G can be expressed as follows:
y—yp=——"I’ (e =2y) (133)
! m
Tf—x
As F (z4,0) y= fT (134)

We can calculate the equations of the lines AJ, JD, and DC' as below:

line DC y—ye= Yd — Ye (x —ze) for C(z,0) y= _Yd_ (z —zc) (135)
rd — Te Trd — Tc

L (@ —za) for AOya) y="—Trtya (136)

1

line AJ y—ya=
Tj — Ta

YTV ) (137)

line JD yiyj:il"—l'd
7

We can find the coordinates of point H (z,, y3,) as the intersection of the lines £ 1 and F'G.

Xy — T
= % (138) line EI: yp =m (z), — zc) (139)

line FG: yp

—x

— +yr=m(zp —xe) (140)
m

—rp+xp = m2zy, — mze (141)

m'2ze + T = mzp, +xp,  (142)

2
mme—i—xf m(:rf—;re)
=21 (143 = ———" (144

To find the coordinates of point G (zg4,yg), we should examine the intersection of the lines AJ and F'G. By using equation (135) as a

starting point, we can express it as shown below:

yg = ij_jya Tg+ya (145) yg = % (146)
Yim ¥ tya = L9 (147)
j m
mag (yj — ya) + myax; = xvpxj — wgu; (148)
zg (my; —mya + x;) = xj (xy —mya) (149)

aj (x5 — mya) TfYj = TfYa — TjYa
150) yg = 151
(my; — mya + ;) (150) 5 (my; — mya + ;) (151)

II:g:
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To find the coordinates of point I (x;, y;), we need to consider the intersection of the lines DC and EI. By using equation (136) as a starting
point, we can express it as shown below:

M (mz — :L‘J) (152) Yi=m (me - LBe) (153)

Yi —Yj =
l’j—.’L’d

Yji — Yd
D379 g — )ty =m(z — 154
2 — g (:E’L xj) +yj m ("El xe) ( )
T; (yj —Yq —mxj + mzd) = MTeXg — MTeTj +YjTq — Yqr; (155)
MTeTq — MTel; =+ Y;jTd — Ydxj

(5 — ya — maxj + mzg)

€Ty =

TelYd — TelYj +Y;Td — YdTj (157)
(¥j — ya —ma; + may)

ﬂ%)m=m<

The area of the pentagon ABC D.J can be calculated using equations (1) and (2), expressing it as the sum of the areas of triangle JAD and
quadrilateral ABC D, as shown below:

A(ABCD) = Sq = 3 |[(Tayp + Toye + Teya + Tq¥a) — (TpYa + TcYp + Taye + Taya)]  (158)

N | =

1
Sa = 3 |(zcyq + Tqya)|  (159)

1
A(JAD) =S, = 3 |(a:jya + Taya + xdyj) - (wayj + zqya + xjyd)| (160)
1
Sp =3 |(zjya + zay;) — (Taya + xjyq)| (161)

1
A(ABCDJ) = S = Sa + Sp = 5 |(weya + zaya)l + 5 |(zjya + zqy;) — (Taye + z9q)|  (162)

N | —

The area of the pentagon GABE H can be calculated using equations (1) and (2), expressing it as the sum of the areas of triangle G AH and
quadrilateral ABFE H, as shown below:

A(ABEH) = S14 = - [(za¥s + ZpYe + Teyn + TnYa) — (TpYa + TeYp + Trye + Tayp)| (163)

DO =

71 m(a:f—xe) m2xe+mf
S1a =3 <“’ m2i1) T ve)| (164
1
A(GAH) = Sy = 9 [(%g¥a + Tayn + 2nYg) — (TaYg + TrYa + Tgyn)| (165)
1 T (xf fmya) m2xe+xf TfY; — TfYa — LjYa m2xe+mf Tj (xffmya) m(;cffa:e)
Sip =5 | Ya 3 - 5 Yat+ : (166)
2 (my; — mya + z;) (m2+1)  (my; — mya + z;) (m? +1) (my; — mya + ;) (M2 +1)
A(GABEH ) = 81 = S1a+ 81y = 1| (w2 Er=2e) | mowe oy AL (0 (o —mwa)
=01 = Ola 16 = B e (m2 +1) (m2—|—1) Ya B (myj —mya—i-mj)ya

mgxe +TfTfY; — TfYa — TjYa _ mgwe +a:fy n xj (ch — mya) m (xf — xe) | (167)
(m2+1) (myj — mya + a:j) (m2+1) * (myj — myq + acj) (m2+1)

The area of triangle H E'F’ can be calculated as shown below:

1
A(HEF) =S3 = 3 |(zhye +xeys + xpyn) — (Teyn + T pye + zpyy)|  (168)
1 1|m(zf — ze)
So =5 | (z5yn) = (@eyn)| = 5 W (wf —ze)|  (169)

The area of the pentagon I H F'C'D can be calculated using equations (1) and (2), expressing it as the sum of the areas of triangle / H D and
quadrilateral H F'C'D, as shown below:

|(zhys + 2 pye + Teya + xayn) — (Tfyn + Teys + Taye + zpya)|  (170)

m(xf—:ve)> _ (xfm(mf—xe) mzxe—&—mfyd)

(m2+1) (m2+1) (m2+1)

N | =

A(HFCD) = S3, =

(171)

S3q =

1
3 (xcyd +xq
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1
A(IHD) = S35 = > [(ziyn + Tnya + qyi) — (Tnys + zayn + ziya)l  (172)

TeYd — TelYj +YjTd — YaTj \ \
(yj — Y4 — mx; =+ mxd)

1 | (mxexd — MTeXj + Y;Tg — YqT; M (ﬂcf — ze) m2ae + xf
2

Sap = = +zgm
8b (yj — ya — maj + maq) (m? +1) (m2+1) /47T %d (

2

m-°Te +x x — ZelYi +YiTg — YqTi milxf —x MTelg — MTeXi +YiTqg — YJTi

; fon eYd eYj T YjTd — YdT;j Ty (é‘ e) + eld e®j T Yj%d — Yd Lya | (173)
(m?+1) (yj — ya — maj +mazy) (m*+1) (5 — Ya — mzj +mzq)

A(IHFCD) =53 =534 + S3p =

+

m(xf—xe)> B (xfm(xf—me) m2xe+xfyd>

(m2 4+ 1) (m2+1) (m241)

(ﬂfcyd +zq

N =

1 <mxemd — MTelj + YjTq — YqTj M (:cf — me) m2me +xf

1 meyq — TeYj + Y;jTq — YaTj _
2 (yj — ya — mxj + mag) (m2+1) (m2+1)

d+xgm
Y ( (yj —Yq —mz; +mxd)

m2xe+$f TelYd — TelYj + YjTq — Yd&j m(a‘f —me) MTeTg — MTeT; + Y;Tq — YaTj
2 tz 2 + ya | | (174)
(m? +1) (yj—yd—ma:j+ma:d) (m?2+1) (yj—yd—mxj+mxd)
The area of the quadrilateral JG'H I can be calculated using equation (2), as shown below:

A(JGH) = 84 = = [(wjyg + zgyn + znyi + ziy;j) — (Tgy; + Tnyg + ziyn + z5u:)|  (175)

N =

U, By = %pya —%iya @ (wp —mya) m(zp —ze) mPvetay [ seys = zey; +yiva — yat;
Sy = 9 N + 2 2 +
(my; — mya + z;) (my; — mya +x;) (m?+1) (m? +1) (yj — ya — maj + mag)

MTeLg — MTeXj + YjTd — YdT;j N z; (ch - mya) it sze + 2y TpY; — TfYa — mjyaJr
(vj — ya — mLaj +mzxq) (myj —mya +a;)"" (M + 1) (my; — mya + ;)

MTeTdd — MTelj -+ YiTdd — Ydxj m (xf — me) TeYd — TelYj -+ YiTd — YdTs
5 +a;m | (176)
(yj — ya — mzj + may) (m? +1) (yj — ya — mxj + maq)

After obtaining these equations, we can define the function Fg (m, Te, X f). Since it is desired that all areas are equal, each region’s area

should be %. We can define this function as follows and then solve the problem using the particle swarm optimization method to find the values
where the function equals 0:

o) = 55 s o s 2] ]

Fs (m,ze,xy) — 0 (178)

-2 am

(Used code for the problem 5 can be found in subsection 4.6)
3.6 Problem 6

Which values of m, zf, and x4 allow the division of the area between the y-axis and the parabolic curve y = a? — 22 into four parts

proportional to the numbers 1, 2, 3, and 12 by two perpendicular lines: one with positive slope m intersecting the x-axis at point x f, and the
other intersecting the x-axis at point g ?

yr=mle—Xr)

4 5 6 7

Fig. 7: Problem 6 Model
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By considering that the slopes of the intersecting lines DF and G'E should have a product of -1, we can deduce that the slope of the line
GEis _Wl The equation of the line G E can be represented as follows:

y—yg=—-2 (‘”T; Zg) (179)

As G (z4,0) y:‘”gn;m (180)

To find the coordinates of point D (24, y4), we need to look at the intersection of the parabola y = a? — 2% and the line DF.

yg=m(rg—zy) (181) yq= a® — 22 (182)

My — My =a® — 23 (183) xflerxdfmﬂcffaQ =0 (184)

—m+4/(m2+4(xs+ a?
Lo Al

Taking into account that the value of m is positive and considering that the point D is in the first quadrant, we can express x4 as follows:

—-m + m2 + 4 (mx s + a?
e V( 2( )
fm+\/(m2+4(mmf+a2)
Ya =m 5 —xf (187)

The point E (x¢, ye) can be calculated as the intersection of the ordinate and the line GE, as shown below:

yFW (188)  E(0,ye) ye=% (189)

We can find the coordinates of point H (z,, yy,) as the intersection of the DF and GFE lines.

line GE : yh:% (190) line DH yy =m (zy —xys) (191)

Tg — Th

———=m (wh —zf)  (192)
Tg —Tp = m2z), — mgmf (193)

2
+
), = mTfT Ty (194) yp, =

(m? 1) 2 P

(m? +1)

We can calculate the total area surrounded by the parabola (S) as shown below:

S = ch (a2 — x2> dr (196)

Tp

S = Ja (a2 — :v2) dz  (197)

3
(2, T
Sf(ax 3)

We can calculate the areas S7 and S2 as shown below:

0

1
A(EBFH) =51= 5 |(zeyp + 2pye + T yn + Tnye) — (Tyye + zpyp + 2pys + zeyn)|  (199)
1 m(;rg—;rf) mzazf—i—xgmg
_1 Ty 2
S1=3 <xf m2s 1) T e m)| 20
1
AHFG) = S2 = 5 [(zhys + @ pyg + Tgyn) — (xpyn + 2gys + 2ayg)|  (201)
2
1 m(mg—;r:f) m(a:g—a:f) 1 m(xg—xf)
1 _ 0 L)\ 2 LM T T 1 909
52=3 <x9 (m2 + 1) T m2 1 1) 2| (m2+1) (202)

To calculate the area S3, we can compute it in two parts: by calculating the area of the quadrilateral D HGC' formed by connecting points
D and C' (Ss,), and through an integral calculation (S3p), as shown below:
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=

Fig. 8: S3, and S3,

S3 = S34 + S3p  (203)

1
S3, = A(DHGC) = 5 | (Tqyn + Thyg + Tgye + Teya) — (TnYq + Tgyn + Teyg + zaye) | (204)

1 —m+\/(m2+4(mxf+a2)m(wg_wf) —m+\/(m2+4(mmf—|—a2)
S30a = 3 | + ma —xy —
2 2 (m?2+1) 2
mPey fag (Mt \/(m2 4 (mzy + a?) m (zg —xy)
m2rn) 2 mor |t Ee gy |1 (209)

_(a—mq)yq (206)

S :ch(a2_$2)d$_w: a2x—x—3 ’
3b 2 3 2

3
—m++/(m2+4(mz;+a2)
943 2—m+\/(m2+4(mmf+a2) ( - - 2 s ) —m+\/(m2—|—4(mmf+a2)
Sgb:77a 5 —+ 3 —ma 5 —xf |+

m <7m+ (m2~£4(mxf+a2) B :Ef) (7m+ (m2J2r4(mwf+a2) )

5 (207)

To calculate the area Sy, we can compute it in two parts: by calculating the area of the quadrilateral AEH D formed by connecting points
A and D (S44), and through an integral calculation (Syp), as shown below:

Sa = Saq + Sy (208)

Fig. 9: Sy, and Sy
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1
Sta =A(AEHD) = 5 |(zaye + Teyn + Tnya + Taya) = (Teya +Tnye + Tayn + Taya)|  (209)

_ 2 2 _ 2 2
wiap oy ([t edmar ) N me [ e ee) L)

m211) 2 2

1
S4a :5 |

(mQxf + g zg —-m + \/(m2+4(xf+a2) m(;cgficf) | (210)

(m2+1) m 2 (m2+1)

Sap :J'm (a2 — I2) dx — {pa + 34) 7 - <a2m - ﬁ) N h (a2 y yd) - ( 2 Lﬁ) Bl <a2 . yd) - (211)

2 3 /1o 2
(7m+ (m24+4(mzxs+a?) )
2

2fm+\/(m2+4(mmf+a2)
2 B 3

(az +m(—m+¢m _mf)> SRS T TRl

2

(212)

After obtaining these equations, we can define the function Fjg (m, Ty, mg). In order for the areas to be proportional to 1, 2, 3, and 12, we
can define this function as shown below, and then solve the problem using the particle swarm optimization method to find the values where the
function equals 0:

S S S
-2 So — 2 Ga — 2
18‘+ 2 9‘-1- 3 6'-1—

Fo (m,xp,xzp0) — 0 (214)

si— 25 (213)

S1 3

Fg (m,zp,xp,) =

(Used code for the problem 6 can be found in subsection 4.7)

3.7 Problem 7

What values of m, x ¢, and x4 ensure the division of the area between the circular function y = v/ r2 — 22 and the x-axis into four equal parts
using two perpendicular lines that intersect each other; one line being negatively sloped with an intersection at the point x. on this function,
and the other intersecting the same function at point x;?

Fig. 10: Problem 7 Model

By considering that the slopes of the intersecting lines AD and BC should have a product of -1, we can deduce that the slope of the line
AD is :—nl The equation for the line AD is as follows:

Y—Yq= y (215)

AsD(l’d,\/rQ—xZ> y=?+ r2 — 22 (216)
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To find the coordinates of point E (ze, ye ), we need to look at the intersection of lines AD and BC
Ye = + /7 —xﬁ (217) ye =m(ze —xc) +

xd—xe \/ ?l m —xc +Vr —m% 219

xe(mm+ )meﬁ%ﬂ/@—m (220)

m?ae + g +my/r2 — 2% — /12 — 22
Te =

r2 —x2 (218)

xd—xc+m1/r2—x —\r —a:c - 5
1 (221) ye = o r2 —xz (222)
The point A (x4, 0) can be calculated as the intersection of the x-axis and the line AD, as shown below

yo= TS0 4 \fr2—ad (223) A(wa,0) 0= 2

p— r2 —x5  (224)

Ta =my/r2 —x3 + x4 (225)

The point B (xy, 0) can be calculated as the intersection of the x-axis and the line BC, as shown below

yp =m(zp —zc) +Vr2 — 22 (226) B(zp,0) 0=m(xp — xc) + V12 2

—xé  (227)
2 _
m
The total area of the circular region (S) can be calculated as shown below
2
r
S=— (229
 (229)
A(AEB) = |Taye + Teyp + ToYa — TeYa + TpYe + Tayy|  (230)
The area of triangle A(AEB) =

S1 can be calculated using equation (1) as shown below

1

S1 = B |(Taye) — (zpye)]  (231)

To calculate the area S2, we can compute it in two parts: by calculating the area of the quadrilateral D E BG formed by connecting points
D and C' (S2,4), and through an integral calculation (Sop), as shown below

So = Saq + Sop (232)
S2q = A(DEBG) = = | (xqye + Teyp + TpYg + Tg¥q) —

xd—xc+m(1/r2—x3—\/r2—wg)
|| #am m2 41

N | =

(TeYq + ToYe + Tgyp + Tqyg) | (233)

Saq =

N =

5 5 m2xc+md+m(w/r2—x§—\/7"2—1’%)
TtV ad | - ( WE T
2 _ g2 xd—xc—o—m(,/rQ—xZ—\/rQ—xg)
7’2—3634— —— L ta.|m
m

2
1 +vr2—ax2)| (234)

(r2 — 22)dz — W (235)
T4

By substituting x with = = r cos(t) in the integral equal to I, our expression becomes as shown below

(rg —x4) Ya JZQ
Sop =1 — 2 =272 =
2b 3

r =rcost dr = —rsint.dt

(236)

0
I = J r2 —r2cos? t(—rsint)dt (237)
arccos(ﬁ)

arccos %
J V1 —cos?tsintdt (238)

arCCOS(Td — 2
I= T2J sin? tdt (232) sin?t = # (239)
0

arccos( Zd )

2 2 4

arccos(de) 1— 2 in2
I:TQJ cos tdt:r2<t sin t) (240)
0

0
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1 xd—xc—l—m(,/rz—xz— 7"2—93%) m2xc+xd—|—m(,/r2—x2—\/r2—zg)
So = = Tam —|—\/r2—a:g+m/r2—a:3 —(

m2+1 m2+1

m m2 + 1 2 B 4

2 Tg—x —l—m( r2—m2—\/r2—w2) zq ; zq
T2x3+<_ 7’2—$c+xc>m d— te V d c n ﬁ27x2)|+r2 arccos (24)  sin2arccos (24)

_ (zg *Zxd)yd (241)

To calculate the area S3, we can divide it into two parts: calculating the area of the triangle D EC formed by connecting points D and C
(S34), and through an integral calculation (S3;), as shown below:

S3 = S34 + Sz, (242)

1
S3q4 = A(DEC) = 2 | (Tgye + Teye + TcYq) — (TeYq + TeYe + Taye) | (243)

1 md—mc+m(M—m> m2xc+md+m(M—M)
S3a :A(DEC) = 5 ‘ Tgm + M'i‘

m2 +1 m2+1

mzxc—o—:cd—o—m(,/rQ—xz—\/rg—x%) xd—xc+m(,/r2—x3—\/r2—x§)
Vr2 — a2 +aey/r? — a2 — r2 — 22
¢t Tey/ d 2
m=+1

T; —TeMm
d ¢ m2+1

—Vr2 —axZ —xgV/r2 — 22| (244)

By examining the steps in equation (236) and simplifying the integral, we obtain the expression below. This time, by subtracting the area of
the trapezoid below the CD line segment from the integral over the interval, we define the region:

S3p = I — (ye + yd)Z(xb — Za) _ JId (7‘2 — x2)daj — (ye + yd)Q(xb = Ta) (245)

t sin2t
Sgp =12 (= —
w=r? (5 - 22)

Te

arccos(T) B (yc + yd)z(xb - l'a) (246)

arccos( Ze )
™

2 2 2 2 2
S 1| md—mc-i-m( Tz—Id— r2—xc) N 5 2+mxc—l—md—&—m(q/rQ—xd—\/rz—mc) 5 7,
=—|zgm ré —x re —x
37l m? + 1 ¢ m2 41 ¢
mxc—kxd—l—m(g/?"?—m?l— 7"2—x%) xd—a:c—km(,/ﬂ—a:?i—\/rz—x%)
Ter/r2 — 22 — r2 — 22 —zem — rz—mg
d m2 4+ 1 d m2 +1

- 24
2 4 2 (247)

, . ) r2 2 2 _ 2 _
VT a2 | 4 (arccos (£4) — arccos (£2)  sin2arccos (£2) — arccos (ﬁ?)) B ( re— ety ilcd) (zp — @a)

To calculate the area Sy, we can compute it in two parts: by calculating the area of the quadrilateral C F' AE formed by connecting points F
and C (S44), and through an integral calculation (Syy), as shown below:

Sy = Saa + S (248)

1
Sia = A(CFAE) = | (weys + Tfya + Taye + Teye) — (TfYe + Tayf + TeYa + eye) | (249)
1 5 5 J:d—mc—i—m(@/ﬂ—x?l—\/ﬂ—xg) 5 5 m2xc+md+m(,/r2—x§—\/7fm%)
S4a:§|m 2 — x5 +xgm 1 +Vré—xg + 1
xdfa:Cer(,/rzfmif\/erxg)
V2 —a2 — | rV/r? — 22 +aem +Vr2—22 || (250

m2+1
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- — Te 222 (xzc+7)
Sy, =I" — YeTe = 77) (ze r) :J r2 — g2)dg — Y Nl 251
A Ve (251)

2
zc)
ot sin2t arccos( T) r2 — 22 (zc + 1)
Sgp=r (2 1 ) 5 (252)
™
S —1|m r2 —z2 4z m(xd_xc—Hn i T2_$g))+ r27x2+m2xc+xd+m(\/r2_$§_VT2_JC%)
4'2 d d nﬂ-+1 c Wﬂ-+1
xdfchrm(\/mf\/erx%)
Vi =aE ) = (Vi =2k 4 aem R )+ —ad) |
Ze) in2 Ze 2 _ .2
+T2(arccos(2r) T sin arzcos(r))_ r xzc(g;CJrr) (253)

After deriving these equations, we can define the function F7 (m, z¢, z4). In order for the areas to be equal, we can define this function as
shown below, and then solve the problem using the particle swarm optimization method to find the values where the function equals O:

F7(m,$c,a:d)= 51—§’+ 52—§’+ 53—§’+’S4—§‘ (254)
4 4 4 4
F7 (m,zc,zq) — 0 (255)
(Used code for the problem 7 can be found in subsection 4.8)
4 Solution Codes
4.1 Code for PSO
import random
import time
import matplotlib.pyplot as plt
# ______________________________________________________________________________
a: float = 6
b: float = 7
c: float = 10
def problem2 (X) :
global a, b, c
u = X[0]
m = X[1]
xd = (¢ *b) / (m* c + b —-—m* a)
yd = m x xd
Xg =u x a / (m* b + a)
yg =u b / (m x b + a)
xf = u / (m*x*2 + 1)
vE = m » xf
s = abs(c * b) / 2
sl = abs(xf *x yg - xg * yf) / 2
s2 = abs(u * yf) / 2
s3 = abs((a x yg + xg *x yf + xf x yd + xd * b) - (xg » b + xf * yg + xd » yf + a x yd)) / 2
s4 = abs((xd » yf + ¢ » yd) - (xf » yd + u x yf)) / 2
qg=s /4
return abs(sl - g) + abs(s2 - gq) + abs(s3 - g) + abs(s4 - q)
bounds = [(-20,20), (-20,20)] # upper and lower bounds of variables
nv = 2 # number of variables
mm = -1 # if minimization problem, mm = -1; if maximization problem, mm = 1

# PARAMETERS OF PSO

particle_size = 120 # number of particles
iterations = 200 # max number of iterations
w = 0.8 # inertia constant

cl = 1 # cognative constant

c2 = 2 # social constant

# Visualization
fig = plt.figure()
ax = fig.add_subplot ()
fig.show ()
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plt.title('Fonksiyonumuzun dederinin iterasyonla \verbdegisimi’)l
plt.xlabel ("iterasyon")
plt.ylabel ("Fonksiyonumuz")

# ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

class Particle:
def _ _init_ (self, bounds):
self.particle_position = [] # particle position
self.particle_velocity = [] # particle velocity
self.local_best_particle_position = [] # best position of the particle
self.fitness_local_best_particle_position = inital_fitness
self.fitness_particle_position = inital_fitness

for i in range(nv):
self.particle_position.append(random.uniform(bounds[1][0], bounds[i][1]))
self.particle_velocity.append(random.uniform(-1,1))
def evaluate(self, objective_function):
self.fitness_particle_position = objective_function(self.particle_position)
if mm == -1:
if self.fitness_particle_position < self.fitness_local_best_particle_position:
self.local_best_particle_position = self.particle_position # update the local best
self.fitness_local_best_particle_position = self.fitness_particle_position
# update the fitness of the local best
if mm == 1:
if self.fitness_particle_position > self.fitness_local_best_particle_position:
self.local_best_particle_position = self.particle_position # update the local best
self.fitness_local_best_particle_position = self.fitness_particle_position
# update the fitness of the local best
def update_velocity(self, global_best_particle_position):
for 1 in range (nv):
rl = random.random/()
r2 = random.random ()
cognitive_velocity = cl % rl x (self.local_best_particle_position[i] - self.particle_position[i]
social_velocity = c2 % r2 * (global_best_particle_position[i] - self.particle_position[i])

self.particle_velocity[i] = w * self.particle_velocity[i] + cognitive_velocity + social_velocity
def update_position(self, bounds):
for i in range (nv):
self.particle_position[i] = self.particle_position[i] +
self.particle_velocity[i]
# check and repair to satisfy the upper bounds
if self.particle_position[i] > bounds[i][1]:
self.particle_position[i] = bounds[i] [1]
# check and repair to satisfy the lower bounds
if self.particle_position[i] < bounds[i][0]:
self.particle_position[i] = bounds[i][0]
class PSO:
def __init__ (self, objective_function, bounds, particle_size, iterations):
fitness_global_best_particle_position = inital_fitness
global_best_particle_position = []
swarm_particle = []
for i in range (particle_size):
swarm_particle.append (Particle (bounds))
A =[]
for 1 in range (iterations):
for j in range(particle_size):
swarm_particle[j].evaluate (objective_function)

if mm == -1:
if swarm_particle[]j].fitness_particle_position < fitness_global_best_particle_position:
global_best_particle_position = list (swarm_particle[]j].particle_position)
fitness_global_best_particle_position = float (swarm_particle[]j].fitness_particle_position)
if mm == 1:
if swarm_particle[]j].fitness_particle_position > fitness_global_best_particle_position:
global_best_particle_position = list (swarm_particle[]j].particle_position)
fitness_global_best_particle_position = float (swarm_particle[]j].fitness_particle_position)

for j in range(particle_size):
swarm_particle[]j].update_velocity (global_best_particle_position)
swarm_particle[j].update_position (bounds)
A.append(fitness_global_best_particle_position)
ax.plot (A, color="r")
fig.canvas.draw()
ax.set_xlim(left=max (0, i-iterations), right=i+3)
time.sleep(0.01)
print ("Result:")
print ("Optimal Solution", global_best_particle_position)

© CPOST 2023 39



print ("Objective function value:", fitness_global_best_particle_position)

if mm == -1:
inital_fitness = float ("inf")
if mm ==
inital_fitness = —-float ("inf")
PSO (problem2,bounds, particle_size,iterations)
plt.show ()

4.2 Problem 1

import ParticleSwarm as ps

# corner coordinates

a: float = 0

b: float = 4

c: float = 4.4723317897697
d: float = 0

def probleml (X) :
global a, b, c, d

xl = (-b x c+c*xd+axrd+ b +xd / (X[0] » a - X[0] »c —-Db + d)
vyl = X[0] » x1
x2 = (¢ x (d-Db) +d* (a -2c)) / (X[1] » a — X[1] » ¢c +d - Db)

y2 = X[1] * x2
s = abs(a *d —-Db xc) / 2

sl = abs(a » yl — b » x1) / 2

s2 = abs(xl * y2 - x2 * yl) / 2

s3 = abs(d * x2 - ¢ x y2) / 2

return abs (sl — s / 3) + abs(s2 — s / 3) + abs(s3 - s / 3)
dimensions=2
dimension_bounds=[-6, 6]

bounds=[0] *xdimensions #creating 5 dimensional bounds
for i in range(dimensions) :
bounds [i]=dimension_bounds

#creates bounds [[x1,x2], [x3,x4], [x5,x6]....]

p=60 #shouldn’t really change

vmax= (dimension_bounds[l]-dimension_bounds[0])*0.75
cl=2.8 #shouldn’t really change

c2=1.3 #shouldn’t really change
to0l=0.00000000000001

ps.particleswarm(probleml, bounds,p,cl,c2,vmax,tol)

4.3 Problem 2

import ParticleSwarm as ps
a: float = 6
b: float = 7
c: float = 10
def problem2 (X) :
global a, b, c

m = X[0]

u = X[1]

xd = (¢ *b) / (m* c+b-m=x a)
yd = m x xd

Xg =u x a/ (m* b + a)
vg=u+*b / (m* Db + a)

xf = u / (mx*x2 + 1)

vE =m x xf

s = abs(c * b) / 2
sl = abs(xf *x yg - xg * yf) / 2

s2 = abs(u * yf) / 2

s3 = abs((a » yg + xg * yf + xf x yd + xd » b) - (xg » b + xf » yg + xd » y£ + a « yd)) / 2
s4 = abs((xd » yf + ¢ * yd) - (xf » yd + u = yf)) / 2

qg=s /4

return abs (sl - q) + abs(s2 - gq) + abs(s3 - g) + abs(s4 - q)

4.4 Problem 3

import ParticleSwarm as ps
a: float = 5
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b: float =7
c: float = 8
d: float = 3

def problem3 (X) :

global a, b, c,d

u = X[0]

v = X[1]

m = X[2]

x1l = (m**2 x u + v) / (mxx2 + 1)

yl =m » (x1 - u)

X2 =v xa/ (b *m+ a)

y2 = x2 * (b / a*xx2)

x3 = ((a-c) x (m*u+d +cx (d-Db)) /
y3 =m * (x3 - u)

x4 = -m xu/ (d/ c - m)

yd = -d »m  u / (d — ¢c x m)

x5 =v xc/ (d+ c * m)

y5 =d / c » x5

s = (b xc-axd /2

sl = abs(x4d * yl + x1 % y2 - x2 x yl - x1 % y4)
s2 = ((x1 » y4 + x4 * y5 + x5 x yl) -

s3 =

qg=s /4

return abs (sl - g) + abs(s2 - q)
dimensions=3
dimension_bounds=[-6, 6]

(x1 x y5 + x5 «
abs(x3 *» yl + x1 x y5 + x5 x d + ¢c  y3 — x3 d - c * y5 — x5 x yl - x1 % y3)
s4 = abs(a * y2 + x2 % yl + x1 * y3 + x3 » b - a x y3

+ abs(s3 - q)

(m + d - b)

/ 2
vd + x4 « yl)) / 2
- x3 x yl - x1 x y2 - x2 % Db)

+ abs(s4 - q)

bounds=[0] *xdimensions #creating 5 dimensional bounds

for i in range(dimensions) :
bounds [i]=dimension_bounds

#creates bounds

p=60 #shouldn’t really change

[[x1,x2], [x3,x4], [x5,x6]....]

vmax= (dimension_bounds[l]—-dimension_bounds[0])*0.75

cl=2.8 #shouldn’t really change
c2=1.3 #shouldn’t really change
tol=0.00000000000001

ps.particleswarm(problem3,

4.5 Problem 4

import ParticleSwarm as ps
: float = 3
float = 5
float = 7
float = 4
float = 10
def problemd (X) :
u = X[0]
v = X[1]
m = X[2]
global a, b, ¢, d, e
x1l = (m*x*2 * u + m x v) /
yl =m » (x1 - u)
X2 =m x a x v /
b / a) » x2
(c — a) » (—m = v — b)
* (x3 - u)
(v xc—-—exv+exd /
(c—e) * (x4 - e)

O Q00w

(m*x2 + 1)
(b » m + a)
(
(
y3 = m

x4 = m *
vd =d /

s = abs(e * d+ b *xc —-—ax*xd) / 2

sl = abs(a * y2 + x2 * yl + x1 =

s2 = abs(u * yl + x1 % y2 - x2 % yl)

s3 = abs(c * y4 + x4 * yl - x1 * y4 - u * yl)

s4 = (

qg=s/ 4

return abs (sl - g) + abs(s2 - g) + abs(s3 - q)
© CPOST 2023

+ axd — axb)

(d * m +

bounds,p,cl,c2,vmax,tol)

(d = b — m*xc + m=*a)

c - e)

y3 + x3 b - a * y3 - x3 x yl - xl1 x y2 - x2 % b)

/ 2

abs(x3 * yl + x1 x y4 + x4 x d+c « y3 - x3 +d - c « y4d - x4 x yl - x1 % y3)

+ abs(s4 - q)

/ 2
/2

/ 2

/2
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4.6 Problem 5

import ParticleSwarm as ps
xa: float = 0

ya: float = 2
xb: float = 0
yb: float = 0
xc: float = 3
yc: float = 0
xd: float = 2
yd: float = 2
yj: float = 3.2
xj: float = 1.5
xh: float = 1.2
def problemb (X) :
xe=X[0]
xf=X[1]

m=X[2]

global xa, vya, xb,yb, xc,yc, xd, yd, vJj, Xj

yh= (m* (xf-xe)) / (m*x*x2 +1)

yi=mx ((xexyd-xexyj+tyj*xd-yd*x]j) / (yj-yd-m*xj+mxxd))
xi= (m*xe+xd-mxxe*xj+yJ*xd-ydxx7j) / (yJ-yd-m*x j+mrxd)
xg=(xJj* (xf-m*ya) / (mxyj-m*ya+xj))

vg= ((xfxyj-xfrya-xjrya) / (mryj-mxya+x3j))

sa=abs ( (xaryb+xbxyctxc+yd+xdrya) - (xbryat+txcryb+xdxyctxaxyd)) /2

sb=abs ( (xj*ya+xd*yj) - (xdrxya+xj*yd)) / 2

s=satsb

sla=abs (xe* (mx (xf-xe) / (mx*2+1) )+ (mx*2 * xe + xf) / (mx*2+1)* ya) / 2

slb=(abs ((xj* (xf-m*ya))/ (mryj-mxya+txj)xya + ((mx*x2 * xe + xf)/(mx*2 +1)) * (xfxyj-xf*ya-xj*ya)
/(mxyj-mrya+xj) — (m*x2 * xe + xf)/(mx*2 + 1) » ya +(xjx (xf-mxya))/ (mryj-mrxya+xj) * (m*(xf-xe))/

(m**2 + 1)) / 2)
sl = sla+slb

s2=abs ( (mx (xf-xe))/ (m**2 + 1) x (xf-xe)) / 2

s3a=(abs (xc*xyd + (xdx (mx (xf-xe) / (m**2 + 1))) - (xfx (mx(xf-xe) / (m**x2 + 1))) + (m*xx2 * xf — xe) /
(m*x2 + 1) * yd) / 2)

s3b=abs ( (xi*yh + xhxyd + xdxyi) - (xh*yi + xd*yh + xixyd))/2

s3=s3a+s3b

sd=abs (xj*xyg + xgxyh + xh*xyi + xi*yJj) — (xg*yJj+xhxyg+xisyh+xjxyi) / 2
return abs(sl-(s/4)) + abs(s2-(s/4)) + abs(s3-(s/4)) + abs(s4-(s/4))

4.7 Problem 6

import ParticleSwarm as ps
a: float = 3

b: float = 0

c: float = 3

def problemb (X) :

m = X[0]
xf = X[1]
xg = X[2]

global a, b, c

xd= —m+sqrt ( (m*x*x2+4 (mxxf+ax*2))) /2

yd= m*xd/2

ye= xg/m

xh=( (mx*2) xxf+xg) / ( (mx*2) +1)

yh=(m(xg-xf))/ (mx*x2+1)

s = 2x (a**3) / 3

sl=abs ((xf* (m* (xg—xf)/ (m*x+x2 + 1))) + (m**2 x xf + xg)/(m**2 + 1)*(xg/m))/2

s2=abs ((xg* (m(xg-xf))/(mx*2+1)) - (xf » (m(xg-xf)/ (mxx2+1))))/2

s3a=(abs ((( (-m+sqgrt (mx*2+ (4% (mxxf+ax*2))))/2)*x (mx (xg-xf)) / (mxx2+1) + (mxa* (-mt+tsqgrt (mx*2 + 4 «
(mxxf + ax*2)))/2 = xf)) = (((mx*2 * xf + xg) / (m**2+1)) * m * (-m * sqrt ((mx+2+ 4 «*
(m * xf + a%xx2)))/ 2 - xf)) + xg * (mx(xg-x£f)/ (mxx2+1))))

s3b=(2* (ax*3) /3 — (a**2 x (-m + sqrt(m**2 + 4 x (m*xf + a**2))) / 2 + ((-m + sgrt (mx*2 + 4* (mxxf+ ax*Z
/ 3) —m *x a((-m + sqgrt (mx*x2+4x (mxxf+ax*2))) / 2 —-xf) + (m » ((—mtsqrt(m**2 + 4% (m*xxf+ ax%x2))) / 2
((-m+sqgrt (mx*2+4* (mxxf+a**2)))/2))/2)

s3=s3a+s3b

sda=(abs ((m**2 * xf + xg)/ (m**2+1) * m *( (-m + sqrt(m**2 + 4 x (m » xf + a *x 2))) / 2 - xf) +
(-m + sqgrt(mx*2 + 4 x (xf+ a*%2)))/ 2% a*x*x2 — ((mx*2 » xf + xg)/ (mx*2+1) *x (xg/m) +
((—m+sgrt (m*x*x2+4x (xf+a*xx2))) /2 » (m * (xg-xf)) / (m*xx2+1)))))

sdb=(ax*2 * (-mtsqrt (m**2+ 4 * (m*xf+axx2)))/2 — (((-m+(sgrt(m**2+ 4 * (m*xxf+axx2)))) / 2) / 3) ) —
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(((a*x*x2+4m * (—m+sqrt(m*x*x2+ 4 *(m * xf + ax*x2))) / 2 — xf)) x ((—mt+sqrt (m**2+4x (m*xxf+ax*2))) / 2)/2

s4=sda+s4db

return abs(sl-(s/18)) + abs(s2-(s/9)) + abs(s3-(s/6)) + abs(sd4-(2*s/3))

4.8 Problem 7

import ParticleSwarm as ps

import numpy

import math

r =5
def problem7 (X) :

m = X[0]

xc = X[1]

xd = X[2]

yc = —(math.sqgrt (r*x*2 — xc*x%2))

yd = math.sgrt (r*x*2 — xd*x*2)

xe = (m*x*2 x xc + xd + m * (math.sqrt (r**x2 — xd*x*2) — math.sqrt(r**2 — xc*x*2))) / (mx*2 + 1)

ye = (m * ((xd - xc + m * (math.sqrt(r**2 - xd**2) - math.sqgrt (r**2 — xcx*2))) / (mx*2 + 1)) +

math.sgrt (r+«*2 — xc*x%2))

xa = m * math.sqgrt (r+«+*2 - xdxx2) + xd

xb = —(math.sgrt (r*x*2 — xc**2)) / m + Xc

sl = abs(xa * ye — xb * ye) / 2

s2a = abs((xd * ye + r * yd) - (xe x yd + xb * ye)) / 2

s2b = r*%2 % (numpy.arccos(xd / r) / 2 - math.sin(2) * numpy.arccos(xd / r) / 4) - yd » (r - xd) / 2
s2 = s2a + s2b

s3a = abs(xc » ye + xe x yd + xd * yc - (xe * yc + xd  ye + xc » yd)) / 2

s3b = (r**2 * ((numpy.arccos(xb / r) - numpy.arccos(xa/ r)) / 2 — math.sin(2) x (numpy.arccos(xb / r)

math.sin(2) * numpy.arccos(xa / r)) / 4) — (math.sqgrt(r*x*2 — xcx*2) + math.sqgrt (rx*2 — xd*=*2)) /

2 x (xb - xa))

s3 = s3a + s3b

sda = abs(((math.sqrt (r+**2 - xd**2) + xd) * ye + xe % yc) * (r *x yc + xc x ye)) / 2

s4b r«x2 % ((numpy.arccos(xc / r) - math.pi) / 2 - math.sin(2) * numpy.arccos(xc / r) / 4) -
math.sqrt (r+«*2 —-xc**2) * (xc + r) / 2

s4 = sda + sédb

q = math.pi * rx%2 / 8

return abs(sl - g) + abs(s2 - gq) + abs(s3 - g) + abs(sd4 + q)

bounds = [(-10,0), (-r + 0.01, -0.01), (0.01, r - 0.01)]
# upper and lower bounds of variables
nv = 3

5 Conclusion

The problems we have tackled in our study can be developed further and adapted to address any kind of problem that requires optimization
of different variables. The initial values in the 3rd, 4th, and 5th problems can be refined for different sets of values. The parabolic function in the
6th problem can be solved for different equations or adapted to other problems requiring integral calculations. Investigating the initial values in
these problems across different ranges will alter both the resulting geometric pattern and the equations required for the solution. Similarly, in
physics or engineering problems, after defining variables and equations, solutions can be found using appropriate function definitions.

As seen in sections 7 and 6, since the application of shapes requiring integration is quite practical, it can be attempted for various irregular
shapes with known equations.

Additionally, it has been demonstrated that the number of iterations plays a crucial role in approaching an accurate solution The method
employed in our study has been transformed into a design applicable not only in these fields but also in complex systems and problems involving
multiple variables.In essence, the approach used in our study can be extended and applied to a wide range of scenarios that involve optimization,
equation solving, and pattern generation across different fields.
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Abstract: Formative assessments help teachers identify concepts that students are struggling to understand, skills they are hav-
ing difficulty acquiring, or learning standards they have not yet achieved so that adjustments can be made to lessons, instructional
techniques, and academic support. This paper focuses on a study at the American University of Sharjah, Mathematics Depart-
ment of integrating the use of technology with formative assessments in order to identify students who are struggling and focus
on specific points prior to exams rather that doing a general review. More specifically, the study was conducted over two different
semesters. The first semester (before the pandemic), classroom response systems with Poll Everywhere was used while in the
second semester (after the pandemic), ILearn Formative Feedback was used. The uniqueness of this research study is the inte-
gration of formative assessments and feedback with technology in the delivery of Mathematics Subjects in Higher Education. Both
quantitative and qualitative results were collected and there was evident and significant improvements in students’ performance
when the proposed formative feedback prior to exams was used. It was also apparent that after the pandemic, the use of llearn
formative feedback was very beneficial for the students and helped improve their performances significantly in Mathematics.

Keywords: Formative Assessments, Formative Feedback, llearn, Learning Objectives, Lecture Capture, LMS, Mathematics
Teaching, Poll Everywhere, Technology in Education

1 INTRODUCTION

During the last decade, researchers and academics have shown a great prerequisite to reengineer mathematics education to move away from the
lecture-homework format to a more technology centric innovative approach focused on student needs. When developing technological services
to support students in higher education, it is crucial to account for flexibility, diversity, and time-saving in options. Lecture Capture (LC)
encompasses these criteria, and many institutions around the globe are currently using it [4]; a lot of research is ongoing about its present-day
use and growth [3]. Such research led towards the latest, innovative advancement in LC which mainly includes interaction. Although there are
many recognized pros for LC [1-4], it does not replace physically attending a lecture; it could only be a supplementary learning aid to students.
To overcome the limitation of the requirement of students to attend class to participate in activities that can only be administered there, the new,
interactive advancement in LC allows student participation via captured lectures similarly to classroom interaction. A major disadvantage in
using video lectures is the lack of customized feedback or focus review sessions. There is an evident need in order to combine video lectures
with customized focused material based on student feedback.

LC is a hardware/software process that involves recording classroom sessions and storing the recordings digitally to make them available
electronically for students to watch the entire lecture, and LC is becoming increasingly popular in universities around the world. However,
merely recording an entire lecture and uploading it is not a precisely effective learning method [4]. The current era is more student oriented and
demands a greater focus on students by having them constantly engaged during class. To have LC in classrooms comply accordingly, students
are able to see lecturer notes and explanations on a captured video, to answer lecturers’ quizzes and questions relevant to a video, to search
for keywords that will refer to a part of the given recorded lecture, and to access the published lectures anywhere from any device. This paper
explores the impact and effects on students’ academic performance of innovative teaching techniques that combines online review sample
exams prior to the course exams with customized focused in-class recorded review sessions based on students results in the online sample
exams.

Our proposed teaching methodology bridges the gap between live lectures and current, non-interactive video lectures. Because current LC is
widely supported and proven extremely effective, customized review video sessions based on student results has magnified the positive effects
in a directly proportional manner. These positive effects are showcased in this paper. More specifically, this paper reports on the results of a one
semester study in a second year Mathematics subject (Quantitative Methods) in which a traditional lecture course (TC) was used in one section
of the course and a traditional lecture combined with customized pre-exam review video lectures based student results from and online sample
exam (CC).

The research objectives of the study were the following:

© CPOST 2023 45



1. To analyze students acceptance of the proposed teaching methodologies

2. To evaluate how CC affects student understanding of course material and their respective performance compared to traditional TC systems.

2 RELATED WORK

LC technology is becoming a more integral part of the digital classroom. To improve this aspect of digitalized education, a certain set of criteria
has to be met. Essentially, in basic terms, LC is a technological setup where lecturers record a lecture and upload it online for students to access
anytime, anywhere for review. This means that LC is for both students who have attended the corresponding in-class lecture and students
who have not attended that class; it serves as a supplement to attending class while providing the flexibility of missing a class sometimes by
blending with the lecturers’ workflows combining learning and LC. A pronounced LC system should have a feedback method with analytical
capabilities for lecturers to examine how students use the uploaded content to determine the motive behind students repeatedly watching a
particular video: interesting video or struggle to comprehend a concept. This method is similar to how a lecturer can assess student reactions
through body language, hands raised, etc. and by conducting surveys [2]. Moreover, when integrating an LC system in an institution, it should
be of maximum compatibility with the existing technology in that institution, by making use of the apparatus and software already available
instead of investing in additional equipment, to lessen capital expenditures. Compatibility is also important when regarding the platform through
which a student would view the video; an LC recording should be available on all operating systems and computers/tablets/mobiles [3]. The
innovative LC discussed in this paper fulfills all the aforementioned criteria of a distinct LC system.

A web seminar at the Seattle Pacific University discusses innovative ways of using LC relative to the LC system discussed in this paper.
One lecturer highlighted several aspects that Seattle Pacific focused on to capture lecture content: an LC software, namely Camtasia, is used
to record the lectures; the faculty personnel administering LC are familiar with it; LC recordings resolve the issue of absences by students and
lecturers: students who could not attend a class are able to watch LC videos and lecturer absences can be substituted for by giving students
access to previously recorded videos of the same lecture; LC recordings facilitate lecturer and student time management. Another lecturer has
stated the importance of LC in providing a one-to-one experience in addition to uploading 20 minute videos. A third lecturer pinpointed further
u