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Preface

Dear Conference Participant,

Welcome to the International E-Conference on Mathematical Development and Applications (ICOMAA-2022) we-
organized the fifth. The aim of our conferences is to bring together scientists and young researchers from all overthe
world and their work on the fields of mathematics in a discussion environment. With this interaction, functional
analysis, approach theory, differential equations and partial differential equations and the results of applications
inthe field of Mathematics are discussed with our valuable academics, and in mathematical developments both sci-
ence and young researchers are opened. We are happe to host many prominent experts from different countries who
will present the state-of-the-art in real analysis, complex analysis, harmonic and non-harmonic analysis, operator
theory and spectral analysis, applied analysis.

I would like express my gratitude to those who see and appreciate our efforts and innovative steps that we have
made to improve our conference every year, to our dear invited speakers and to all our participants. I owe a debt
of gratitude to the Scientific committee, organizing committee, local organizing committee and for their efforts
throughout this conference series.

The conference brings together about 192 participants and 8 invited speakers from 25 countries (Algeria, Al-
bania, Azerbaijan, Canada, China, Colombia, Cyprus, Czech Republic, Finland, Germany, Greece, India, Iran,
Italy,Kuwait, Malaysia, Morocco, Pakistan, Qatar, Saudi Arabia, Thailand, Tunisia, Turkey, United Arab Emi-
rates,USA, Uzbekistan, Yemen). More than 50% of our participants participated from abroad. This shows that the
conference meets the criteria of being international.

The conference program represents the efforts of many people. I would like to express my gratitude to all membersof
the scientific committee, external reviewers, sponsors and, honorary committee for their continued support to the
ICOMAA. I also thank the invited speakers for presenting their talks on current researches. Also, the success of
ICOMAA depends on the effort and talent of researchers in mathematics and its applications that have written
and submitted papers on a variety of topics. So, I would like to sincerely thank all participants of ICOMAA-2022
for contributing to this great meeting in many different ways. I believe and hope that each of you will get the
maximum benefit from the conference.

Prof. Dr. Yusuf ZEREN
Chairman
On behalf of the Organizing Committee

i



Editor in Chief

Murat Tosun
Department of Mathematics, Faculty of Science and Arts, Sakarya University, Sakarya-TÜRKİYE
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24 A Finite Difference Method to Solve the Linear Lane-Emden Equations
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Hafize Gümüş 165-169

31 Spectral Deferred Correction Time Integration Methods
Duygum Asya Bahcekapili, Samet Yucel Kadioglu 170-177

32 A Study on Kantorovich Type Operator Involving Adjoint Euler Polynomials
Erkan Agyuz 178-181

33 An Optimal Control Strategy to Prevent the Spread of COVID-19
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Abstract: In this work, all rings are associative with identity and all modules are unital left modules. Let M be an R−module. If
every submodule of M which contains SocM has ample supplements in M , then M is called an amply s-supplemented module.
In this work, some properties of these modules are investigated.

Keywords: Essential Submodules, Small Submodules, Socle, Supplemented Modules.

1 Introduction

Throughout this paper all rings will be associative with identity and all modules will be unital left modules.
LetR be a ring andM be anR−module. We will denote a submoduleN ofM byN ≤M . LetM be anR−module andN ≤M . IfL = M

for every submodule L ofM such thatM = N + L, thenN is called a small submodule ofM and denoted byN �M . A submoduleN of an
R -moduleM is called an essential submodule ofM and denoted byN EM in caseK ∩N 6= 0 for every submoduleK 6= 0, or equvalently,
N ∩ L = 0 for L ≤M implies that L = 0. Let M be an R−module and U, V ≤M . If M = U + V and V is minimal with respect to this
property, or equivalently,M = U + V and U ∩ V � V , then V is called a supplement of U inM .M is called a supplemented module if every
submodule ofM has a supplement inM . If every essential submodule ofM has a supplement inM , thenM is called an essential supplemented
(or briefly, e-supplemented) module. Let M be an R−module and U ≤M . If for every V ≤M such that M = U + V , U has a supplement
V

′
with V

′
≤ V , we say U has ample supplements in M . If every submodule of M has ample supplements in M , then M is called an amply

supplemented module. If every essential submodule of M has ample supplements in M , then M is called an amply essential supplemented (or
briefly, amply e-supplemented) module. The intersection of maximal submodules of an R-module M is called the radical of M and denoted
by RadM . If M have no maximal submodules, then we denote RadM = M. The sum of all simple submodules of an R−module M is called
the socle of M and denoted by SocM . Let M be an R−module. It is defined the relation ′β∗ ′ on the set of submodules of an R−module M
by Xβ∗Y if and only if Y +K = M for every K ≤M such that X +K = M and X + T = M for every T ≤M such that Y + T = M .
Let M be an R−module and K ≤ V ≤M . We say V lies above K in M if V/K �M/K.

More informations about (amply) supplemented modules are in [2, 6, 7]. More details about (amply) essential supplemented modules are in
[4, 5]. The definition of β∗ relation and some properties of this relation are in [1].

Lemma 1. Let M be an R−module.
(1) If K ≤ L ≤M , then K EM if and only if K E L EM .
(2) Let N be an R−module and f : M −→ N be an R−module homomorphism. If K E N , then f−1 (K) EM .
(3) For N ≤ K ≤M , if K/N EM/N , then K EM .
(4) If K1 E L1 ≤M and K2 E L2 ≤M , then K1 ∩K2 E L1 ∩ L2.
(5) If K1 EM and K2 EM , then K1 ∩K2 EM .

Proof: See [6, 17.3]. �

Lemma 2. Let M be an R−module. The following assertions are hold.
(1) If K ≤ L ≤M , then L�M if and only if K �M and L/K �M/K.
(2) Let N be an R−module and f : M −→ N be an R−module homomorphism. If K �M , then f (K)� N . The converse is true if f

is an epimorphism and Kef �M .
(3) If K �M , then K+L

L � M
L for every L ≤M .

(4) If L ≤M and K � L, then K �M .
(5) If K1,K2, ...,Kn �M , then K1 +K2 + ...+Kn �M .
(6) Let K1,K2, ...,Kn, L1, L2, ..., Ln ≤M . If Ki � Li for every i = 1, 2, ..., n, then K1 +K2 + ...+Kn � L1 + L2 + ...+ Ln.

Proof: See [2, 2.2] and [6, 19.3]. �

Lemma 3. Let M be an R−module. The following assertions are hold.

c© CPOST 2022 1



(1) If L�M , then L ≤ T for every maximal submodule T of M .
(2) RadM =

∑
L�M

L.

(3) Let N be an R−module and f : M −→ N be an R−module homomorphism. Then f (RadM) ≤ RadN .
(4) For K,L ≤M , RadK+L

L ≤ RadK+L
L . If L ≤ RadK, then RadK/L ≤ Rad (K/L).

(5) If L ≤M , then RadL ≤ RadM .
(6) For K,L ≤M , RadK +RadL ≤ Rad (K + L).
(7) Rx�M for every x ∈ RadM .

Proof: See [6]. �

Lemma 4. Let M be an R -module. The following statements hold.
(i) SocM = ∩

LEM
L.

(ii) For K ≤M , SocK = K ∩ SocM .
(iii) SocM EM if and only if SocK 6= 0 for every nonzero submodule K of M .
(iv) Let N be an R−module and f : M −→ N be an R−module homomorphism. Then f (SocM) ⊂ Socf (M).
(v) For K ≤M , (SocM +K) /K ⊂ Soc (M/K).
(vi) If M = ⊕

Λ
Mλ, then SocM = ⊕

Λ
SocMλ.

Proof: See [6, 21.2]. �

Definition 1. Let M be an R−module. If every U ≤M with SocM ≤ U has a supplement in M , then M is called a socle supplemented (or
briefly, s-supplemented) module. (See [3]).

Definition 2. Let M be an R−module and X ≤M . If X is a supplement of a submodule U of M with SocM ≤ U , then X is called a
s-supplement submodule in M . (See [3]).

Lemma 5. Let M be an socle supplemented module. Then every finitely M−generated R−module is socle supplemented. (See [3]).

2 Amply s-Supplemented Modules

Lemma 6. Let V be a supplement of U in M . Then
(1) If W + V = M for some W ≤ U , then V is a supplement of W in M .
(2) If M is finitely generated, then V is also finitely generated.
(3) If U is a maximal submodule of M , then V is cyclic and U ∩ V = RadV is the unique maximal submodule of V .
(4) If K �M , then V is a supplement of U +K in M .
(5) For K �M , K ∩ V � V and hence RadV = V ∩RadM .
(6) Let K ≤ V . Then K � V if and only if K �M .
(7) For L ≤ U , V+L

L is a supplement of U/L in M/L.

Proof: See [6, 41.1]. �

Lemma 7. Let M be an R−module.
(1) If M = U ⊕ V then V is a supplement of U in M . Also U is a supplement of V in M .
(2) For M1, U ≤M , if M1 + U has a supplement in M and M1 is supplemented, then U also has a supplement in M .
(3) Let M = M1 +M2. If M1 and M2 are supplemented, then M is also supplemented.
(4) Let Mi ≤M for i = 1, 2, ..., n. If Mi is supplemented for every i = 1, 2, ..., n, then M1 +M2 + ...+Mn is also supplemented.
(5) If M is supplemented, then M/L is supplemented for every L ≤M .
(6) If M is supplemented, then every homomorphic image of M is also supplemented.
(7) If M is supplemented, then M/RadM is semisimple.
(8) Hollow and local modules are supplemented.
(9) If M is supplemented, then every finitely M−generated module is supplemented.
(10) RR is supplemented if and only if every finitely generated R−module is supplemented.

Proof: See [6, 41.2]. �

Lemma 8. Let M be an R−module.
(1) If M is supplemented, then M is essential supplemented.
(2) For M1 ≤M and U EM , if M1 + U has a supplement in M and M1 is essential supplemented, then U also has a supplement in M .
(3) Let M = M1 +M2. If M1 and M2 are essential supplemented, then M is also essential supplemented.
(4) Let Mi ≤M for i = 1, 2, ..., n. If Mi is essential supplemented for every i = 1, 2, ..., n, then M1 +M2 + ...+Mn is also essential

supplemented.
(5) If M is essential supplemented, then M/L is essential supplemented for every L ≤M .
(6) If M is essential supplemented, then every homomorphic image of M is also essential supplemented.
(7) If M is essential supplemented, then M/RadM have no proper essential submodules.
(8) Hollow and local modules are essential supplemented.
(9) If M is essential supplemented, then every finitely M−generated module is essential supplemented.
(10) RR is essential supplemented if and only if every finitely generated R−module is essential supplemented.

2 c© CPOST 2022



Proof: See [4, 5]. �

Definition 3. Let M be an R−module. If every submodule of M which contains SocM has ample supplements in M , then M is called an
amply socle supplemented (or briefly, amply s-supplemented) module.

Proposition 1. Every amply s-supplemented module is s-supplemented.

Proof: LetM be an amply s-supplementedR−module and SocM ≤ U ≤M . Since U +M = M , by the definition of amply s-supplemented
module, U has a supplement V ≤M in M . Hence M is s-supplemented, as desired. �

Proposition 2. Every hollow module is amply s-supplemented.

Proof: Clear from definitions. �

Proposition 3. Every local module is amply s-supplemented.

Proof: Clear from definitions. �

Proposition 4. Every amply s-supplemented module is essential supplemented.

Proof: Let M be an amply s-supplemented module and U EM . Since U EM , by Lemma 4, SocM ≤ U . Since U +M = M , by the
definition of amply s-supplemented module, U has a supplement V ≤M in M . Hence M is essential supplemented, as desired. �

Proposition 5. Let M be an R−module and M1 ≤M and U EM . If M1 + U has a supplement in M and M1 is amply s-supplemented,
then U also has a supplement in M .

Proof: Since M1 is amply s-supplemented, by Proposition 4, M1 is essential supplemented. Then by Lemma 8, U has a supplement in M . �

Proposition 6. Let M be an R−module and M1,M2, ...,Mn ≤M and U EM . If M1 +M2 + ...+Mn + U has a supplement in M and
Mi is amply s-supplemented for every i = 1, 2, ..., n, then U also has a supplement in M .

Proof: Clear from Proposition 5. �

Proposition 7. Let M = M1 +M2. If M1 and M2 are amply s-supplemented, then M is essential supplemented.

Proof: Since M1 and M2 are amply s-supplemented, by Proposition 4, M1 and M2 are essential supplemented. Then by Lemma 8, M is
essential supplemented. �

Proposition 8. Let M be an R−module and Mi ≤M for i = 1, 2, ..., n. If Mi is amply s-supplemented for every i = 1, 2, ..., n, then
M1 +M2 + ...+Mn is essential supplemented.

Proof: Since Mi is amply s-supplemented for every i = 1, 2, ..., n, by Proposition 4, Mi is essential supplemented. Then by Lemma 8, M1 +
M2 + ...+Mn is essential supplemented. �

Proposition 9. Let M be an R−module and M = M1 +M2 + ...+Mn. If Mi is amply s-supplemented for every i = 1, 2, ..., n, then M is
essential supplemented.

Proof: Clear from Proposition 8. �

Proposition 10. Let M be an R−module and M = M1 ⊕M2 ⊕ ...⊕Mn. If Mi is amply s-supplemented for every i = 1, 2, ..., n, then M
is essential supplemented.

Proof: Clear from Proposition 9. �

Proposition 11. Let M be an R−module. If M is amply s-supplemented„ then M (Λ) is essential supplemented for every finite index set Λ.

Proof: Clear from Proposition 10. �

Proposition 12. Let M be an R−module. If M is amply s-supplemented, then M/L is essential supplemented for every L ≤M .

Proof: Let L ≤M . Since M is amply s-supplemented, by Proposition 4, M is essential supplemented. Then by Lemma 8, M/L is essential
supplemented. �

Corollary 1. Let M be an amply s-supplemented R−module. Then every direct summand of M is essential supplemented.

c© CPOST 2022 3



Proof: Let K be a direct summand of M and M = K ⊕ T with T ≤M . By Proposition 12, M/T is essential supplemented. Then by
M/T = (K + T ) /T ∼= K/ (K ∩ T ) = K/0 ∼= K, K is essential supplemented, as desired. �

Proposition 13. Let f : M → N be R−module epimorphism. If M is amply s-supplemented, then N is essential supplemented.

Proof: SinceM is amply s-supplemented, by Proposition 4,M is essential supplemented. Then by Lemma 8,N is essential supplemented. �

Proposition 14. Let M be an R−module. If M is amply s-supplemented, then M/RadM have no proper essential submodules.

Proof: Since M is amply s-supplemented, by Proposition 4, M is essential supplemented. Then by Lemma 8, M/RadM have no proper
essential submodules. �

Proposition 15. Let M be an R−module. If M is amply s-supplemented, then every finitely M−generated module is essential supplemented.

Proof: Since M is amply s-supplemented, by Proposition 4, M is essential supplemented. Then by Lemma 8, every finitely M−generated
module is essential supplemented. �

Proposition 16. Let R be any ring. If RR is amply s-supplemented, then every finitely generated R−module is essential supplemented.

Proof: Since RR is amply s-supplemented, by Proposition 4, RR is essential supplemented. Then by Lemma 8, every finitely generated
R−module is essential supplemented. �

3 Conclusion

Amply s-supplemented modules are the special parts of supplemented modules.
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Abstract: In this work, every ring has unity and every module is unitary left module. Let M be an R−module. If every cofinite
submodule of M which contains SocM has a supplement in M , then M is called a cofinitely s-supplemented module. In this work
some properties of these modules are investigated.
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1 Introduction

Throughout this paper all rings will be associative with identity and all modules will be unital left modules.
LetR be a ring andM be anR−module. We will denote a submoduleN ofM byN ≤M . LetM be anR−module andN ≤M . IfL = M

for every submodule L of M such that M = N + L, then N is called a small submodule of M and denoted by N �M . A submodule N of
an R -module M is called an essential submodule and denoted by N EM in case K ∩N 6= 0 for every submodule K 6= 0, or equvalently,
N ∩ L = 0 for L ≤M implies that L = 0. A submoduleK of M is called a cofinite submodule of M if M/K is finitely generated. LetM be
anR−module and U, V ≤M . IfM = U + V and V is minimal with respect to this property, or equivalently,M = U + V and U ∩ V � V ,
then V is called a supplement of U in M . M is called a supplemented module if every submodule of M has a supplement in M . M is said
to be cofinitely supplemented if every cofinite submodule of M has a supplement in M . M is called an essential supplemented (briefly, e-
supplemented) module if every essential submodule of M has a supplement in M . M is said to be cofinitely essential supplemented (briefly,
cofinitely e-supplemented) if every cofinite essential submodule of M has a supplement in M . Let M be an R−module and U ≤M . If for
every V ≤M such that M = U + V , U has a supplement V

′
with V

′
≤ V , we say U has ample supplements in M . If every submodule of

M has ample supplements in M , then M is called an amply supplemented module. If every cofinite submodule of M has ample supplements
in M , then M is called an amply cofinitely supplemented module. If every essential submodule of M has ample supplements in M , then M
is called an amply essential supplemented (briefly, amply e-supplemented) module. M is said to be amply cofinitely essential supplemented
(briefly, amply cofinitely e-supplemented) if every cofinite essential submodule ofM has ample supplements inM .The intersection of maximal
submodules of an R-module M is called the radical of M and denoted by RadM . If M have no maximal submodules, then we denote
RadM = M.

More informations about (amply) supplemented modules are in [1, 3, 9, 10]. More informations about cofinitely supplemented modules are
in [2]. More informations about (amply) essential supplemented modules are in [7, 8]. More informations about (amply) cofinitely essential
supplemented modules are in [4, 5]. The definition of s-supplemented modules and some properties of them are in [6].

Lemma 1. Let M be an R−module.
(1) If K ≤ L ≤M , then K EM if and only if K E L EM .
(2) Let N be an R−module and f : M −→ N be an R−module homomorphism. If K E N , then f−1 (K) EM .
(3) For N ≤ K ≤M , if K/N EM/N , then K EM .
(4) If K1 E L1 ≤M and K2 E L2 ≤M , then K1 ∩K2 E L1 ∩ L2.
(5) If K1 EM and K2 EM , then K1 ∩K2 EM .

Proof: See [9, 17.3]. �

Lemma 2. Let M be an R−module. The following assertions are hold.
(1) If K ≤ L ≤M , then L�M if and only if K �M and L/K �M/K.
(2) Let N be an R−module and f : M −→ N be an R−module homomorphism. If K �M , then f (K)� N . The converse is true if f

is an epimorphism and Kef �M .
(3) If K �M , then K+L

L � M
L for every L ≤M .

(4) If L ≤M and K � L, then K �M .
(5) If K1,K2, ...,Kn �M , then K1 +K2 + ...+Kn �M .
(6) Let K1,K2, ...,Kn, L1, L2, ..., Ln ≤M . If Ki � Li for every i = 1, 2, ..., n, then K1 +K2 + ...+Kn � L1 + L2 + ...+ Ln.

Proof: See [3, 2.2] and [9, 19.3]. �
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Lemma 3. Let M be an R−module. The following assertions are hold.
(1) If L�M , then L ≤ T for every maximal submodule T of M .
(2) RadM =

∑
L�M

L.

(3) Let N be an R−module and f : M −→ N be an R−module homomorphism. Then f (RadM) ≤ RadN .
(4) For K,L ≤M , RadK+L

L ≤ RadK+L
L . If L ≤ RadK, then RadK/L ≤ Rad (K/L).

(5) If L ≤M , then RadL ≤ RadM .
(6) For K,L ≤M , RadK +RadL ≤ Rad (K + L).
(7) Rx�M for every x ∈ RadM .

Proof: See [9]. �

Lemma 4. Let M be an R -module. The following statements hold.
(i) SocM = ∩

LEM
L.

(ii) For K ≤M , SocK = K ∩ SocM .
(iii) SocM EM if and only if SocK 6= 0 for every nonzero submodule K of M .
(iv) Let N be an R−module and f : M −→ N be an R−module homomorphism. Then f (SocM) ⊂ Socf (M).
(v) For K ≤M , (SocM +K) /K ⊂ Soc (M/K).
(vi) If M = ⊕

Λ
Mλ, then SocM = ⊕

Λ
SocMλ.

Proof: See [9, 21.2]. �

Definition 1. Let M be an R−module. If every U ≤M with SocM ≤ U has a supplement in M , then M is called a socle supplemented (or
briefly, s-supplemented) module. (See [6]).

Definition 2. Let M be an R−module and X ≤M . If X is a supplement of a submodule U of M with SocM ≤ U , then X is called a
s-supplement submodule in M . (See [6]).

Lemma 5. Let M be an socle supplemented module. Then every finitely M−generated R−module is socle supplemented. (See [6]).

2 Cofinitely s-Supplemented Modules

Lemma 6. Let V be a supplement of U in M . Then
(1) If W + V = M for some W ≤ U , then V is a supplement of W in M .
(2) If M is finitely generated, then V is also finitely generated.
(3) If U is a maximal submodule of M , then V is cyclic and U ∩ V = RadV is the unique maximal submodule of V .
(4) If K �M , then V is a supplement of U +K in M .
(5) For K �M , K ∩ V � V and hence RadV = V ∩RadM .
(6) Let K ≤ V . Then K � V if and only if K �M .
(7) For L ≤ U , V+L

L is a supplement of U/L in M/L.

Proof: See [9, 41.1]. �

Lemma 7. Let M be an R−module.
(1) If M is supplemented, then M is cofinitely supplemented.
(2) If M is finitely generated and cofinitely supplemented, then M is supplemented.
(3) For M1 ≤M and U cofinite submodule of M , if M1 + U has a supplement in M and M1 is cofinitely supplemented, then U also has

a supplement in M .
(4) Let M =

∑
i∈I

Mi. If Mi is cofinitely supplemented for every i ∈ I , then M is also cofinitely supplemented.

(5) Let Mi ≤M for i = 1, 2, ..., n. If Mi is cofinitely supplemented for every i = 1, 2, ..., n, then M1 +M2 + ...+Mn is also cofinitely
supplemented.

(6) If M is cofinitely supplemented, then M/L is cofinitely supplemented for every L ≤M .
(7) If M is cofinitely supplemented, then every homomorphic image of M is also cofinitely supplemented.
(8) If M is cofinitely supplemented, then every cofinite submodule of M/RadM is a direct summand of M/RadM .
(9) Hollow and local modules are cofinitely supplemented.
(10) If M is cofinitely supplemented, then every M−generated module is cofinitely supplemented.
(11) RR is supplemented if and only if every generated R−module is cofinitely supplemented.

Proof: See [2]. �

Lemma 8. Let M be an R−module.
(1) If M is essential supplemented, then M is cofinitely essential supplemented.
(2) If M is supplemented, then M is cofinitely essential supplemented.
(3) If M is finitely generated and cofinitely essential supplemented, then M is essential supplemented.
(4) ForM1 ≤M and U cofinite essential submodule ofM , ifM1 + U has a supplement inM andM1 is cofinitely essential supplemented,

then U also has a supplement in M .
(5) Let M =

∑
i∈I

Mi. If Mi is cofinitely essential supplemented for every i ∈ I , then M is also cofinitely essential supplemented.
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(6) Let Mi ≤M for i = 1, 2, ..., n. If Mi is cofinitely essential supplemented for every i = 1, 2, ..., n, then M1 +M2 + ...+Mn is also
cofinitely essential supplemented.

(7) If M is cofinitely essential supplemented, then M/L is cofinitely essential supplemented for every L ≤M .
(8) If M is cofinitely essential supplemented, then every homomorphic image of M is also cofinitely essential supplemented.
(9) If M is cofinitely essential supplemented, then M/RadM have no proper essential submodules.
(10) Hollow and local modules are cofinitely essential supplemented.
(11) If M is cofinitely essential supplemented, then every M−generated module is cofinitely essential supplemented.
(12) RR is essential supplemented if and only if every generated R−module is cofinitely essential supplemented.

Proof: See [4, 7]. �

Definition 3. Let M be an R−module. If every cofinite submodule U of M with SocM ≤ U has a supplement in M , then M is called a
cofinitely socle supplemented (briefly, cofinitely s-supplemented) module.

Proposition 1. Let M be a finitely generated R−module. Then M is s-supplemented if and only if M is cofinitely s-supplemented.

Proof: Clear since every submodule of M is cofinite. �

Proposition 2. Every cofinitely s-supplemented module is cofinitely e-supplemented.

Proof: Let U be a cofinite essential submodule of M . Since U EM , by Lemma 4, SocM ≤ U . Then U has a supplement in M . Hence U is
cofinitely e-supplemented. �

Proposition 3. Let M be a cofinitely s-supplemented module. Then M/RadM have no proper cofinite essential submodules.

Proof: Let K
RadM be any cofinite essential submodule of M

RadM . By M
K
∼= M/RadM

K/RadM
,K is a cofinite submodule ofM . Since K

RadM E
M

RadM ,
K EM and by Lemma 4, SocM ≤ K. SinceM is cofinitely s-supplemented,K has a supplement V inM . ThenM = K + V andK ∩ V �
V . Since M = K + V , M

RadM = K
RadM + V+RadM

RadM . Since K ∩ V � V , by [9, 21.5], K ∩ V ≤ RadM . Then K
RadM ∩

V+RadM
RadM =

K∩V+RadM
RadM = 0 and M

RadM = K
RadM ⊕

V+RadM
RadM . Since M

RadM = K
RadM ⊕

V+RadM
RadM and K

RadM E
M

RadM , K
RadM = M

RadM . Hence
M

RadM have no proper cofinite essential submodules. �

Lemma 9. Let M be an R−module, U be a cofinite submodule of M with SocM ≤ U and M1 ≤M . If M1 is cofinitely s-supplemented and
U +M1 has a supplement in M , then U has a supplement in M .

Proof: Let X be a supplement of U +M1 in M . Then M = U +M1 +X and X ∩ (U +M1)� X . Since U is a cofinite submodule of M
and M/U

(U+X)/U
∼= M

U+X = M1+U+X
U+X

∼= M1

M1∩(U+X)
, M1 ∩ (U +X) is a cofinite submodule of M1. Since SocM ≤ U +X , by Lemma

4, SocM1 = M1 ∩ SocM ≤ (U +X) ∩M1. Then by M1 being cofinitely s-supplemented, (U +X) ∩M1 has a supplement Y in M1.
This case M1 = (U +X) ∩M1 + Y and (U +X) ∩ Y = (U +X) ∩M1 ∩ Y � Y . Then M = U +M1 +X = U +X + (U +X) ∩
M1 + Y = U +X + Y and U ∩ (X + Y ) ≤ (U +X) ∩ Y + (U + Y ) ∩X ≤ (U +M1) ∩X + (U +X) ∩ Y � X + Y . Hence X +
Y is a supplement of U in M . �

Corollary 1. Let U be a cofinite submodule of M with SocM ≤ U and Mi ≤M for i = 1, 2, ..., n. If Mi is cofinitely s-supplemented for
i = 1, 2, ..., n and U +M1 +M2 + ...+Mn has a supplement in M , then U has a supplement in M .

Proof: Clear from Lemma 9. �

Lemma 10. Any sum of cofinitely s-supplemented modules is cofinitely e-supplemented.

Proof: Let U be a cofinite submodule of M with SocM ≤ U and M =
∑
λ∈ΛMλ for Mλ ≤M and Mλ is cofinitely s-supplemented for

every λ ∈ Λ. Since U is a cofinite submodule of M , then there exist λ1, λ2, ..., λn ∈ Λ such that M = U +Mλ1
+Mλ2

+ ...+Mλn
. Then

0 is a supplement of U +Mλ1
+Mλ2

+ ...+Mλn
in M . Since Mλi

is cofinitely s-supplemented for i = 1, 2, ..., n, by Corollary 1, U has a
supplement in M . Hence M is cofinitely s-supplemented. �

Lemma 11. Every factor module a cofinitely s-supplemented module is cofinitely s-supplemented.

Proof: Let M be a cofinitely s-supplemented R−module and M
K be any factor module of M . Let U

K be a cofinite submodule of M
K with

SocMK ≤
U
K . By Lemma 4, SocM ≤ U and since M is cofinitely s-supplemented, U has a supplement V in M . Since K ≤ U , by [9, 41.1

(7)], V+K
K is a supplement of UK in M

K . Hence M
K is cofinitely s-supplemented. �

Corollary 2. Every homomorphic image of a cofinitely s-supplemented module is cofinitely s-supplemented.

Proof: Clear from Lemma 11. �

Lemma 12. Let M be a cofinitely s-supplemented module. Then every M−generated R−module is cofinitely s-supplemented.
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Proof: Let N be a M−generated R−module. Then there exist an index set Λ and an R−module epimorphism f : M (Λ) −→ N . Since M is
cifinitely s-supplemented, by Lemma 10, M (Λ) is cofinitely s-supplemented. Then by Corollary 2, N is cofinitely s-supplemented. �

Proposition 4. Let R be a ring. The following assertions are equivalent.
(i) RR is s-supplemented
(ii) RR is cofinitely s-supplemented.
(iii) R(Λ) is cofinitely s-supplemented for every index set Λ.
(iv) Every R−module is cofinitely s-supplemented.

Proof: (i)⇐⇒ (ii) Clear from Proposition 1, since RR is finitely generated.
(ii) =⇒ (iii) Clear from Lemma 10.
(iii) =⇒ (iv) Clear from Corollary 2.
(iv)⇐⇒ (ii) Clear. �

3 Conclusion

Cofinitely s-supplemented module is a special part of e-supplemented module.
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1 Introduction

A sequence (λn) is said to be convex if ∆2λn ≥ 0 for every positive integer n, where ∆2λn = ∆(∆λn) and ∆λn = λn − λn+1. A sequence
(µn) is said to be (φ, δ)-monotone if and only if µn → 0, µn ≥ 0 ultimately and ∆µn ≥ −δn+1, where (δn) is sequence of non-negative
numbers,(φn) is a positive monotone increasing sequence and

∑
φnδn <∞, [1]. Let

∑
an be an infinite series with partial sums (sn). Let

(pn) be a sequence of positive numbers such that

Pn =

n∑
v=0

pv →∞ as n→∞, (P−m = p−m = 0,m ≥ 1).

Let A = (anv) be a normal matrix, i.e., lower triangular matrix of nonzero diagonal entries. Then A defines the sequence-to-sequence
transformation, mapping the sequence s = (sn) to A = (An(s)),where

An(s) =

n∑
v=0

anvsv, n = 0, 1, . . .

The series
∑
an is said to be summable |A, pn;β|k, k ≥ 1, β ≥ 0, if [2],

∞∑
n=1

(Pn
pn

)βk+k−1
|∆̄An(s)|k <∞,

where

∆̄An(s) = An(s)−An−1(s).

If we take β = 0, then |A, pn;β|k summability reduce to |A, pn|k summability [3]. For β = 0 and anv = pv
Pn

, |A, pn;β|k summability
reduce to |N̄ , pn|k summability [4]. Also, if we take β = 0, anv = pv

Pn
, pn = 1 for all values n, then |A, pn;β|k summability reduce to

|C, 1|ksummability [5].

2 Known Result

In [6], the following theorem dealing with |N̄ , pn|k summability factors of infinite series has been proved.
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Theorem 1. Let (pn) be a sequence of positive numbers such that

Pn = O(npn) as n→∞. (1)

Suppose that there exist a sequence of numbers (µn) which is (φ, δ) monotone with
∑
µn∆φn is convergent. If the conditions

m∑
n=1

n|∆2µn|φn = O(1) as m→∞, (2)

and
m∑
n=1

pn
Pn
|tn|k = O(φn) as m→∞, (3)

where tn = 1
n+1

∑n
v=0 vav , are satisfied then the series

∑
anµn is summable |N̄ , pn|k, k ≥ 1.

If we take µn = 2(−1)n

n4 and φn = logn, the conditions of Theorem 1 are satisfied. But the sequence (µn) does not satisfy the conditions
of theorem Mazhar [7] on |C, 1|k summability factor.

Lemma 1. [6] Under the conditions of Theorem 1, we get

nφn|∆µn| = O(1) as n→∞. (4)

Lemma 2. [1] If the sequence (µn) is (φ, δ) monotone and
∑
µn∆φn converges, then

µnφn = o(1) as n→∞, (5)

∞∑
n=1

φn+1|∆µn| <∞. (6)

3 Main Result

There are many papers on absolute matrix summability [8]-[12]. The aim of this paper is to generalize Theorem 1 to |A, pn;β|k summability.
Before stating the main theorem we must first introduce some furthers notations;
Given a normal matrix A = (anv) be a normal matrix, two lower semimatrices Ā = (ānv) and Â = (ânv) are given as follows.

ānv =

n∑
i=v

ani, n, v = 0, 1, . . . (7)

and

â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, . . . (8)

It may be noted that Ā and Â are well-known matrices of series-to-sequence and series-to-series transformations, respectively. Then, we have

An(s) =

n∑
v=0

anvsv =

n∑
v=0

ānvav (9)

and

∆̄An(s) =

n∑
v=0

ânvav. (10)

Now shall prove the following theorem.

10 c© CPOST 2022



Theorem 2. Let A = (anv) be a positive normal matrix such that

ān0 = 1, n = 0, 1, ..., (11)

an−1,v ≥ anv for n ≥ v + 1, (12)

ann = O

(
pn
Pn

)
, (13)

∣∣ân,v+1

∣∣ = O (v |∆v ânv|) , (14)

m+1∑
n=v+1

(
Pn
pn

)βk
|∆v(ânv)| = O

((
Pv
pv

)βk−1)
as m→∞, (15)

where ∆v(ânv) = ânv − ân,v+1. If all conditions of Theorem 1 are satisfied with the condition (3) replaced by

m∑
n=1

(
Pn
pn

)βk−1
|tn|k = O(φm) as m→∞ (16)

then the series
∑
anµn is summable |A, pn;β|k, k ≥ 1 and β ≥ 0.

Proof: Let (Θn) denotes A-transform of the series
∑
anµn. Then, by (9) and (10), we have

∆̄Θn =

n∑
v=1

ânvµv
v

vav.

By Abel’s transformation, we have

∆̄Θn =

n−1∑
v=1

∆v

( ânvµv
v

) v∑
r=1

rar +
ânnµn
n

n∑
r=1

rar

=

n−1∑
v=1

∆v

( ânvµv
v

)
(v + 1)tv +

ânnµn
n

(n+ 1)tn

=
n+ 1

n
annµntn +

n−1∑
v=1

v + 1

v
∆v(ânv)µvtv +

n−1∑
v=1

v + 1

v
ân,v+1∆µvtv +

n−1∑
v=1

ân,v+1µv+1
tv
v

= Θn,1 +Θn,2 +Θn,3 +Θn,4.

To prove the Theorem 2, by Minkowski’s inequality, it is sufficient to show that

∞∑
n=1

(
Pn
pn

)βk+k−1
|Θn,r|k <∞ for r = 1, 2, 3, 4.

Firstly, we have that

m∑
n=1

(
Pn
pn

)βk+k−1 ∣∣Θn,1∣∣k = O(1)

m∑
n=1

(
Pn
pn

)βk+k−1
aknn|µn|k|tn|k

= O(1)

m∑
n=1

(
Pn
pn

)βk−1
|µn||tn|k

= O(1)

m−1∑
n=1

∆|µn|
n∑
r=1

(
Pr
pr

)βk−1
|tr|k +O(1)|µm|

m∑
r=1

(
Pr
pr

)βk−1
|tr|k

= O(1)

m−1∑
n=1

|∆µn|φn+1 +O(1)|µm|φm = O(1) as m→∞,

by virtue of hypotheses of the Theorem 2 and Lemma 2.
Now applying Hölder’s inequality, we have that
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m+1∑
n=2

(
Pn
pn

)βk+k−1 ∣∣Θn,2∣∣k = O(1)

m+1∑
n=2

(
Pn
pn

)βk+k−1(n−1∑
v=1

|∆v(ânv)||µv||tv|

)k

= O(1)

m+1∑
n=2

(
Pn
pn

)βk+k−1(n−1∑
v=1

|∆v(ânv)||µv|k|tv|k
)
×

(
n−1∑
v=1

|∆v(ânv)|

)k−1

= O(1)

m+1∑
n=2

(
Pn
pn

)βk (n−1∑
v=1

|∆v(ânv)||µv|k|tv|k
)

= O(1)

m∑
v=1

|µv||µv|k−1|tv|k
m+1∑
n=v+1

(
Pn
pn

)βk
|∆v(ânv)|

= O(1)

m∑
v=1

(
Pv
pv

)βk−1
|µv||tv|k = O(1) as m→∞,

as in Θn,1.
Now, since v|∆µv| = O(1/φv) = O(1), by (4), we have that,

m+1∑
n=2

(
Pn
pn

)βk+k−1 ∣∣Θn,3∣∣k = O(1)

m+1∑
n=2

(
Pn
pn

)βk+k−1(n−1∑
v=1

|ân,v+1||∆µv||tv|

)k

= O(1)

m+1∑
n=2

(
Pn
pn

)βk+k−1(n−1∑
v=1

v|∆v(ânv)||∆µv||tv|k
)
×

(
n−1∑
v=1

v|∆v(ânv)||∆µv|

)k−1

= O(1)

m+1∑
n=2

(
Pn
pn

)βk+k−1(n−1∑
v=1

v|∆v(ânv)||∆µv||tv|k
)
×

(
n−1∑
v=1

|∆v(ânv)|

)k−1

= O(1)

m+1∑
n=2

(
Pn
pn

)βk (n−1∑
v=1

v|∆v(ânv)||∆µv||tv|k
)

= O(1)

m∑
v=1

v|∆µv||tv|k
m+1∑
n=v+1

(
Pn
pn

)βk
|∆v(ânv)|

= O(1)

m∑
v=1

v|∆µv||tv|k
(
Pv
pv

)βk−1

= O(1)

m−1∑
v=1

∆(v|∆µv|)
v∑
r=1

(
Pr
pr

)βk−1
|tr|k +O(1)m|∆µm|

m∑
r=1

(
Pr
pr

)βk−1
|tr|k

= O(1)

m−1∑
v=1

v|∆2µv|φv +O(1)

m−1∑
v=1

|∆µv+1|φv+1 +O(1)m|∆µm|φm

= O(1) as m→∞,
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by virtue of the hypotheses of Theorem 2, Lemma 1 and Lemma 2.
Finally, we get

m+1∑
n=2

(
Pn
pn

)βk+k−1 ∣∣Θn,4∣∣k ≤ m+1∑
n=2

(
Pn
pn

)βk+k−1(n−1∑
v=1

|ân,v+1||µv+1|
|tv|
v

)k

= O(1)

m+1∑
n=2

(
Pn
pn

)βk+k−1(n−1∑
v=1

|∆v(ânv)||µv+1||tv|

)k

= O(1)

m+1∑
n=2

(
Pn
pn

)βk+k−1(n−1∑
v=1

|∆v(ânv)||µv+1|k|tv|k
)
×

(
n−1∑
v=1

|∆v(ânv)|

)k−1

= O(1)

m+1∑
n=2

(
Pn
pn

)βk (n−1∑
v=1

|∆v(ânv)||µv+1||tv|k
)

= O(1)

m∑
v=1

|µv+1||tv|k
m+1∑
n=v+1

(
Pn
pn

)βk
|∆v(ânv)|

= O(1)

m∑
v=1

(
Pv
pv

)βk−1
|µv+1||tv|k = O(1) as m→∞,

as in Θn,1.
Therefore, we obtain that

m∑
n=1

(
Pn
pn

)βk+k−1
|Θn,r|k = O(1) as m→∞, for r = 1, 2, 3, 4.

This completes the proof of theorem. �

4 Conclusion

If we take β = 0 and anv = pv
Pn

then we get Theorem 1. Also, if we take β = 0, anv = pv
Pn

and pn = 1 for all values n, then we get theorem
Mazhar [7] on |C, 1|k summability. Moreover, if we take β = 0, then we get a new theorem involving |A, pn|k summability.
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Abstract: In this paper, we introduce hyper-Leonardo numbers and present some combinatorial properties of these numbers
using the Euler-Seidel symmetric algorithm. Additionally, we give the recurrence relations, summation formulas and generating
function for the hyper-Leonardo numbers.
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1 Introduction

Sequences of integers are widely used in scientific research. The most popular of these are the Fibonacci and Lucas sequences, which are
defined by the following recurrence relations, respectively (n ≥ 1) [1]:

Fn+1 = Fn + Fn−1 with F0 = 0, F1 = 1, (1)

and
Ln+1 = Ln + Ln−1 with L0 = 2, L1 = 1. (2)

The Fibonacci and Lucas numbers are generalized in many ways in the literature [2–6]. Dil and Mező [7] introduced hyper-Fibonacci and
hyper-Lucas numbers as the generalizations of the Fibonacci and Lucas numbers, by the following formulas

F
(r)
n =

n∑
k=0

F
(r−1)
k with F

(0)
n = Fn, F

(r)
0 = 0, F

(r)
1 = 1 (3)

and

L
(r)
n =

n∑
k=0

L
(r−1)
k with L

(0)
n = Ln, L

(r)
0 = 2, L

(r)
1 = 2r + 1, (4)

where r is a positive integer, Fn and Ln are the Fibonacci and Lucas numbers, respectively. For n ≥ 1 and r ≥ 1, the authors obtained the
following recurrence relations for the hyper-Fibonacci and hyper-Lucas numbers, respectively [7]:

F
(r)
n = F

(r)
n−1 + F

(r−1)
n (5)

and
L
(r)
n = L

(r)
n−1 + L

(r−1)
n . (6)

The first few values of the hyper-Fibonacci and hyper-Lucas numbers are as follows (n ≥ 0) [8]:

F
(1)
n : 0, 1, 2, 4, 7, 12, 20, 33 . . . , F

(2)
n : 0, 1, 3, 7, 14, 26, 46, 79 . . . , (7)

L
(1)
n : 2, 3, 6, 10, 17, 28, 46, 75 . . . , L

(2)
n : 2, 5, 11, 21, 38, 66, 112, 187 . . . . (8)

BahÅ§i et al. [9] presented the summation formulas which give the relation between the hyper-Fibonacci and Fibonacci numbers, similarly the
relation between the hyper-Lucas and Lucas numbers:

F
(r)
n =

n∑
s=0

(
n+ r − s− 1

r − 1

)
Fs (9)

and

L
(r)
n =

n∑
s=0

(
n+ r − s− 1

r − 1

)
Ls (10)

for n ≥ 1 and r ≥ 1.
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Leonardo sequence, which has similar properties to the Fibonacci sequence, is defined by Catarino and Borges [10] as

Len = Len−1 + Len−2 + 1 (n ≥ 2) (11)

with initial conditions Le0 = Le1 = 1. For n ≥ 2, there is the following recurrence relation for the Leonardo numbers [10]:

Len+1 = 2Len − Len−2. (12)

The Binet formula and generating function for the Leonardo numbers are

Len =
2
(
αn+1 − βn+1

)
α− β − 1, (13)

and

gLe(t) =

∞∑
n=0

Lent
n =

1− t+ t2

1− 2t+ t3

(
1− 2t+ t3 6= 0

)
, (14)

where α and β are the roots of the characteristic equation λ3 − 2λ2 + 1 = 0 [10]. The authors also obtained some relations among the
Fibonacci, Lucas and Leonardo numbers such as

Len = 2Fn+1 − 1 (15)

and

Len = Ln+2 − Fn+2 − 1, (16)

where n ≥ 0 [10]. Furthermore, Alp and KoÃğer [11] gave the following equalities among the Fibonacci, Lucas and Leonardo numbers for
n ≥ 1:

Len−1 + Len+1 = 2Ln+1 − 2 (17)

and

Len + 2Fn = Len+1. (18)

By the motivation of the above papers, we define hyper-Leonardo numbers as a generalization of the Leonardo numbers and present some
properties of newly defined numbers such as the recurrence relations, summation formulas and generating function. In addition, we give some
relations among the hyper-Fibonacci, hyper-Lucas and hyper-Leonardo numbers.

2 Main Results

Definition 2.1. The n-th hyper-Leonardo number Le(r)n is defined as

Le
(r)
n =

n∑
s=0

Le
(r−1)
s with Le

(0)
n = Len, Le

(r)
0 = Le0 and Le

(r)
1 = r + 1, (19)

where r is a positive integer and Len is the ordinary Leonardo number.

The first few values of the hyper-Leonardo numbers are as follows n ≥ 0:

Le
(1)
n = 1, 2, 5, 10, 19, 34, 59, 100, 167, . . . , (20)

Le
(2)
n = 1, 3, 8, 18, 37, 71, 130, 230, 397, . . . . (21)

Definition 2.1 yields the recurrence relation

Le
(r)
n = Le

(r)
n−1 + Le

(r−1)
n , (22)

where n ≥ 1 and r ≥ 1.

Theorem 1. The generating function for the hyper-Leonardo numbers is

g (r) =
∞∑

n=0

Le
(r)
n tn =

Le0 + t (Le1 − 2Le0) + t2 (Le2 − 2Le1)

(1− 2t+ t3) (1− t)r
=

1− t+ t2

(1− 2t+ t3) (1− t)r
. (23)
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Proof: We use the mathematical induction method on r. By using equation (14), we have

g (0) =

∞∑
n=0

Le
(0)
n tn =

1− t+ t2

(1− 2t+ t3) (1− t)0
=

∞∑
n=0

Lent
n.

Thus, the result is true for r = 0. Let the result is true for r = k, then

g (k) =

∞∑
n=0

Le
(k)
n tn =

1− t+ t2

(1− 2t+ t3) (1− t)k
. (24)

We must show that the result is true for r = k + 1.

g (k + 1) =

∞∑
n=0

Le
(k+1)
n tn = Le

(k+1)
0 + Le

(k+1)
1 t+ Le

(k+1)
2 t2 + Le

(k+1)
3 t3 + . . . ,

tg (k + 1) = Le
(k+1)
0 t+ Le

(k+1)
1 t2 + Le

(k+1)
2 t3 + . . . .

By subtracting the above equalities and considering equation (22), we have

(1− t) g (k + 1) = Le
(k+1)
0 +

(
Le

(k+1)
1 − Le(k+1)

0

)
t+

(
Le

(k+1)
2 − Le(k+1)

1

)
t2

+
(
Le

(k+1)
3 − Le(k+1)

2

)
t3 + . . .

= Le
(k)
0 + Le

(k)
1 t+ Le

(k)
2 t2 + Le

(k)
3 t3 + . . .

=

∞∑
n=0

Le
(r)
n tk

= g (k) .

Since

g (k + 1) =
g (k)

1− t ,

the proof is completed. �

Theorem 2. If n ≥ 1 and r ≥ 1, then there is the following summation formula which gives the relation between the hyper-Leonardo number
and Leonardo number:

Le
(r)
n =

n∑
s=0

(
n+ r − s− 1

r − 1

)
Les. (25)

Proof: According to the Euler-Seidel algorithm in [12], the symmetric infinite matrix with entries arn has the following recurrence relation:

a0n = an, an0 = an (n ≥ 0) ,

arn = ar−1n + arn−1 (n ≥ 1, r ≥ 1) ,

where (an) and (an) are two real initial sequences. The entries arn have the following symmetric relation [7]:

arn =

r∑
i=1

(
n+ r − i− 1

n− 1

)
ai0 +

n∑
s=1

(
n+ r − s− 1

r − 1

)
a0s. (26)

For the case arn = Le
(r)
n , equation (26) is of the form:

Le
(r)
n =

r∑
i=1

(
n+ r − i− 1

n− 1

)
Le

(i)
0 +

n∑
s=1

(
n+ r − s− 1

r − 1

)
Le

(0)
s . (27)

Considering the initial conditions in Definition 2.1, we have

Le
(r)
n =

r∑
i=1

(
n+ r − i− 1

n− 1

)
+

n∑
s=1

(
n+ r − s− 1

r − 1

)
Les

=

r−1∑
i=0

(
n+ r − i− 2

n− 1

)
+

n−1∑
s=0

(
n+ r − s− 2

r − 1

)
Les+1

=

r−1∑
k=0

(
n+ k − 1

n− 1

)
+

n−1∑
b=0

(
r + b− 1

r − 1

)
Len−b,
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where k = r − i− 1 and b = n− s− 1. The property of the combination in [13] is as follows:

c∑
t=a

(
t

a

)
=

(
c+ 1

a+ 1

)
. (28)

Thus, equation (28) yields

Le
(r)
n =

(
n+ r − 1

n

)
+

n−1∑
b=0

(
r + b− 1

r − 1

)
Len−b

=

n∑
b=0

(
r + b− 1

r − 1

)
Len−b,

=

n∑
s=0

(
n+ r − s− 1

r − 1

)
Les.

�

Theorem 3. If n ≥ 3 and r ≥ 1, then there is the recurrence relation for the hyper-Leonardo numbers:

Le
(r)
n = 2Le

(r)
n−1 − Le

(r)
n−3 +

(
n+ r − 3

r − 1

)
−

(
n+ r − 2

r − 1

)
+

(
n+ r − 1

r − 1

)
. (29)

Proof: Considering Theorem 2 and equation (12), we have

Le
(r)
n =

n∑
s=0

(
n+ r − s− 1

r − 1

)
Les

=

n∑
s=0

(
n+ r − s− 1

r − 1

)
(2Les−1 − Les−3)

= 2

n−1∑
s=−1

(
n+ r − (s+ 1)− 1

r − 1

)
Les −

n−3∑
s=−3

(
n+ r − (s+ 3)− 1

r − 1

)
Les

= 2

(
n−1∑
s=0

(
(n− 1) + r − s− 1

r − 1

)
Les +

(
n+ r − 1

r − 1

)
Le−1

)

−

(
n−3∑
s=0

(
(n− 3) + r − s− 1

r − 1

)
Les +

(
n+ r − 3

r − 1

)
Le−1 +

(
n+ r − 2

r − 1

)
Le−2 +

(
n+ r − 1

r − 1

)
Le−3

)

= 2Le
(r)
n−1 − Le

(r)
n−3 +

(
n+ r − 3

r − 1

)
−

(
n+ r − 2

r − 1

)
+

(
n+ r − 1

r − 1

)
.

�

Theorem 4. If n ≥ 1 and r ≥ 1, then
r∑

s=0

Le
(s)
n = Le

(r)
n+1 − 2Fn (30)

is valid.

Proof: By using Theorem 2 and equation (28), we get

r∑
s=1

Le
(s)
n =

r∑
s=1

(
n∑

t=0

(
n+ s− t− 1

s− 1

)
Let

)

=

n∑
t=0

(
Let

r∑
s=1

(
n+ s− t− 1

s− 1

))

=

n∑
t=0

(
n+ r − t
r − 1

)
Let

=

n+1∑
t=0

(
n+ r − t
r − 1

)
Let − Len+1.

Then, equation (15) yields
r∑

s=0

Le
(s)
n = Le

(r)
n+1 − (Len−1 + 1)

= Le
(r)
n+1 − 2Fn.

�
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Theorem 5. There are the following relations among the hyper-Leonardo, hyper-Fibonacci and hyper-Lucas numbers (r ≥ 1):

(i) Le(r)n = 2F
(r)
n+1 −

(
n+ r

r

)
, (n ≥ 1),

(ii) Le(r)n = L
(r)
n+2 − F

(r)
n+2 − 2

(
n+ r + 1

r − 1

)
−

(
n+ r

r

)
, (n ≥ 1),

(iii) 2L
(r)
n = Le

(r)
n−2 + Le

(r)
n −

(
n+ r − 2

r − 1

)
+

(
n+ r − 1

r − 1

)
+ 2

(
n+ r

r

)
, (n ≥ 2),

(iv) Le(r)n + 2F
(r)
n = Le

(r)
n+1 −

(
n+ r

r − 1

)
, (n ≥ 1).

Proof: Considering Theorem 2, equations (15), (16), (17) and (18), we get the proofs as follows:

(i)

Le
(r)
n =

n∑
s=0

(
n+ r − s− 1

r − 1

)
Les

=

n∑
s=0

(
n+ r − s− 1

r − 1

)
2Fs+1 − 1

=

n∑
s=0

(
n+ r − s− 1

r − 1

)
2Fs+1 −

n∑
s=0

(
n+ r − s− 1

r − 1

)

=

n+1∑
s=1

(
n+ r − (s− 1)− 1

r − 1

)
2Fs −

(
n+ r

r

)

= 2F
(r)
n+1 −

(
n+ r

r

)
,

(ii)

Le
(r)
n =

n∑
s=0

(
n+ r − s− 1

r − 1

)
Les

=

n∑
s=0

(
n+ r − s− 1

r − 1

)
(Ls+2 − Fs+2 − 1)

=

n∑
s=0

(
n+ r − s− 1

r − 1

)
Ls+2 −

n∑
s=0

(
n+ r − s− 1

r − 1

)
Fs+2 −

n∑
s=0

(
n+ r − s− 1

r − 1

)

=

n+2∑
s=2

(
n+ r − (s− 2)− 1

r − 1

)
Ls −

n+2∑
s=2

(
n+ r − (s− 2)− 1

r − 1

)
Fs −

(
n+ r

r

)

=

n+2∑
s=0

(
(n+ 2) + r − s− 1

r − 1

)
Ls −

(
n+ r + 1

r − 1

)
L0 −

(
n+ r

r − 1

)
L1

−
n+2∑
s=0

(
(n+ 2) + r − s− 1

r − 1

)
Fs +

(
n+ r + 1

r − 1

)
F0 +

(
n+ r

r − 1

)
F1 −

(
n+ r

r

)

= L
(r)
n+2 − F

(r)
n+2 − 2

(
n+ r + 1

r − 1

)
−

(
n+ r

r

)
,

(iii)

2L
(r)
n =

n∑
s=0

(
n+ r − s− 1

r − 1

)
2Ls

=

n∑
s=0

(
n+ r − s− 1

r − 1

)
(Les−2 + Les + 2)

=
n∑

s=0

(
n+ r − s− 1

r − 1

)
Les−2 +

n∑
s=0

(
n+ r − s− 1

r − 1

)
Les + 2

n∑
s=0

(
n+ r − s− 1

r − 1

)

=

n−1∑
s=−2

(
n+ r − (s+ 2)− 1

r − 1

)
Les +

n∑
s=0

(
n+ r − s− 1

r − 1

)
Les + 2

(
n+ r

r

)

=

n−2∑
s=0

(
(n− 2) + r − s− 1

r − 1

)
Les +

(
n+ r − 2

r − 1

)
Le−1 +

(
n+ r − 1

r − 1

)
Le−2 +

n∑
s=0

(
n+ r − s− 1

r − 1

)
Les + 2

(
n+ r

r

)

= Le
(r)
n−2 + Le

(r)
n −

(
n+ r − 2

r − 1

)
+

(
n+ r − 1

r − 1

)
+ 2

(
n+ r

r

)
,
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(iv)

Le
(r)
n + 2F

(r)
n =

n∑
s=0

(
n+ r − s− 1

r − 1

)
Les +

n∑
s=0

(
n+ r − s− 1

r − 1

)
2Fs

=

n∑
s=0

(
n+ r − s− 1

r − 1

)
(Les + 2Fs)

=

n∑
s=0

(
n+ r − s− 1

r − 1

)
Les+1

=

n+1∑
s=1

(
n+ r − (s− 1)− 1

r − 1

)
Les

=

n+1∑
s=0

(
(n+ 1) + r − s− 1

r − 1

)
Les −

(
n+ r

r − 1

)
Le0

= Le
(r)
n+1 −

(
n+ r

r − 1

)
.

�

Theorem 6. If n ≥ 0 and r = 1, 2, then

(i) Le(1)n = Len+2 − (n+ 2),

(ii) Le(2)n = Len+4 −
1

2

(
n2 + 7n+ 16

)
are valid.

Proof: We use the mathematical induction method on n.

(i) The result is true for n = 0. That is,

Le
(1)
0 = Le2 − 2.

Let the result is true for n = k. Then,
Le

(1)
k = Lek+2 − (k + 2) . (31)

We must show that the result is true for n = k + 1. By using Definition 2.1 and recurrence relation in equation (22), we have

Le
(1)
k+1 = Le

(1)
k + Lek+1

= Lek+2 − (k + 2) + Lek+1
= Lek+2 + Lek+1 + 1− (k + 3)
= Lek+3 − (k + 3) ,

(ii) Since

Le
(2)
0 = Le4 − 8,

the result is true for n = 0. Assume the result is true for n = k. Then,

Le
(2)
k = Lek+4 −

1

2

(
k2 + 7k + 16

)
(32)

is valid. For n = k + 1, considering the assumption and (i), we get

Le
(2)
k+1 = Le

(2)
k + Le

(1)
k+1

= Lek+4 − 1
2

(
k2 + 7k + 16

)
+ Lek+3 − (k + 3) + 1− 1

= Lek+5 − 1
2

(
(k + 1)2 + 7 (k + 1) + 16

)
.

�

Theorem 7. For n ≥ 0 and r = 1, 2, the Binet formulas for the hyper-Leonardo numbers are:

(i) Le(1)n =
2
(
αn+3 − βn+3

)
α− β − (n+ 3),

(ii) Le(2)n =
2
(
αn+5 − βn+5

)
α− β − 1

2

(
n2 + 7n+ 18

)
,

where α and β are the roots of the characteristic equation λ3 − 2λ2 + 1 = 0.

Proof: By using Theorem 6 and equation (13), we obtain desired results. �
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Abstract: We study some new inequalities by using bounded function Ũ and a positive bounded linear operator A, involving
A-Berezin number inequalities and the A-Berezin norm for operators acting on the functional Hilbert space. In particular, for
U ∈ BA (H) we prove that

ber2A (U) ≤ 1

2

∥∥∥U ]AU + UU ]A
∥∥∥
A−Ber

− 1

2
ηA (U) ,

where ηA (U) := infλ∈Q
(∥∥∥Uk̂λ∥∥∥

A
−
∥∥∥U ]A k̂λ∥∥∥

A

)2
and berA (·) is the Berezin number of operator U. Other connected issues are

also covered.

Keywords: A-Berezin number, Berezin symbol, Positive operator, functional Hilbert space.

1 Introduction

We examine various issues concerning the Berezin symbols of bounded linear operators on Hilbert function spaces in this study.
Let Q be a region in the complex plane C. A functional Hilbert space (f.H.s.) is a Hilbert space H of complex- valued functions on Q with

the following properties: (i) if f and g are in H and if α and β are scalars, then (αf + βg) (λ) = αf (λ) + βg (λ) for every λ ∈ Q, and (ii)
for every λ ∈ Q, there exists a positive constant γλ, such that |f (λ)| ≤ γλ ‖f‖ for every f ∈ H. Observe that if H is a f.H.s. over Q, then
for each λ ∈ Q, the evaluation map Eλ : H → C, Eλf : f (λ) , is a bounded linear functional. Via the classical Riesz representation theorem
in the functional analysis, there exists, for every λ ∈ Q, a unique element kλ ∈ H such that f(λ) = 〈f, kλ〉 for every f ∈ H. Further, we will
denote the normalized reproducing kernel at λ as k̂λ := kλ

‖kλ‖H
. For more information on f.H.s. see [1].

For a given linear map U : H → H, the Berezin symbol (or transform) Ũ , of U is defined by

Ũ (λ) =
〈
Uk̂λ, k̂λ

〉
, for λ ∈ Q.

The concept of the Berezin symbol was first introduced by Felix Alexandrovich Berezin, in 1972, see [5]. For the basic properties and facts
on these new concepts, see [16, 17].

Let B (H) be the set of all bounded linear operators onH. An operator A ∈ B (H) is called positive if 〈Ax, x〉 ≥ 0 for any x ∈ H and we
write a positive operator as A ≥ 0. It is clear that a positive operator A induces a positive semidefinite sesquilinear form 〈·, ·〉A : H×H −→
C defined by 〈x, y〉A = 〈Ax, y〉 for all x, y ∈ H. The semi-norm induced by 〈·, ·〉A is given by ‖x‖A =

√
〈x, x〉A, which also satisfies

‖x‖A =
∥∥∥A 1

2 x
∥∥∥. An operator V ∈ B (H) is called an A-adjoint of an operator U if 〈Ux, y〉A = 〈x, V y〉A holds for all x, y ∈ H . The set of

all operators in B (H) admitting A-adjoint is denoted by BA (H). By Douglas theorem, it holds that

BA (H) =
{
U ∈ B (H) : R

(
U∗A

)
⊆ R (A)

}
,

where R (U) and U∗ are the range and adjoint of operator U, respectively. If U ∈ BA (H) , the Douglas solution of the equation AX =
U∗A is a distinguished A-adjoint operator of U, which is denoted by U ]A . The definitions and properties needed in this paper are shown in
[6, 8, 9, 12, 18, 20, 21].

We can give the following definitions given in [12].

Definition 1. (i) For U ∈ BA (H), the A-Berezin set of
〈
Uk̂λ, k̂λ

〉
A

is defined by

BerA (U) =
{〈
Uk̂λ, k̂λ

〉
A

: λ ∈ Q
}
.
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(ii) A-Berezin number of operators U ∈ BA (H) is defined by

berA (U) = sup
λ∈Q

∣∣∣〈Uk̂λ, k̂λ〉
A

∣∣∣ .
(iii) A-Berezin norm of operators U ∈ BA (H) is defined by

‖U‖A−Ber = sup
λ∈Q

∥∥∥AUk̂λ∥∥∥H .

If A = I , we get the Berezin number. So, this concept generalizes the Berezin number of f.H.s. operators which have recently attracted the
attention of many authors (for instance [3, 4, 10, 11, 13–15]).

In this paper, the structure is as follows. The literature review is covered in Section 1 of the introduction. The key findings are then demon-
strated in Section 2. That is, the preliminary lemmas of this paper are shown. In Section 3, we present some upper bounds for A-Berezin radius
of operators. In particular, for U ∈ BA(H) we prove that

ber2A(U) ≤ 1

2

∥∥∥U ]AU + UU ]A
∥∥∥
A
− 1

2
inf
λ∈Q

(∥∥∥Uk̂λ∥∥∥
A
−
∥∥∥U ]A k̂λ∥∥∥

A

)2
and

ber4A(U) ≤ 3

16

∥∥∥UU ]A + U ]AU
∥∥∥2
A
+

1

8

∥∥∥UU ]A + U ]AU
∥∥∥
A
berA(U

2) .

In addition, given the sum of two operators, we must develop an A-Berezin norm inequality and multiple A-Berezin number inequalities.
Particularly, we demonstrate that

‖U + V ‖2A ≤
√∥∥∥(U ]AU)2 +

(
V ]AV

)2∥∥∥
A−Ber

+ 2ber2A(V
]AU) + ‖U‖A−Ber ‖V ‖A−Ber + berA(V

]AU)

and

ber2A(U + V ) ≤
∥∥∥U ]AU + V ]AV

∥∥∥
A−Ber

+
1

2

∥∥∥U ]AU – V ]AV
∥∥∥
A−Ber

2berA(V
]AU)

for U, V ∈ BA(H).

2 Auxiliary Theorems

The following lemmas are required to validate the findings of this research (see, [2, 7, 18, 19]).

Lemma 1. Let x, y, z, e ∈ H with ‖e‖A = 1. Then, the following statements are supplied.

∣∣〈x, y〉A
∣∣2 +

∣∣〈x, z〉A∣∣2 ≤ ‖x‖2A (max
{
‖y‖2A , ‖z‖2A

}
+
∣∣〈y, z〉A

∣∣) , (1)

∣∣〈a, e〉A 〈e, b〉A∣∣ ≤ 1

2

(
‖a‖A ‖b‖A +

∣∣〈a, b〉A∣∣) , (2)

∣∣〈a, e〉A 〈e, b〉A∣∣2 ≤ 1

4

(
3 ‖a‖2A ‖b‖

2
A + ‖a‖A ‖b‖A

∣∣〈a, b〉A∣∣) , (3)

and ∣∣〈x, y〉A∣∣2 +
∣∣〈x, z〉A∣∣2 ≤ ‖x‖2A√∣∣〈y, y〉A∣∣2 +

∣∣〈z, z〉A∣∣2 + 2
∣∣〈y, z〉A∣∣2. (4)

Lemma 2. Let U ∈ BA(H). Then, U = U ]A iff U is an A-adjoint operator and R (U) ⊆ R (A).

Remark 1.
(
U ]AU

)]A
= U ]AU may be deduced from Lemma 2.

We have some basic inequalities that will assist us prove our results further down:

√
a
√
b =

1

2
(a+ b)− 1

2

(√
a−
√
b
)2
, a, b ≥ 0 (5)

max {a, b} = 1

2
(a+ b+ |a− b|) , (6)

and

(ab+ cd)2 ≤
(
a2 + c2

)(
b2 + d2

)
, a, b, c, d ∈ R. (7)
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3 Main result

LetH = H (Q) be a f.H.s. with reproducing kernel k̂λ. In this part, we’ll look at potential upper boundaries for the A-Berezin radius.
Let us present our first lemma, which is required in our results.

Lemma 3. Let U ∈ BA(H). Then for any λ, µ ∈ Q, we have

∣∣∣〈Uk̂λ, k̂µ〉
A

∣∣∣2 ≤√〈U ]AUk̂λ, k̂λ〉
A

√〈
UU ]A k̂µ, k̂µ

〉
A
. (8)

Proof: For λ, µ ∈ Q, we can see that

∣∣∣〈Uk̂λ, k̂µ〉
A

∣∣∣2 =
∣∣∣〈Uk̂λ, k̂µ〉

A

∣∣∣ ∣∣∣〈k̂λ, U ]A k̂µ〉
A

∣∣∣
=
∣∣∣〈A 1

2Uk̂λ, A
1
2 k̂µ

〉∣∣∣ ∣∣∣〈A 1
2 k̂λ, A

1
2U ]A k̂µ

〉∣∣∣
≤
∥∥∥Uk̂λ∥∥∥

A

∥∥∥U ]A k̂µ∥∥∥
A

=

√〈
U ]AUk̂λ, k̂λ

〉
A

√〈
UU ]A k̂µ, k̂µ

〉
A

.

by applying the Cauchy-Schwarz inequality. As a consequence, the outcome is established. �

Now, let we give the first our theorem.

Theorem 1. If U ∈ BA(H), then we have

ber2A (U) ≤ 1

2

∥∥∥U ]AU + UU ]A
∥∥∥
A−Ber

− 1

2
ηA (U) , (9)

where ηA (U) := infλ∈Q
(∥∥∥Uk̂H,λ∥∥∥

A
−
∥∥∥U ]A k̂λ∥∥∥

A

)2
.

Proof: Let λ ∈ Q be arbitrary. By setting a =
〈
U ]AUk̂λ, k̂λ

〉
A

and b =
〈
UU ]A k̂λ, k̂λ

〉
A

in (5), we get

∣∣∣〈Uk̂λ, k̂λ〉
A

∣∣∣2 ≤√〈U ]AUk̂λ, k̂λ〉
A

√〈
UU ]A k̂λ, k̂λ

〉
A

(by the inequality (8))

=
1

2

(〈
U ]AUk̂λ, k̂λ

〉
A
+
〈
UU ]A k̂λ, k̂λ

〉
A

)
− 1

2

(√〈
U ]AUk̂λ, k̂λ

〉
A
−
√〈

UU ]A k̂λ, k̂λ

〉
A

)2

(by the inequality (5))

=
1

2

〈(
U ]AU + UU ]A

)
k̂λ, k̂λ

〉
A
− 1

2

(∥∥∥Uk̂λ∥∥∥
A
−
∥∥∥U ]A k̂λ∥∥∥

A

)2
≤ 1

2

∥∥∥U ]AU + UU ]A
∥∥∥
A−Ber

− 1

2
inf
λ∈Q

(∥∥∥Uk̂λ∥∥∥
A
−
∥∥∥U ]A k̂λ∥∥∥

A

)2
and ∣∣∣〈Uk̂λ, k̂λ〉

A

∣∣∣2 ≤ 1

2

∥∥∥U ]AU + UU ]A
∥∥∥
A−Ber

− 1

2
ηA (U) .

Therefore, taking the supremum over λ ∈ Q in the above inequality we deduce that

ber2A (U) ≤ 1

2

∥∥∥U ]AU + UU ]A
∥∥∥
A−Ber

− 1

2
ηA (U) .

We get the desired inequality (9). �

Theorem 2. If U, V ∈ BA(H), then we have

ber4A

(
V ]AU

)
≤ 3

16

∥∥∥∥(U ]AU)2 +
(
V ]AV

)2∥∥∥∥2
A−Ber

+
1

8

∥∥∥∥(U ]AU)2 +
(
V ]AV

)2∥∥∥∥
A−Ber

berA

(
V ]AV U ]AU

)
.

c© CPOST 2022 23



Proof: The following inequality holds for any λ ∈ Q :

4
∣∣∣〈T k̂λ, k̂λ〉

A

〈
Sk̂λ, k̂λ

〉
A

∣∣∣2
≤ 3

∥∥∥T k̂λ∥∥∥2
A

∥∥∥S]A k̂λ∥∥∥2
A
+
∥∥∥T k̂λ∥∥∥

A

∥∥∥S]A k̂λ∥∥∥
A

∣∣∣〈T k̂λ, S]A k̂λ〉
A

∣∣∣
(by the inequality (3))

= 3

(√〈
T ]AT k̂λ, k̂λ

〉
A

〈
SS]A k̂λ, k̂λ

〉
A

)2

+

√〈
T ]AT k̂λ, k̂λ

〉
A

〈
SS]A k̂λ, k̂λ

〉
A

∣∣∣〈ST k̂λ, k̂λ〉
A

∣∣∣
≤ 3

4

(〈
T ]AT k̂λ, k̂λ

〉
A
+
〈
SS]A k̂λ, k̂λ

〉
A

)2
+

1

2

(〈
T ]AT k̂λ, k̂λ

〉
A
+
〈
SS]A k̂λ, k̂λ

〉
A

) ∣∣∣〈ST k̂λ, k̂λ〉
A

∣∣∣
(by the AM-GM inequality)

=
3

4

〈(
T ]AT + SS]A

)
k̂λ, k̂λ

〉2
A
+

1

2

〈(
T ]AT + SS]A

)
k̂λ, k̂λ

〉
A

∣∣∣〈ST k̂λ, k̂λ〉
A

∣∣∣ .
So we have ∣∣∣〈T k̂λ, k̂λ〉

A

〈
Sk̂λ, k̂λ

〉
A

∣∣∣2
≤ 3

16

〈(
T ]AT + SS]A

)
k̂λ, k̂λ

〉2
A
+

1

8

〈(
T ]AT + SS]A

)
k̂λ, k̂λ

〉
A

∣∣∣〈ST k̂λ, k̂λ〉
A

∣∣∣ .
Let T = U ]AU and S = V ]AV in the above inequality. By Remark 1, we have(U ]AU)

]A
= U ]AU and (V ]AV )

]A
= V ]AV . The

conclusion may then be clearly recognised as∣∣∣〈U ]AUk̂λ, k̂λ〉
A

〈
V ]AV k̂λ, k̂λ

〉
A

∣∣∣2
≤ 3

16

〈[(
U ]AU

)2
+
(
V ]AV

)2]
k̂λ, k̂λ

〉2

A

+
1

8

〈[(
U ]AU

)2
+
(
V ]AV

)2]
k̂λ, k̂λ

〉
A

∣∣∣〈V ]AV U ]AUk̂λ, k̂λ〉
A

∣∣∣
≤ 3

16

∥∥∥∥(U ]AU)2 +
(
V ]AV

)2∥∥∥∥2
A

+
1

8

∥∥∥∥(U ]AU)2 +
(
V ]AV

)2∥∥∥∥
A

berA

(
V ]AV U ]AU

)
.

Furthermore, using the Cauchy-Schwarz inequality,∣∣∣〈V ]AUk̂λ, k̂λ〉
A

∣∣∣4 =
∣∣∣〈Uk̂λ, V k̂λ〉

A

∣∣∣4 ≤ ∥∥∥Uk̂λ∥∥∥4
A

∥∥∥V k̂λ∥∥∥4
A

=
〈
Uk̂λ, Uk̂λ

〉2
A

〈
V k̂λ, V k̂λ

〉2
A

=
〈
U ]AUk̂λ, k̂λ

〉2
A

〈
V ]AV k̂λ, k̂λ

〉2
A

=
∣∣∣〈U ]AUk̂λ, k̂λ〉

A

〈
V ]AV k̂λ, k̂λ

〉
A

∣∣∣2 .
Taking the supremum over λ ∈ Q, we may conclude that

ber4A

(
V ]AU

)
≤ 3

16

∥∥∥∥(U ]AU)2 +
(
V ]AV

)2∥∥∥∥2
A−Ber

+
1

8

∥∥∥∥(U ]AU)2 +
(
V ]AV

)2∥∥∥∥
A−Ber

berA

(
V ]AV U ]AU

)
.

�

Remark 2. It should be noted that Theorem 2 is more precise. Indeed;

ber2A

(
V ]AU

)
≤
√

3

16

∥∥∥(U ]AU)2 +
(
V ]AV

)2∥∥∥2
A−Ber

+
1

8

∥∥∥(U ]AU)2 +
(
V ]AV

)2∥∥∥
A−Ber

berA
(
V ]AV U ]AU

)
≤ 1

2

∥∥∥∥(U ]AU)2 +
(
V ]AV

)2∥∥∥∥
A−ber

. (10)
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Proof: To demonstrate this claim, we first conclude that

berA

(
V ]AV U ]AU

)
≤ 1

2

∥∥∥∥(U ]AU)2 +
(
V ]AV

)2∥∥∥∥
A−Ber

. (11)

Let λ ∈ Q be arbitrary. Since
(
U ]AU

)]A
= U ]AU and

(
V ]AV

)]A
= V ]AV , through making use of inequality of Cauchy-Schwarz

inequality, we have obtained

∣∣∣〈V ]AV U ]AUk̂λ, k̂λ〉
A

∣∣∣ = ∣∣∣〈U ]AUk̂λ, V ]AV k̂λ〉
A

∣∣∣
≤
∥∥∥U ]AUk̂λ∥∥∥

A−Ber

∥∥∥V ]AV k̂λ∥∥∥
A−Ber

=

√〈
U ]AUk̂λ, U ]AUk̂λ

〉
A

〈
V ]AV k̂λ, V ]AV k̂λ

〉
A

≤ 1

2

〈[(
U ]AU

)2
+
(
V ]AV

)2]
k̂λ, k̂λ

〉
A

≤ 1

2

∥∥∥∥(U ]AU)2 +
(
V ]AV

)2∥∥∥∥
A−Ber

.

Taking the supremum over λ ∈ Q, we have

berA

(
V ]AV U ]AU

)
≤ 1

2

∥∥∥∥(U ]AU)2 +
(
V ]AV

)2∥∥∥∥
A−Ber

and the inequality (11). As a result, we obtain the desirable the inequality (10)

ber4A

(
V ]AU

)
≤ 3

16

∥∥∥∥(U ]AU)2 +
(
V ]AV

)2∥∥∥∥2
A−Ber

+
1

8

∥∥∥∥(U ]AU)2 +
(
V ]AV

)2∥∥∥∥
A−Ber

berA

(
V ]AV U ]AU

)
≤ 3

16

∥∥∥∥(U ]AU)2 +
(
V ]AV

)2∥∥∥∥2
A−Ber

+
1

16

∥∥∥∥(U ]AU)2 +
(
V ]AV

)2∥∥∥∥2
A−Ber

=
1

4

∥∥∥∥(U ]AU)2 +
(
V ]AV

)2∥∥∥∥2
A−Ber

.

�

In [14], for U, V ∈ B(H) and r = 1, Huban et al. prove that

ber2
(
V ∗U

)
≤ 1

2

∥∥∥(U∗U)2 +
(
V ∗V

)2∥∥∥ . (12)

Remark 2 shows that Theorem 2 is a refinement of the inequality (12) if taking A = I .
We now refine the triangle inequality for the A-operator semi-norm and show various A-Berezin radius inequalities for the sum of two

operators.

Theorem 3. If U, V ∈ BA (H), then we have

ber2A (U + V ) ≤
√∥∥∥(U ]AU)2 +

(
V ]AV

)2∥∥∥
A−Ber

+ 2ber2A
(
V ]AU

)
+ ‖U‖A−Ber ‖V ‖A−Ber + berA

(
V ]AU

)
.
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Proof: For every λ, µ ∈ Q, we have∣∣∣〈(U + V ) k̂λ, k̂µ
〉
A

∣∣∣2
≤
(∣∣∣〈Uk̂λ, k̂µ〉

A

∣∣∣+ ∣∣∣〈V k̂λ, k̂µ〉
A

∣∣∣)2
=
∣∣∣〈Uk̂λ, k̂µ〉

A

∣∣∣2 +
∣∣∣〈V k̂λ, k̂µ〉

A

∣∣∣2 + 2
∣∣∣〈Uk̂λ, k̂µ〉

A

∣∣∣ ∣∣∣〈V k̂λ, k̂µ〉
A

∣∣∣
≤
√∣∣∣〈Uk̂λ, Uk̂λ〉

A

∣∣∣2 +
∣∣∣〈V k̂λ, V k̂λ〉

A

∣∣∣2 + 2
∣∣∣〈Uk̂λ, V k̂λ〉

A

∣∣∣2
+ 2

∣∣∣〈Uk̂λ, k̂µ〉
A

∣∣∣ ∣∣∣〈V k̂λ, k̂µ〉
A

∣∣∣
(by the inequality (4))

≤
(∥∥∥U ]AUk̂λ∥∥∥2

A
+
∥∥∥V ]AV k̂λ∥∥∥2

A
+ 2

∣∣∣〈V ]AUk̂λ, k̂λ〉
A

∣∣∣2) 1
2

+ 2
∣∣∣〈Uk̂λ, k̂µ〉

A

∣∣∣ ∣∣∣〈V k̂λ, k̂µ〉
A

∣∣∣
≤
(〈

U ]AUk̂λ, U
]AUk̂λ

〉
A
+
〈
V ]AV k̂λ, V

]AV k̂λ

〉
A
+ 2

∣∣∣〈V ]AUk̂λ, k̂λ〉
A

∣∣∣2) 1
2

+ 2
∣∣∣〈Uk̂λ, k̂µ〉

A

∣∣∣ ∣∣∣〈V k̂λ, k̂µ〉
A

∣∣∣
=

(〈(
U ]AU

)2
k̂λ, k̂λ

〉
A

+

〈(
V ]AV

)2
k̂λ, k̂λ

〉
A

+ 2
∣∣∣〈V ]AUk̂λ, k̂λ〉

A

∣∣∣2) 1
2

+ 2
∣∣∣〈Uk̂λ, k̂µ〉

A

∣∣∣ ∣∣∣〈V k̂λ, k̂µ〉
A

∣∣∣(
since

(
U ]AU

)]A
= U ]AU and

(
V ]AV

)]A
= V ]AV

)
≤
√∥∥∥(U ]AU)2 +

(
V ]AV

)2∥∥∥
A−Ber

+ 2ber2A
(
V ]AU

)
+ 2

∣∣∣〈Uk̂λ, k̂µ〉
A

∣∣∣ ∣∣∣〈V k̂λ, k̂µ〉
A

∣∣∣ . (13)

Putting a = Uk̂λ, e = k̂µ and b = V k̂λ in the inequality (3) we have∣∣∣〈Uk̂λ, k̂µ〉
A

∣∣∣ ∣∣∣〈V k̂λ, k̂µ〉
A

∣∣∣ = ∣∣∣〈Uk̂λ, k̂µ〉
A

∣∣∣ ∣∣∣〈k̂µ, V k̂λ〉
A

∣∣∣
≤ 1

2

∥∥∥Uk̂λ∥∥∥
A

∥∥∥V k̂λ∥∥∥
A
+

1

2

∣∣∣〈Uk̂λ, V k̂λ〉
A

∣∣∣
=

1

2
‖U‖A−Ber ‖V ‖A−Ber +

1

2

∣∣∣〈V ]AUk̂λ, k̂λ〉
A

∣∣∣ . (14)

Now, on making use of the inequalities (13) and (14), we get the inequality

∣∣∣〈(U + V ) k̂λ, k̂µ
〉
A

∣∣∣2 ≤√∥∥∥(U ]AU)2 +
(
V ]AV

)2∥∥∥
A−Ber

+ 2ber2A
(
V ]AU

)
+ ‖U‖A−Ber ‖V ‖A−Ber +

∣∣∣〈V ]AUk̂λ, k̂λ〉
A

∣∣∣ .
Therefore, taking the supremum over λ ∈ Q with λ = µ, we deduce

sup
λ∈Q

∣∣∣〈(U + V ) k̂λ, k̂µ
〉
A

∣∣∣2 ≤√∥∥∥(U ]AU)2 +
(
V ]AV

)2∥∥∥
A−Ber

+ 2ber2A
(
V ]AU

)
+ ‖U‖A−Ber ‖V ‖A−Ber + sup

λ∈Q

∣∣∣〈V ]AUk̂λ, k̂λ〉
A

∣∣∣
and

ber2A (U + V ) ≤
√∥∥∥(U ]AU)2 +

(
V ]AV

)2∥∥∥
A−Ber

+ 2ber2A
(
V ]AU

)
+ ‖U‖A−Ber ‖V ‖A−Ber + berA

(
V ]AU

)
.

as desired. �

The inequality in ([13, Theorem 2.12]) states that

ber2 (U + V ) ≤ ber2 (U) + ber2 (V ) + ‖U‖Ber ‖V ‖Ber + ber
(
V ∗U

)
This shows that if we consider A = I, then the upper bound obtained in Theorem 3 is better than that obtained in ([13, Theorem 2.12]).
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Also, by trangle inequality we will obtain√∥∥∥(U ]AU)2 +
(
V ]AV

)2∥∥∥
A−Ber

+ 2ber2A
(
V ]AU

)
≤
√∥∥∥(U ]AU)2∥∥∥

A−Ber
+
∥∥∥(V ]AV )2∥∥∥

A−Ber
+ 2

∥∥V ]A∥∥2
A−Ber

‖U‖2A−Ber

=
√
‖U‖4A−Ber + ‖V ‖

4
A−Ber + 2 ‖V ‖2A−Ber ‖U‖

2
A−Ber

= ‖U‖2A−Ber + ‖V ‖
2
A−Ber .

Theorem 3 is sharper than triangle inequality. Since√∥∥∥(U ]AU)2 +
(
V ]AV

)2∥∥∥
A−Ber

+ 2ber2A
(
V ]AU

)
≤ ‖U‖2A−Ber + ‖V ‖

2
A−Ber ,

we get

‖U + V ‖2A−Ber ≤
√∥∥∥(U ]AU)2 +

(
V ]AV

)2∥∥∥
A−Ber

+ 2ber2A
(
V ]AU

)
+ ‖U‖A−Ber ‖V ‖A−Ber + berA

(
V ]AU

)
≤ ‖U‖2A−Ber + ‖V ‖

2
A−Ber + ‖U‖A−Ber ‖V ‖A−Ber +

∥∥∥V ]A∥∥∥
A−Ber

‖U‖A−Ber

=
(
‖U‖A−Ber + ‖V ‖A−Ber

)2
.

Theorem 4. If U, V ∈ BA (H), then we have

ber2A (U + V ) ≤
∥∥∥U ]AU + V ]AV

∥∥∥
A−Ber

+
1

2

∥∥∥U ]AU − V ]AV ∥∥∥
A−Ber

+ 2berA

(
V ]AU

)
.

Proof: Let λ ∈ Q be arbitrary. By putting y = Uk̂λ, x = k̂µ and z = V k̂λ in the inequality (1) and a =
〈
Uk̂λ, Uk̂λ

〉
A

and b =〈
V k̂λ, V k̂λ

〉
A

in (6) we have

∣∣∣〈(U + V ) k̂λ, k̂λ

〉
A

∣∣∣2
≤
(∣∣∣〈Uk̂λ, k̂λ〉

A

∣∣∣+ ∣∣∣〈V k̂λ, k̂λ〉
A

∣∣∣)2
=
∣∣∣〈Uk̂λ, k̂λ〉

A

∣∣∣2 +
∣∣∣〈V k̂λ, k̂λ〉

A

∣∣∣2 + 2
∣∣∣〈Uk̂λ, k̂λ〉

A

∣∣∣ ∣∣∣〈V k̂λ, k̂λ〉
A

∣∣∣
≤ max

{∥∥∥Uk̂λ∥∥∥2
A−Ber

,
∥∥∥V k̂λ∥∥∥2

A−Ber

}
+
∣∣∣〈Uk̂λ, V k̂λ〉

A

∣∣∣+ 2
∣∣∣〈Uk̂λ, k̂λ〉

A

∣∣∣ ∣∣∣〈V k̂λ, k̂λ〉
A

∣∣∣
=

1

2

(〈
Uk̂λ, Uk̂λ

〉
A
+
〈
V k̂λ, V k̂λ

〉
A
+
∣∣∣〈Uk̂λ, Uk̂λ〉

A
−
〈
V k̂λ, V k̂λ

〉
A

∣∣∣)
+
∣∣∣〈Uk̂λ, V k̂λ〉

A

∣∣∣+ 2
∣∣∣〈Uk̂λ, k̂λ〉

A

∣∣∣ ∣∣∣〈V k̂λ, k̂λ〉
A

∣∣∣
=

1

2

(〈(
U ]AU + V ]AV

)
k̂λ, k̂λ

〉
A

∣∣∣〈(U ]AU − V ]AV ) k̂λ, k̂λ〉
A

∣∣∣)
+
∣∣∣〈V ]AUk̂λ, k̂λ〉

A

∣∣∣+ 2
∣∣∣〈Uk̂λ, k̂λ〉

A

∣∣∣ ∣∣∣〈V k̂λ, k̂λ〉
A

∣∣∣
≤ 1

2

(∥∥∥U ]AU + V ]AV
∥∥∥
A−Ber

+
∥∥∥U ]AU − V ]AV ∥∥∥

A−Ber

)
+ berA

(
V ]AU

)
+ 2

∣∣∣〈Uk̂λ, k̂λ〉
A

∣∣∣ ∣∣∣〈V k̂λ, k̂λ〉
A

∣∣∣ .
On the other hand, we can see from the inequality in (2) that

2
∣∣∣〈Uk̂λ, k̂λ〉

A

∣∣∣ ∣∣∣〈V k̂λ, k̂λ〉
A

∣∣∣ = 2
∣∣∣〈Uk̂λ, k̂λ〉

A

∣∣∣ ∣∣∣〈k̂λ, V k̂λ〉
A

∣∣∣
≤
∥∥∥Uk̂λ∥∥∥

A−Ber

∥∥∥V k̂λ∥∥∥
A−Ber

+
∣∣∣〈Uk̂λ, V k̂λ〉

A

∣∣∣
≤ 1

2

〈(
U ]AU + V ]AV

)
k̂λ, k̂λ

〉
A
+
∣∣∣〈V ]AUk̂λ, k̂λ〉

A

∣∣∣
≤ 1

2

∥∥∥U ]AU + V ]AV
∥∥∥
A−Ber

+ berA

(
V ]AU

)
.
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So, we obtain

ber2A (U + V ) ≤
∥∥∥U ]AU + V ]AV

∥∥∥
A−Ber

+
1

2

∥∥∥U ]AU − V ]AV ∥∥∥
A−Ber

+ 2berA

(
V ]AU

)
by taking the supremum over λ ∈ Q and combining the preceding two inequalities. �

Recall that the operator U ]A is said to be A-normal if U ]AU = UU ]A .

Remark 3. If V = U ]A is an A-normal operator, then

ber2A

(
U + U ]A

)
=
∥∥∥U + U ]A

∥∥∥2
A−Ber

≤ 2
(
‖U‖2A−Ber + berA

(
U2
))

≤
(
‖U‖A−Ber +

∥∥∥U ]A∥∥∥
A−Ber

)2

.

Theorem 5. If U, V ∈ BA (H), then we have

ber2A (U + V )

≤ 2min

{∥∥∥U ]AU + V ]AV
∥∥∥1/2
A−Ber

∥∥∥UU ]A + V V ]A
∥∥∥1/2
A−Ber

,
∥∥∥U ]AU + V V ]A

∥∥∥1/2
A−Ber

∥∥∥UU ]A + V ]AV
∥∥∥1/2
A−Ber

}
.

Proof: Let λ ∈ Q be arbitrary. By putting a =
〈
U ]AUk̂λ, k̂λ

〉
A

, b =
〈
UU ]A k̂λ, k̂λ

〉
A
, c =

〈
V ]AV k̂λ, k̂λ

〉
A

and d =
〈
V V ]A k̂λ, k̂λ

〉
A

in the inequality (7) and using the convexity of f(U) = U2 we have

∣∣∣〈(U + V ) k̂λ, k̂λ

〉
A

∣∣∣2 ≤ (∣∣∣〈Uk̂λ, k̂λ〉
A

∣∣∣+ ∣∣∣〈V k̂λ, k̂λ〉
A

∣∣∣)2
≤ 2

(∣∣∣〈Uk̂λ, k̂λ〉
A

∣∣∣2 +
∣∣∣〈V k̂λ, k̂λ〉

A

∣∣∣2)
≤ 2

√〈
U ]AUk̂λ, k̂λ

〉
A

√〈
UU ]A k̂λ, k̂λ

〉
A

+ 2

√〈
V ]AV k̂λ, k̂λ

〉
A

√〈
V V ]A k̂λ, k̂λ

〉
A

(by the inequality (8))

≤ 2

√〈
U ]AUk̂λ, k̂λ

〉
A
+
〈
V ]AV k̂λ, k̂λ

〉
A√〈

UU ]A k̂λ, k̂λ

〉
A
+
〈
V V ]A k̂λ, k̂λ

〉
A

(by the inequality (7))

= 2

√〈(
U ]AU + V ]AV

)
k̂λ, k̂λ

〉
A

√〈(
UU ]A + V V ]A

)
k̂λ, k̂λ

〉
A

≤ 2
∥∥∥U ]AU + V ]AV

∥∥∥1/2
A−Ber

∥∥∥UU ]A + V V ]A
∥∥∥1/2
A−Ber

and ∣∣∣〈(U + V ) k̂λ, k̂λ

〉
A

∣∣∣2 ≤ 2
∥∥∥U ]AU + V ]AV

∥∥∥1/2
A−Ber

∥∥∥UU ]A + V V ]A
∥∥∥1/2
A−Ber

. (15)

We may also get ∣∣∣〈(U + V ) k̂λ, k̂λ

〉
A

∣∣∣2 ≤ 2
∥∥∥U ]AU + V V ]A

∥∥∥1/2
A−Ber

∥∥∥UU ]A + V ]AV
∥∥∥1/2
A−Ber

(16)

by changing the values of a, b, c, d in the preceding proof.
Taking the supremum over λ ∈ Q in the inequalities (15) and (16), we have

ber2A (U + V ) ≤ 2
∥∥∥U ]AU + V ]AV

∥∥∥1/2
A−Ber

∥∥∥UU ]A + V V ]A
∥∥∥1/2
A−Ber

and

ber2A (U + V ) ≤ 2
∥∥∥U ]AU + V V ]A

∥∥∥1/2
A−Ber

∥∥∥UU ]A + V ]AV
∥∥∥1/2
A−Ber

,

hence, we get the desired result. �
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In Theorem 5, if V = U and V = U ]A , the inequalities

ber2A (U) ≤ min

{
‖U‖2A−Ber ,

1

2

∥∥∥U ]AU + UU ]A
∥∥∥
A−Ber

}
=

1

2

∥∥∥U ]AU + UU ]A
∥∥∥
A−Ber

and

ber2A

(
U + U ]A

)
=
∥∥∥U + U ]A

∥∥∥2
A−Ber

≤ 2
∥∥∥U ]AU + UU ]A

∥∥∥
A−Ber

≤
(
‖U‖A−Ber +

∥∥∥U ]A∥∥∥
A−Ber

)2

are established.
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Abstract: In this study, we consider on a finite interval Sturm-Liouville problem with nonlinear dependence on the spectral param-
eter in the boundary conditions. The properties of the eigenvalues of the boundary value problem are investigated. The oscillation
properties of the eigenfunctions of the boundary value problem are given.
Keywords: Eigenvalue, Non-Linear Spectral Parameter, Oscillation Theorem.

1 Introduction

The boundary value problem with spectral parameter appearing in the boundary conditions for Sturm-Liouville operator arises from a varied
assortment of physical problems and other applied problems such as the vibration problem of string with one end is fixed is examined in [1],
the study of heat conduction is handled in [2], boundary condition not containing linear spectral parameter is completely given in [3], [4].

In this paper, we are concerned with the boundary value problem by the differential equation

−u′′ + q(x)u = µ2u, 0 < x < 1, (1)

and the boundary conditions

u′(0) + αµ2u(0) = 0, (2)

u′(1) + (β0 + β1µ+ β2µ
2)u(1) = 0. (3)

Here µ is spectral parameter, q(x) is a nonnegative continuous function on the interval [0, 1] and α , βi (i = 0, 1, 2) are real constants and the
following conditions are satisfied:

α > 0, β0 > 0, β1 ̸= 0, β2 < 0. (4)

2 Main Results

2.1 The Eigenvalues of the Boundary Value Problems

Lemma 1. All eigenvalues of the boundary value problem (1)-(3) are real and different from zero.

Proof: Let µ0 be an eigenvalue of the boundary value problem (1)-(3) and u0(x) is a eigenfunction corresponding to the eigenvalue. Multiplying
both side of the following equality by the the function u0(x)

−u′′0 (x) + q(x)u0(x) = µ2
0u0(x),

and we the obtained the idendity by x from 0 to 1:

−
∫1
0
u′′0 (x)u0(x)dx+

∫1
0
q(x)|u0(x)|2dx = µ2

0

∫1
0
|u0(x)|2dx.

By using the formula of integration by part
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u′0(0)u0(0)− u′0(1)u0(1) +

∫1
0
(|u′0(x)|2 + q(x)|u0(x)|2)dx = µ2

0

∫1
0
|u0(x)|2dx. (5)

From (2)− (3), we get

Pµ2
0 −Qµ0 −R = 0 (6)

where

P =

∫1
0
|u0(x)|2dx+ α|u0(0)|2 − β2|u0(1)|2,

Q = β1|u0(1)|2,

R = β0|u0(1)|2 +

∫1
0
(|u′0(x)|2 + q(x)|u0(x)|2)dx.

From the quadratic equation (6), we have

µ0 =
Q∓

√
Q2 + 4PR

2P
.

By (4) , P > 0, R > 0 and Q ̸= 0; therefore, Q2 + 4PR > 0. Consequently, the equation (6) has only real roots. Lemma 1 is proven. □

Similarly to Theorem 1.1. in [[5], p.14], we can prove that there is a unique solution to equation (1) satisfying the initial conditions

φ(0, µ) = 1, φ′(0, µ) = −αµ2,

where at every fixed x ∈ [0, 1], the function φ(x, µ) is a entire function of the argument µ.

The eigenvalues of the boundary value problem (1)-(3) are zeros of the entire function

ϕ(µ) = φ′(1, µ) + (β0 + β1µ+ β2µ
2)φ(1, µ) = 0,

and its zeros form at most countable set without finite limit points . The eigenvalues are zeros of the function ϕ(x, λ). It is obtained from
Lemma 1, this function does not convert to zero for non-real µ. Thus, the zeros constitute an at most countable set without finite limit points.

Lemma 2. All eigenvalues of the boundary value problem (1)-(3) are simple.

Proof: To prove the Lemma, let’s show that the zeros of the function ϕ(µ) are simple. Assume that contrary i.e. µ = µ′ be double zeros of the
function ϕ(µ). Therefore, ϕ(µ′) = 0 and ϕ̇(µ′) = 0 ( the dot ’·’ denoting the derivative with respect to µ ), Since ϕ(x, µ) is solution of the
equation (1) , for µ ̸= λ, the relations below are valid:

− φ′′(x, λ) + q(x)φ(x, λ) = λ2φ(x, λ),

− φ′′(x, µ) + q(x)φ(x, µ) = µ2φ(x, µ).

Multiplying the first equation by φ(x, µ) and the second one by φ(x, λ) and adding together, we have

− φ′′(x, λ)φ(x, µ) + φ′′(x, µ)φ(x, λ) = (λ2 − µ2)φ(x, λ)φ(x, µ),

d

dx
(φ(x, λ)φ′(x, µ)− φ′(x, λ)φ(x, µ)) = (λ2 − µ2)φ(x, λ)φ(x, µ).

Integrating it from 0 to 1 and using boundary condition (2, 3) we obtain

φ(1, λ)φ′(1, µ)− φ(1, µ)φ′(1, λ)
λ− µ

= (λ+ µ)

{
α+

∫1
0
φ(x, µ)φ(x, λ)dx

}
.

For µ = µ′ as λ → µ, we get

φ′(1, µ′)φ̇(1, µ′)− φ(1, µ′)φ̇(1, µ′) = 2µ′[α+

∫1
0
φ2(x, µ)dx] (7)

On the other hand, taking into account ϕ(µ′) = 0, ϕ̇(µ′) = 0,

φ′(1, µ′) = −(β0 + β1µ
′ + β2µ

′)φ(1, µ′2),

and
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φ̇′(1, µ′) = −(β1 + 2β2µ
′)φ(1, µ′)− (β0 + β1µ

′ + β2µ
′2)φ̇(1, µ′).

Substituting tle last equations into (7), we have

β1φ
2(1, µ′) = 2µ′

[∫1
0
φ2(x, µ′)dx− β2φ

2(x, µ′) + α

]
(8)

It is shown that in In Lemma 1, if µ is an eigenvalue of the boundary value problem (1)-(3), the following square equation is provided:

Pµ′2 −Qµ′ −R = 0, (9)

where

P =

∫1
0
φ2(x, µ′)dx− β2φ

2(x, µ′) + α

Q = β1φ
2(x, µ′)dx,

R = β0φ
2(x, µ′) +

∫1
0
φ′2(x, µ′)dx+

∫1
0
q(x)φ2(x, µ′).

From 8, 9 and last equations, we get

µ′ = − Q

2P
,

where P > 0. From here

Q2 = −4PR,

is obtained. The relation gives us a contradiction for P > 0, R > 0. Lemma 2 is proved.
□

2.2 Oscillatory Properties of the Eigenfunctions

Lemma 3. Let u(x) is a solution to the equation
u′′ + p(x)u = 0, (10)

with initial condition
u(0) = 1, u′(0) = −αµ′2, (11)

and v(x) is a solution to the equation
v′′ + r(x)v = 0, (12)

with initial condition
v(0) = 1, v′(0) = −αµ′′2. (13)

Assume that
p(x) < r(x), x ∈ [0, 1],

u(x) has m zeros then v(x) has at least m zeros in same interval. Additionally kth zero of v(x) is less than kth zero of u(x).

Proof: Firstly, we consider the condition µ′′ > µ′ ≥ 0. Denote by x1 the zeros of u(x) nearest to 0. By Sturm’s Theorem [5], it suffices to
prove that v(x) has at least one zero inside the interval [0, x1]. Suppose the contrary. It is obvious that we have the inequalities u(x) > 0 and
v(x) > 0 for 0 ≤ x ≤ x1. Since u(x1) = 0, the function u(x) decreases in a neighborhood of x1. Consequently, u′(x1) ≤ 0. Integrating the
identity d

dx (u
′v − uv′) = (r(x)− p(x))u(x)v(x) from 0 to x1, we obtain

u′(x1)v(x1)− α(µ′′2 − µ′2) =

∫1
0
(r(x)− p(x))u(x)v(x)dx. (14)

Since r(x) > p(x), u(x) > 0 and v(x) > 0 in the interval (0, x1), the right hand side of the last equality is positive. Moreover, u′(x1)v(x1) ≤
0 . Since α > 0 and µ′′2 > µ′2 ≥ 0, we have α(µ′′2 − µ′2) ≥ 0. Thus, the left hand side of 14 is negative; it gives us a contradiction. Similarly,
the case µ′′2 < µ′2 ≤ 0 is treated . Lemma is proven. □

Theorem 1. The set of eigenvalues of the boundary value problem (1)-(3) consists of infinitely decreasing sequance of negative eigenvalues
{µ−n}∞n=1 and infinitely increasing sequence of positive eigenvalues {µn}∞n=1

· · · < µ−n < µ−n+1 < · · · < µ−2 < µ−1 < µ1 < µ2 < · · · < µn−1 < µn < · · ·

Besides. there exist such numbers n∗, n
∗ ∈ N and k∗, k

∗ ∈ N ∪ {0} that eigenfunctions corresponding to eigenvalues µ−n(n ≥ n∗) and
µn(n ≥ n∗) have zeros respectively (n+ k∗ − n∗) and (n+ k∗ − n∗) in the interval (0, 1).

Proof: The proof of this theorem are corallaries of Lemma 1, Lemma 2, Lemma 3, and Theorem 1. and Theorem 4.1. of paper [6]. □
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3 Conclusion

In this paper, spectral properties for Sturm-Liouville operator with spectral parameter contained in the conditions were studied. Some
properties of these eigenvalues and the oscillation property of the eigenfunction were examined.

The boundary value problems involving spectral parameters in boundary conditions often encountered in physical applications. By examining
such the boundary value problems, the vibration of a weighted bar can be its mathematical expression can be simplified so that it can be worked
on. Therefore, this topic is interesting and current for authors.
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tional diffusion problems established by these methods are sufficiently accurate even if they have different error and convergence
rates.
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1 Introduction

Fractional differential equations (FDEs) plays a significant role in a wide spectrum of physical and engineering problems. Since, modelling with
FDEs yields much more better results, compare to ordinary differential equations [1–7]. For instance, the modelling the behaviour of slower
diffusive matter by time fractional differential equations (TFDEs) gives more realistic results [8]. There are various methods to establish the
solution of TFDEs. Analytically diverse algorithms such as Homotopy analysis method, Adomian decomposition method, Laplace transform
method are developed and investigated to accomplish the closed form solutions of TFDEs [9–12]. However, specific types of FDEs are solved
by these methods. Moreover, numerical algorithms such as combination of finite elements method [13], residual power series method (RPSM)
[14–17] and implicit and explicit finite difference method (FDM) [18–22] are employed to acquire the truncated solutions of TFDEs. FDM is
a common method to construct the numerical solutions of differential equations [22].

In this paper, we tackle time FDEs below in Caputo sense by using implicit FDM and RPSM :

∂αu(x, t)

∂tα
= k(t)

∂2u(x, t)

∂x2
, 0 < x < l, 0 < t < T, 0 < α ⩽ 1 (1)

subject to the initial and boundary conditions

u(x, 0) = φ(x), 0 ⩽ x ⩽ l, (2)

u(0, t) = µ1(t), u(1, t) = µ2(t), 0 ⩽ t ⩽ T. (3)

in which k(t) and α denote the diffusion coefficient and the order of time fractional derivative, respectively.
Existence of solution of general form of problem (1-3) is considered in [24].
In this study, approximate solutions obtained using RPSM and FDM are compared and it is concluded that RPSM is a more effective method

than FDM for the investigated problem.

2 Preliminaries

Basic notions and features of fractional derivatives are presented in this section [17, 18].
Definition 1. The Riemann-Liouville fractional integral of order α (α ⩾ 0) is given as
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Jαf(x) =
1

Γ(α)

∫x
0
(x− t)α−1f(t)dt, α > 0, x > 0, (4)

J0f(x) = f(x). (5)

Definition 2. The Liouville-Caputo fractional derivative of order α is given as

Dαf(x) = Jn−αDnf(x) =

∫x
0
(x− t)n−α−1 dn

dtn
f(t)dt, n− 1 < α < n, x > 0, (6)

where Dn denotes the ordinary derivative of order n.
Definition 3. The αth order derivative of u(x, t) in Liouville-Caputo sense is given as

Dα
t u(x, t) =

{
1

Γ(n−α)

∫t
0(t− ξ)n−α−1 ∂nu(x,ξ)

∂tn dξ, n− 1 < α < n,
∂nu(x,t)

∂tn , α = n ∈ N.
(7)

Definition 4. The power series expansions of the function f(t) about t = t0

∞∑
k=0

n−1∑
l=0

fk(t− t0)
kα+l, 0 ⩽ n− 1 < α ⩽ n, t0 ⩽ t < t0 +R (8)

where fk are the coefficients, is called multiple fractional power series about t = t0 .

3 Finite Difference Method

The expression

Dα
t ui,j ∼= σα,τ

j∑
n=1

wα
n(ui,j−n+1 − ui,j−n) (9)

where

σα,τ =
1

Γ(2− α)τα
, wα

n = n1−α − (n− 1)1−α. (10)

gives an approximation of fractional derivative in Caputo sense (7). By using the advantage of Eq. (9), the discretization of problem (1)-(3)
leads to the following

σα,τ

j∑
n=1

wα
n(ui,j−n+1 − ui,j−n) = kj

ui−1,j − 2ui,j + ui+1,j

h2
,

1 ⩽ i ⩽ n− 1, 0 ⩽ j ⩽ m− 1, (11)

ui,0 = φ(xi), 0 ⩽ i ⩽ n, (12)

u1,j = µ1(tj), un,j = µ2(tj), 1 ⩽ j ⩽ m (13)

where tj = jτ, xi = ih with step lengths τ and h on time and space coordinate and ui,j represents approximate value of u(xi, tj) and
kj = k(tj).
The problem (11)-(13) is the implicit finite difference approximation of the problem (1)-(3) at the grid points i, j. In order to construct problem
(11)-(13) the domain of the problem [0, T ]× [0, l] is partitioned uniformly. The rearranging the Eq. (11) we get the following the tridiagonal
linear system

aiui−1,j + ciui,j + biui+1,j = fi, (14)

where

ai =
τkj

h2 , ci = − 2τkj

h2 − 1, bi =
τkj

h2 , fi = −ui,j−1 − σα,τ
j∑

n=2
wα
n(ui,j−n+1 − ui,j−n).

in order to establish the solution of this tridiagonal system, Thomas algorithm is employed [9].
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4 Residual power series method (RPSM)

The form of the solutions Eqs. (1)-(2) for obtained by RPSM is as follows:

u(x, t) =

∞∑
k=0

fk(x)
tkα

Γ(kα+ 1)
, x ∈ I, 0 ⩽ t < R (15)

The truncated series um(x, t) is defined as follows :

um(x, t) =

m∑
k=0

fk(x)
tkα

Γ(kα+ 1)
, x ∈ I, 0 ⩽ t < R (16)

Based on RPSM, the first approximation solution of u(x, t) is taken as the initial condition

u0(x, t) = f0(x) = u(x, 0) (17)

Therefore, Eq. (16) can be rearranged as follows

um(x, t) = f0(x) +

m∑
k=2

fk(x)
tkα

Γ(kα+ 1)
, 0 < α ⩽ 1, x ∈ I, 0 ⩽ t, k = 2, 3, ... (18)

As a result, the residual function of Eq.(1) becomes

Res0(x, t) = Dα
t u0 − k(t)u0xx, (19)

Resm(x, t) = Dα
t um − k(t)umxx (20)

is the residual function for mth truncated function. From [20, 22–24], by taking Res(x, t) = 0 and Dkα
t Resm(x, 0) = 0, k =

0, 1, 2, ...,m,m = 1, 2, 3, ... the numerical solution is constructed. In order to determine the coefficients fk(x), k = 2, 3, ...,m in Eq. (18),
we utilize the operator D(m−1)α

t for m = 1, 2, 3, ... at t = 0 in Eq.(20) we get

D
(m−1)α
t Resm(x, 0) = 0, 0 < α ≤ 1,m = 1, 2, 3, ... (21)

Based on the above theory, the coefficients f1(x) is acquired by utilizing the following residual function

Res1(x, t) = f1 − k(t)
(
f ′′0 (x) + f ′′1 (x)

tα

Γ(1 + α)

)
(22)

In Eq. (21) which yields
f1(x) = k(0)f ′′0 (x). (23)

Similarly, to other coefficients f2(x) is obtained as

f2(x) = Dα
t (k(t)u2xx(x, t)) |t=0 . (24)

In the same manner, the other coefficients are obtained

f3(x) = Dα
t D

α
t (k(t)u3xx(x, t)) |t=0 (25)

f4(x) = Dα
t D

α
t D

α
t (k(t)u4xx(x, t)) |t=0 (26)

and so on.

5 Illustrative Examples

Some numerical examples are presented to illustrate the implementation of FDM and RPSM in this section.

Example 1. Take the following problem

∂αu(x, t)

∂t
=

(
1 + 6

t2α

Γ(1 + 2α)

)∂2u(x, t)
∂x2

, 0 < x < 1, 0 < t < 1, 0 < α ⩽ 1 (27)

subject to the initial and boundary conditions
u(x, 0) = exp(2x), 0 ⩽ x ⩽ 1, (28)

u(0, t) = exp(4t3 + 4t), u(1, t) = exp(4t3 + 4t+ 2), 0 ⩽ t ⩽ 1. (29)

u(x, t) = exp(4t3 + 4t+ 2x) represents the analytical solution of the problem (27)-(29) for α = 1.
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α = 1 α = 0.9 α = 0.7
x Exact FDM RPSM FDM RPSM FDM RPSM
0 2980.95799 2980.95799 2980.95767 2980.95799 2981.11669 2980.95799 2981.35986

0.1 3640.95031 3648.24308 3640.94992 4203.94673 3641.14414 4721.34561 3641.44115
0.2 4447.06675 4460.69202 4447.06627 5503.71549 4447.30350 6479.74391 4447.66627
0.3 5431.65959 5450.64826 5431.65901 6903.97278 5431.94876 8262.85434 5432.39185
0.4 6634.24401 6657.51375 6634.24330 8430.27121 6634.59720 10077.47454 6635.13839
0.5 8103.08393 8129.31605 8103.08306 10110.47615 8103.51532 11930.52477 8104.17633
0.6 9897.12906 9924.61820 9897.12800 11975.27705 9897.65596 13829.07484 9898.46332
0.7 12088.38073 12114.84726 12088.37944 14080.81507 12089.02429 15780.37163 12090.01040
0.8 14764.78157 14787.13398 14764.77999 16398.98786 14765.56761 17791.86732 14766.77205
0.9 18033.74493 18047.77654 18033.74300 19038.79162 18034.70500 19871.24844 18036.17611
1 22026.46579 22026.46579 22026.46345 22026.46579 22027.63843 22026.46579 22029.43525

Table 1 Comparison of FDM with m = n = 1000 and RPSM with 60 iteration at T = 1 for various values of α in Ex.1.

Taking time and space steps m = 40 and n = 40,respectively yields to numerical results presented in Figs. 1-3 for FDM and RPSM.
It is clear from Table 1 that improved the approximation is establish for the sufficiently large number of nodes and numerical solutions and for
α = 1 get closer to the exact solution uniformly.

Fig. 1: The graphics of exact solution for m = n = 40 and α = 1 .

(a) (b)

Fig. 2: (a) The graphics of FDM solution for m = n = 40 and α = 0.9. (b) The graphics of RPSM solution for α = 0.9.
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(a) (b)

Fig. 3: (a) The graphics of FDM solution for m = n = 40 and α = 0.5. (b) The graphics of RPSM solution for α = 0.5

6 Conclusion

The numerical solutions of time FDEs in Caputo sense are accomplished through FDM and RPSM. Utilizing FDM leads to a linear system
which is in the form of tridiagonal matrix. Moreover, RPSM is utilized to establish the series solution by determining the unknown coefficients
through the residual function. The implementation these two methods are presented in detail and the obtained the numerical solution are
analyzed by comparing them. Based on the theory and illustrative examples we conclude that the solution of RPSM is better than the solution
of FDM.
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Abstract: This presentation offers the group decision-making problem related to the hip prosthesis material selection in an interval-
valued Fermatean fuzzy environment. For hip prosthesis material selection problems, the advantage of interval-valued Fermatean
fuzzy sets is that they can reasonably express the evaluation information given by decision-makers through both qualitative and
quantitative aspects. However, if the dimension and nonlinear relationship of the decision data keep growing, the traditional deci-
sionâĂŘmaking methods will fail. For nonlinear features, we construct the intervalâĂŘvalued Fermatean fuzzy language kernel
principal component analysis model to reduce the dimensionality. The proposed method will be used in material selection in dis-
tinct implementations, exclusively in biomedical applications where the prosthesis materials should have similar characteristics to
human tissues. Since biomedical materials are used in various parts of the human body for many different purposes, in this study,
material selection will be made using the method presented for the femoral component of the hip joint prosthesis for orthopedists
and practitioners who will choose biomaterials.

Keywords: group decision-making, hip prosthesis, interval-valued Fermatean fuzzy environment, kernel principal component
analysis.

1 Introduction

In general, uncertainty is the situation in which a given event may have different consequences and there is no information about the probabil-
ities of those consequences. Therefore, uncertainty is a very important notion for the DM process. It is not easy to know the probabilities of
events happening in real-life. Therefore, the DM process occurs under uncertainty. Fuzzy logic theory [1] proposes a strong logical inference
structure in the face of uncertain and imprecise knowledge. Fuzzy logic theory gives computers the ability to process people’s linguistic data
and work using people’s experiences. While gaining this ability, it uses symbolic expressions instead of numerical expressions. These symbolic
expressions are called fuzzy sets(FS). It is understood that the elements of fuzzy sets are decision variables containing probability states. Instead
of probability values of possibilities, fuzzy sets arise by assigning membership degrees to each of them objectively.

In an FS F , the degree of belonging and the degree of not belonging to a set, respectively, are expressed as ζF and 1− ζF . Hence
ζF + 1− ζF = 1. While it was thought that FS could explain all the uncertainties when it first emerged, it was later understood that it
was insufficient for some real-world problems. The new set developed by Atanassov [2], called intuitionistic fuzzy set(IFS), was a solution for
problems where FS fell short. IFS consisted of non-membership degree(ND) together with membership degree(MD) and satisfies the condition
MD +ND = 1. Yager [3] defined the Pythagorean fuzzy set (PFS) as a more general and comprehensive set than IFS. In PFS, the condition
MD2 +ND2 = 1 is satisfied. There is an extensive diversity of studies on FS, IFS, and PFS such as [4]-[18].

Yager [19] introduced the q-step orthopair fuzzy set. The basic rule in this set theory is that the sum of MD with ND should not be greater
than 1. Based on this idea, Senapati & Yager [20] introduced the Fermatean fuzzy set(FFS) and examined its basic features. In the FFS, the MD
and ND fulfill 0 ≤ m3

A + n3
A ≤ 1. FFS, which is included in the literature as a new concept, gives better results than the IFS [2], PFS [21], [18]

in defining uncertainties. In [22], Fermatean arithmetic means, division, and subtraction which are new transactions for FFS, are defined and
some of their properties are examined. In [23], new weighted aggregated operators related to FFSs are defined. Further, the TOPSIS method
has been applied to FFS. In addition, Senapati & Yager [20], the TOPSIS method was applied to FFS. Shahzadi and Akram [24] offered a
new decision support algorithm concerning the FFSS and defined the new aggregated operators. Garg et al. [25] new FFS type aggregated
operators have been defined. In a study by Donghai et al [26], the notion of Fermatean fuzzy linguistic term sets is offered. Operations, score,
and accuracy functions belonging to these sets were given. In [27], a new similarity measure related to Fermatean fuzzy linguistic term sets is
constructed.
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In a real decision-making environment, affected by the preferences and thinking of DMs, some evaluation information cannot be effectively
expressed only with numerical values. On the basis of this, Zadeh proposed linguistic variables (LVs). The LVs can express personal prefer-
ences in vague language terms and use qualitative variables to describe the uncertainty of decision information. After the method was proposed,
scholars combined the LVs with various FSs and used them in multi-attribute decision-making (MADM). At the same time, to effectively solve
some practical problems, scholars have proposed a large number of methods such as TOPSIS, TODIM, VIKOR, and so forth and applied them
in the fuzzy decision-making environment.

Xian et al constructed the intervalâĂŘvalued Pythagorean fuzzy language principal component analysis (IVPFLâĂŘPCA) model to reduce
the dimensions of the DMs and attribute variables, respectively. However, the IVPFLâĂŘPCA model ignored the nonlinear relationship of the
data, and the principal component analysis (PCA) method often produced undesirable results when dealing with nonlinear problems. For non-
linear data problems, Vapnik proposed the kernel space theory and used a suitable kernel function as a non-linear mapping. Then nonseparable
data are non-linearly mapped to a highâĂŘdimensional feature space to convert into linearly solvable data. With the development of this theory,
scholars have developed a PCA method to solve nonlinear data, called the kernel principal component analysis (KPCA) method. This method
combined the nonlinear kernel function with PCA, performed linear PCA on the data in the high-dimensional feature space of the mapping,
and selected the principal components (PCs) of the feature space for data dimensionality reduction.

In this presentation,considering the decision data may have a nonlinear relationship, we want to reduce the dimensionality in some ways
before making an effective decision. Based on these analyses and the advantages of IVFFLSs, we first use IVFFLSs to describe the deci-
sionâĂŘmaking information more reasonably. Then for highâĂŘdimensional decision data, we newly define a distance measure between
IVFFLS (intervalâĂŘvalued Fermatean fuzzy linguistic weighted Euclidean distance [IVFFLWD]) to construct the IVFFLâĂŘKPCA model.
Based on this model, we will get the decision data after dimensionality reduction and reasonable weight vectors of the attribute and DMs by
cumulative contribution rate (CCR). Finally, the optimal decisionâĂŘmaking plan is selected according to the TOPSIS evaluation method. In
summary, an IVFFLâĂŘKPCA model based on the TOPSIS method is proposed in this paper for solving the biomaterial selection problem in
the highâĂŘdimensional IVFFL environment.

2 Preliminaries

Now, some fundamental information that will be used in the study will be given.

Definition 1. Let S : {si : i = 0, 1, · · · , g} be a linguistic term set with continuous finite subsets, where g + 1 is an odd number, and si ∈ S
is the possible value of a language variable. Let si, sj be any two language term sets in S, satisfying the following properties:

i. if i > j, then si > sj ,
ii. the negation operator: neg(si) = si, j = g − 1.

Definition 2. For X = {x1, x2, · · · , xn}, if

S = {(x, ζS(x), ηS(x)) : x ∈ X}

satisfies the following conditions, then the set S is called FFS:

ρS , τS ∈ [0, 1], 0 ≤ ζ3
S + η3

S ≤ 1.

θS = (1− η3
S + ζ3

S)1/3 shows the hesitation degree.

Definition 3. Let X = {x1, x2, · · · , xn} be a non-empty finite set of the universe, the S is a continuous set of language term set, then the
IVFFLS is defined as

Ā = {
(
x, (sθ(x), (ζ̄Ā(x), η̄Ā(x)))

)
: x ∈ X},

where sθ(x) ∈ S, ζ̄Ā(x) = [ζLĀ(x), ζUĀ (x)], η̄Ā(x) = [ηLĀ(x), ηUĀ(x)], respectively, represent the degree of interval-valued membership and
interval-valued non-membership of the element x ∈ X for the interval-valued Fermatean fuzzy language variables (IVFFLVs). Then, it satisfied
the following conditions:

i. ζ̄Ā(x) ⊆ [0, 1], η̄Ā(x) ⊆ [0, 1],
ii. (ζUĀ (x))3 + (ηUĀ(x))3 ≤ 1, for all x ∈ X .

The hesitancy degree of each element x ∈ X hĀ(x) =

(
3

√(
1− (ζU

Ā
(x))3 − (ηU

Ā
(x))3

)
, 3

√(
1− (ζL

Ā
(x))3 − (ηL

Ā
(x))3

))
.

Given a set of data (with nonzero mean) xk for all k = 1, 2, ,m, where xk ∈ RN. The KPCA method first maps the original data to the
feature space F through a nonlinear mapping Φ : RN → F , where F is composed of Φ(x1),Φ(x2), · · · ,Φ(xm). Then KPCA is to discuss
the covariance matrix of the mapped data set Φ(xi) (i = 1, 2, ,m) in F .

Let XT = [Φ(x1),Φ(x2), · · · ,Φ(xm)]. We suppose Φ(xi) is a given set of data with non-zero mean, then the covariance matrix C on the
linear feature space F can be expressed as follows:
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C =
1

m

m∑
i=1

(
Φ(xi)− Φ̄

) (
Φ(xi)− Φ̄

)T
, (1)

Φ̄ =
Φ(x1) + Φ(x2) + · · ·+ Φ(xm)

m
=

1

m
XT 1x×1. (2)

Since

m∑
i=1

Φ(xi)Φ̄
T = mΦ̄Φ̄T ,

m∑
i=1

Φ(xi)Φ̄
T = XTX.

Thus, Equation (1) can be split and written as

C =
1

m

m∑
i=1

(
Φ(xi)− Φ̄

) (
Φ(xi)− Φ̄

)T
=

1

m
XTX− Φ(xi)Φ̄

T . (3)

From Equation (2), we can obtain

Φ̄Φ̄T =
1

m
XT 1m×1.

(
1

m
XT 1m×1

)T
=

1

m2
XT .1m×m.X.

Since XT .X in Equation (3) is unkonwn, the eigenvectors and eigenvalues of the covariance matrix C cannot be calculated. Now, let us
defined m×m square kernel matrix K by κ(xi, xj) = Φ(xi)

T .Φ(xj) such that

K = XXT =

κ(x1, x1) · · · κ(x1, xm)
...

. . .
...

κ(xm, x1) · · · κ(xm, xm)


Obviously, the kernel matrix K is a symmetric matrix and can be calculated. So we can arrive at(

1

m
K − 1

m21m×mK

)
α = λα→

(
1

m
I− 1

m21m×m

)
Kα = λα (4)

Among them, λ and α in Equation (4) are obtainable. Multiply both sides of Equation (4) by XT at the same time, we have

XT
(

1

m
XXT − 1

m21m×mXXT

)
α = λXTα→

(
1

m
XXT − 1

m21m×m
XXT

)
XTα = λ(XTα) (5)

then, XTα and λ are the eigenvectors and eigenvalues of the covariance matrix C, which can solve from Equation (5). Besides, we also need
to normalize the XTα, that is ξ = (XTα)/

√
αTKα. Assuming that the first pmax eigenvalues are λ1, λ2, · · · , λp, the CCR can be calculated

according to the following equation:

CCR = (

p∑
i=1

λi)/(
m∑
i=1

λi).

If the CCR exceeds 80%, we can retain the first p eigenvectors of the covariance matrix C, there are V = [ξ1, ξ2, · · · , ξp] = XTU, where

U = [(α1/
√
αT1 Kα1), (α2/

√
αT2 Kα2), · · · , (αp/

√
αTpKαp)] is known.

For PC y extraction, we can compute projections of the data Φ(x) onto the eigenvectors V in F according to

y = VT (Φ(x)− Φ̄) = UT



κ(x1, x)
κ(x2, x)

...
κ(xm, x)

− 1

m
K.1m×m

 .

In addition, we can also get more detailed results:
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Y =


yT1
yT2
...

yTm

 =

(
K − 1

m
1m×mK

)
U. (6)

3 Interval Valued Fermatean Fuzzy Language âĂŘ Kernel Principal Component Analysis Model

In the IVFFL-KPCA model, the kernel function used in this presentation is the commonly Gaussian radial kernel function

K(x1, x2) = exp

(
−|x1 − x2|2

2σ2

)
.

The Euclidean distance between IVFFLSs will be used in this kernel. Therefore, this presentation first defined the interval-valued Fermatean
fuzzy linguistic Euclidean and weighted Euclidean distance measures (IVFFLD, IVFFLWD).

3.1 New linguistic distance measure

Definition 4. Let P̂ = {P̂1, P̂2, · · · , P̂n} and Q̂ = {Q̂1, Q̂2, · · · , Q̂n} be any two IVFFLSs, and S is a linguistic term set, where P̂j =

(sθ(P̂j), [ζ
L
P̂j
, ζU
P̂j

], [ηL
P̂j
, ηU
P̂j

]), Q̂j = (sθ(Q̂j), [ζ
L
Q̂j
, ζU
Q̂j

], [ηL
Q̂j
, ηU
Q̂j

]) and S = {si : i ∈ [0, g]}. The IV FFLD(P̂ , Q̂) can be defined as

IV FFLD(P̂ , Q̂) =

√√√√√ 1

4ng6

n∑
j=1


∣∣∣∣∣
(
θ
P̂j
ζL
P̂j

)3

−
(
θ
Q̂j
ζL
Q̂j

)3∣∣∣∣∣
2

+

∣∣∣∣∣
(
θ
P̂j
ζU
P̂j

)3

−
(
θ
Q̂j
ζU
Q̂j

)3∣∣∣∣∣
2

+

∣∣∣∣∣
(
θ
P̂j
ηL
P̂j

)3

−
(
θ
Q̂j
ηL
Q̂j

)3∣∣∣∣∣
2

+

∣∣∣∣∣
(
θ
P̂j
ηU
P̂j

)3

−
(
θ
Q̂j
ηU
Q̂j

)3∣∣∣∣∣
2
.

Theorem 1. If P̂ , Q̂ are two IVFFLSs in X , the IV FFLD(P̂ , Q̂) has the following properties:

i. 0 ≤ IV FFLD(P̂ , Q̂) ≤ 1,
ii. IV FFLD(P̂ , Q̂) = IV FFLD(Q̂, P̂ ).

In addition, we suppose that the weight of each xj ∈ X(j = 1, 2, · · · , n) is ωj . Then the weighted Euclidean distance measure
IV FFLWD(P̂ , Q̂) is defined as

IV FFLWD(P̂ , Q̂) =

√√√√√√√√√√√√√√√√√
1

4ng6

n∑
j=1

ωj



∣∣∣∣(θP̂j (xj)ζ
L
P̂j

(xj)

)3
−
(
θ
Q̂j

(xj)ζ
L
Q̂j

(xj)

)3∣∣∣∣2
+

∣∣∣∣(θP̂j (xj)ζ
U
P̂j

(xj)

)3
−
(
θ
Q̂j

(xj)ζ
U
Q̂j

(xj)

)3∣∣∣∣2
+

∣∣∣∣(θP̂j (xj)η
L
P̂j

(xj)

)3
−
(
θ
Q̂j

(xj)η
L
Q̂j

(xj)

)3∣∣∣∣2
+

∣∣∣∣(θP̂j (xj)η
U
P̂j

(xj)

)3
−
(
θ
Q̂j

(xj)η
U
Q̂j

(xj)

)3∣∣∣∣2


.

3.2 New Model

Suppose that there is an EDM problem in the IVFFL environment. LetM = {M1,M2, · · · ,Mm} be the set ofm hip prothesis materials.K = {K1, K2, · · · , Kn} be the set ofn attributes(criteria
of biomaterials) andD = {D1, D2, · · · , Dl} be the set of l DMs.

For attributes, IV FFLKPCA:
Let R̂(k) = (r̂kij)m×n (k = 1, 2, · · · , l) denote that each DM Dk (k = 1, 2, · · · , l) gives her/his IVFFL evaluation matrices, where r̂kij = (skθij

, [ζ
L(k)
ij , ζ

U(k)
ij ], [η

L(k)
ij , η

U(k)
ij ]) is the

evaluation information of Ai with respect to Cj based on language variable. Then skθij
is the language evaluation value of Ai with respect to Cj given by the Dk based on the language term set S =

{S1, S2, · · · , SG}. The evaluation matrix R̂(k) (k = 1, 2, · · · , l) given by eachDk (k = 1, 2, · · · , l) is aggregated into a comprehensive evaluation matrix R̂ of dimensionallym× n Therefore,
all evaluation information is contained in the matrix R̂.

R̂
(k)

=


r̂k11 r̂k12 · · · r̂k1n
r̂k21 r̂k22 · · · r̂k2n
· · · · · · · · · · · ·
r̂km1 r̂km2 · · · r̂kmn

 and R̂


R̂(1)

R̂(2)

· · ·
R̂(l)

 k = 1, 2, · · · , l.

Calculated eigenvalues λC and eigenvectors α from Equation XXX, and λC is arranged from the largest to the smallest. According to Equation YYY, the first p PCs are retained, and the CCR of the
corresponding eigenvalues λC1 , λ

C
2 , · · · , λ

C
p are exceeded 80%. Then we calculated the dimensionality-reduced evaluation matrix Ṙ with dimensionality lm× p by Equation ZZZ.

Ṙ
(k)

=


ṙk11 ṙk12 · · · ṙk1n
ṙk21 ṙk22 · · · ṙk2n
· · · · · · · · · · · ·
ṙkm1 ṙkm2 · · · ṙkmn

 and Ṙ


Ṙ(1)

Ṙ(2)

· · ·
Ṙ(l)

 k = 1, 2, · · · , l.

Since the eigenvalues λC described the amount of information contained in the direction of the corresponding eigenvectors, the weight of each PC can be reasonably expressed as

ω
C
s =

λCs∑p
j=1 λ

C
j

, s = 1, 2, · · · , p,

therefore, the weight of attributes after dimensionality reduction is ωC = (ωC1 , ω
C
2 , · · · , ω

C
p ).
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For Decision-makers, IV FFLKPCA:
On the basis of the matrix Ṙ(k) = (ṙkij)m×p (k = 1, 2, · · · , l), the evaluation information given by DMs can be written as D(k) = (ṙk11, ṙ

k
12, · · · , ṙ

k
mp)T . Then, the evaluation matrix Ṙ is

converted toD = {D(1), D(2), · · · , D(l)}, where each column can be regarded as a sample of the DMs. The dimension of the matrixD ismp× l.

D = {D(1)
, D

(2)
, · · · , D(l)} =

ṙ
1
11 · · · ṙ11p · · · ṙ1m1 · · · ṙ1mp
· · · · · · · · · · · · · · · · · · · · ·
ṙl11 · · · ṙl1p · · · ṙlm1 · · · ṙlmp



In the same way, we used Equation XXX to find the eigenvalues λD and eigenvectorα
′

, and λD is arranged from large to small. By Equation YYY, the CCR is more than 80% to retain the first q PCs. Then,
we calculated the dimensionality-reduced evaluation matrix Ḋ (k = 1, 2, · · · , q; i = 1, 2, · · · ,m; j = 1, 2, · · · , p) by Equation ZZZ, and the dimension of matrix Ḋ ismq × p can be obtained after
two dimensionality reductions.

Ḋ = {Ḋ(1)
, Ḋ

(2)
, · · · , Ḋ(q)} =

ṙ111 · · · ṙ11p · · · ṙ1m1 · · · ṙ1mp
· · · · · · · · · · · · · · · · · · · · ·
ṙ
q
11 · · · ṙ

q
1p · · · ṙ

q
m1 · · · ṙqmp



R̈
(k)

=


r̈k11 r̈k12 · · · r̈k1p
r̈k21 r̈k22 · · · r̈k2p
· · · · · · · · · · · ·
r̈km1 r̈km2 · · · r̈kmp

 and R̈


R̈(1)

R̈(2)

· · ·
R̈(q)

 k = 1, 2, · · · , q.

In addition, since the eigenvalues λD represented the information content of the DMs, the weight of each PC can be expressed as

ω
D
t =

λDt∑q
k=1

λD
k

, t = 1, 2, · · · , q,

therefore, after dimensionality reduction, the weight of each Dm is ωD = (ωD1 , ω
D
2 , · · · , ω

D
q ).

4 New Model based on the TOPSIS method

4.1 New Model with the TOPSIS

Let the matrix R̈(k) = (r̈kij)m×p (k = 1, 2, · · · , q) be the standardized evaluation matrix after two IVFFL-KPCA models as shown as Equation TTT, and the attributes weight vector is ωC =

(ωC1 , ω
C
2 , · · · , ω

C
p ), and the DMs vector is ωD = (ωD1 , ω

D
2 , · · · , ω

D
q ).

First, we calculated the weighted evaluation matrix R̈
′

= (r̈
′
ij)m×p according to the weight vector ωD = (ωD1 , ω

D
2 , · · · , ω

D
q ). The weighted evaluation information is given as below:

r̈
′
ij =

q∑
k=1

ω
D
k r̈

k
ij (i = 1, 2, · · · ,m; j = 1, 2, · · · , p).

Then, the decision steps of IVFFL-KPCA model based on the TOPSIS method are summarized as below:

Step 1: Constructing the attributes weighted evaluation matrix Z = (zij)m×p through the attribute weighted vector ωC = (ωC1 , ω
C
2 , · · · , ω

C
p ), where zij = ωCj .r

′
ij (i = 1, 2, · · · ,m; j =

1, 2, · · · , p).
Step 2: Determining the positive and negative ideal solution for each evaluation attribute:

z
+

=
{
z
+
1 , z

+
2 , · · · , z

+
p

}
z
−

=
{
z
−
1 , z
−
2 , · · · , z

−
p

}
.

Step 3: Computing the Euclidean distance measureD+
i andD−i of each emergency planZi from the ideal solutions z+ and z− , respectively.

D
+
i =

√√√√√ p∑
j=1

(
zij − z+

)3, D
−
i =

√√√√√ p∑
j=1

(
zij − z−

)3 i = 1, 2, · · · ,m.

Step 4: According to calculate distance, the relative closeness ξ(Zi) (i = 1, 2, · · · ,m) of each emergency plan is constructed as

ξ(Zi) =
D−i

D+
i +D−i

, i = 1, 2, · · · ,m.

Step 5: Ranking all ξ(Zi) (i = 1, 2, · · · ,m) and choosing the optimal alternative. For greater the ξ(Zi), the better the alternativeZi is.

Thus, according to the relative closeness ξ(Zi) (i = 1, 2, · · · ,m), we can determine the ranking order of all emergency plans and select the best implementation plan from a set of emergency plans.

4.2 Decision Steps

To solve emergency group decision-making problems, the new model with TOPSIS will be implemented as follows:

Step 1: DM Dk (k = 1, 2, · · · , l) give evaluation indicator Cj (j = 1, 2, · · · , n) of each emergency plan Ai (i = 1, 2, · · · ,m). A comprehensive evaluation matrix R̄(k) = (rkij)m×n
(k = 1, 2, · · · , l) is obtained.
Step 2: Utilize the IVFFL-KPCA (attributes) model to reduce the dimensionality of theCj in the matrix R̄. Normalize the reduced-dimensional matrix to obtain Ṙ. Moreover, the weighted vector of attributes can
be obtained as ωC = (ωC1 , ω

C
2 , · · · , ω

C
p ).

Step 3: Transform the matrix Ṙ into the matrix D. On the basis of the sample matrix D, the dimension of matrix Dk are reduced according to the IVFFL-KPCA (DMs) model, and the matrix Ḋ is obtained.
Besides, the weight vector of each DM can be obtained as ωD = (ωD1 , ω

D
2 , · · · , ω

D
q ).

Step 4: Arrange and standardize the evaluation matrix Ḋ after two dimensionality reductions,and the matrix R̈ can be obtained.
Step 5: Calculate the weighted comprehensive evaluation matrixR

′
by Equation DDD based on the weighted vector of DMs in Step 3.

Step 6: Use the TOPSIS method to select the best emergency solution.
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Table 1 Decision matrix for hip joint prosthesis material selection [28]

Materials / Criteria K1 K2 K3 K4 K5 K6 K7 K8 K9

SS316 10 7 517 350 8 8 200 8 1
SS317 9 7 630 415 10 8.5 200 8 1.1
SS321 9 7 610 410 10 8 200 7.9 1.1
SS347 9 7 650 430 10 8.4 200 8 1.2

CCA(castable) 10 9 655 425 2 10 238 8.3 3.7
CCA(wrought) 10 9 896 600 10 10 242 9.1 4
Puretitanium 8 10 550 315 7 8 110 4.5 1.7
T i− 6A1− 4V 8 10 985 490 7 8.3 124 4.4 1.9
Epoxy(70%glass) 7 7 680 200 3 7 22 2.1 3
Epoxy(63%carbon) 7 7 560 170 3 7.5 56 1.6 10
Epoxy(62%aramid) 7 7 430 130 3 7.5 29 1.4 5

Table 2 Linguistic variables for criteria and DMs

Linguistic variables FFNs
L1 [0.90, 0.20, 0.641]
L2 [0.85, 0.50, 0.638]
L3 [0.70, 0.65, 0.725]
L4 [0.40, 0.75, 0.800]
L5 [0.20, 0.90, 0.641]

Table 3 Linguistic variables for alternatives

Linguistic variables FFNs
LA1 [1.00, 0.00, 0.00]
LA2 [0.90, 0.20, 0.641]
LA3 [0.85, 0.30, 0.710]
LA4 [0.75, 0.40, 0.800]
LA5 [0.70, 0.45, 0.825]
LA6 [0.65, 0.55, 0.822]
LA7 [0.55, 0.70, 0.789]
LA8 [0.40, 0.80, 0.751]
LA9 [0.30, 0.85, 0.710]
LA10 [0.10, 0.95, 0.521]

5 Application

Material selection will be made for the femoral component of the hip joint prosthesis using the method presented in the previous section. There are different methods in the literature regarding the selection of this
biomedical material. The hip joint basically consists of two parts, the femoral head, and the acetabulum, and is an important load-bearing joint in the human body. The hip joint is formed by the insertion of the
femoral head into the socket called the acetabulum in the pelvis bone. Movements of the femoral head within the acetabulum allow the leg to make inwardoutward, anterior backward, and circular movements. Since
the main task of the hip joint is load-bearing, it is a joint that must have a sufficient range of motion and sufficient stability. Hip arthroplasty is a surgical procedure to replace or renew the damaged joint in people
whose hip joint is severely calcified (osteoarthritis) or damaged. Hip replacement is the best treatment option in cases of severe pain, limitation of movement, and shortness that prevent activities of daily living. The
use of implants with appropriate material and design features increases the success of hip prosthesis application. Today, many prostheses with different materials and design features have been developed. The design
and material properties of the selected implant should allow the prosthesis to be simple, manufacturable, inexpensive, reliable, and long-lasting. The complexity in materials choice for hip replacement prostheses is
that the design requires many distinct essential characteristics which are very difficult to devise in only one material.

The materials set as alternatives [14]

Z = {Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8, Z9, Z10, Z11, }

=

 SS 316, SS 317, SS 321, SS 347, CCA(castable),
CCA(wrought), Pure titanium, T i− 6A1− 4V, Epoxy(70% glass),

Epoxy(63% carbon), Epoxy(62% aramid)


The criteria set [14]

K = {K1, K2, K3, K4, K5, K6, K7, K8, K9}

=

{
Tissue tolerance, Corrosion resistance, Tensile strenght(MPa), Fatigue strenght(MPa),

Toughness, Wear resistance, EElastic modulus(GPa), Density(g/cm3), Cost

}

whereK1 −K6 values are max,K7, K8 are target value,K9 is cost value.

To select the best solution, 10 DMs to evaluate 11 biomaterials. The values in Table 2 consist of the linguistic terms used by DMs in relative importance rating and the criteria considered, where Very
Important(L1), Important(L2), Medium(L3), Unimportant(L4), Very Unimportant(L5). The values in Table 3 represent the linguistic variables for the relative importance rating of the alternatives, where
Extremely preferable(LA1), Very very preferable (LA2), Very preferable (LA3), Preferable (LA4), Medium preferable (LA5), Medium (LA6), Medium Un-preferable (LA7), Un-preferable (LA8), Very
Un-preferable (LA9), Very very Un-preferable (LA10).

The decision steps to select the best solution are obtained as below:

Step 1: DMs evaluate the attributes of each emergency solution using IVFFLNs and construct the decision information matrix R̄(k) = (r̄kij)11×9 (k = 1, 2, · · · , 10).

Calculate the evaluation matrix Ṙ and the converted matrixD (ωD = (0.4471, 0.3511, 0.2107)). Further, the DMs’ weighted matrixR
′

is obtained. That is, the matrix R̄ is reduced to the matrixR
′

,
and the best solution is selected using the TOPSI method. If ωC = (0.7642, 0.1397, 0.0852), we can get the attributes weighted matrixZ.

Z =


−0.3112 −0.0533 −0.0326
−0.1881 −0.0849 −0.0381
−0.0552 −0.0506 0.1189
−0.0073 −0.0017 −0.0517
0.4642 0.2154 0.0335
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Table 4 Eigenvalues and CCRs of the attribute PCs

Y1 Y2 Y3

Eigenvalues 0.000526005 0.000019873 0.000057401
CCR 0.514660059 0.50672662 0.618291415

The positive ideal solutionZ+ and negative ideal solutionZ− of the matrixZ are obtained asZ+ = {0.3662, 0.3052, 0.1167} andZ− = {−0.2909,−0.1047,−0.1167}.

Calculate the normalized Euclidean distanceD(Zi, Z
+) andD(Zi, Z

−) with each Zi . Furthermore, compute the relative closeness ξ(Zi). The larger the value of the relative closeness ξ(Zi) is from
the positive ideal planZ+ . Thus, the ranking of biomaterials isZ11 > Z10Z1 > Z4 > Z3 > Z2 > Z7 > Z6 > Z5 > Z9 > Z8 .

6 Conclusion

In this study, we have been given linguistic term sets, IVFFLSs, KPCA and TOPSIS methods. Then, we studied EGDM method, where the evaluation information of DMs was expressed as IVFFLNs. To solve the
EDM problem of incomplete information, high-dimensional data, and non-linear separability between information, this paper proposed an IVFFL-KPCA model based on the TOPSIS method.
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Abstract: In this presentation, the definition of fermatean fuzzy soft sets and some its properties are introduced. The fermatean
fuzzy soft sets are a parameterized family of fermatean fuzzy soft sets. Fermatean fuzzy soft sets are a generalization of soft sets.
Particularly, the basic properties and operations of fermatean soft sets are given. The notion of entropy measure is defined for the
fermatean fuzzy soft sets. Further, we propose an algorithm to solve the decision-making problem. Finally, an illustrative example
is discussed to prove that they can be effectively used to solve problems with uncertainties.

Keywords: Decision-making, entropy, fermatean fuzzy set, fermatean fuzzy soft set, soft set.

1 Introduction

Uncertainty is a crucial concept for decision-making problems. It is not easy to make precise decisions in life since each information contains
vagueness, uncertainty, imprecision. Fuzzy Set(FS) Theory, Zadeh’s [1] pioneering work, proposed a membership function to solve problems
such as vagueness, uncertainty, imprecision, and this function took value in the range of [0,1]. FS Theory had solved many problems in prac-
tice, but there was no membership function in real life, which only includes acceptances. Rejection is as important as acceptance in real life.
Atanassov [2] clarified this problem and posed the Intuitionistic Fuzzy Set(IFS) Theory using the membership function as well as the non-
membership function. In IFS, the sum of membership and non-membership grades is 1. This condition is also a limitation for solutions of
vagueness, uncertainty, imprecision. Yager [3] has presented a solution to this situation and suggested Pythagorean Fuzzy Sets(PFS). PFS is
more comprehensive than IFS because it uses the condition that the sum of the squares of membership and non-membership grades is equal to
or less than 1. PFS is also a particular case of the Neutrosophic Set initiated by Smarandache [4]. There are many studies in the literature on FS,
IFS, and PFS theories [5]-[29]. Despite all the possible solutions, these theories have limitations. How to set the membership function in each
particular object and the deficiencies in considering the parametrization tool can be given as examples of these limitations. These limitations
handicap decision-makers from making a correct decision during the analysis.

A new method, called Soft Set, was proposed by Molodtsov [30], in which the preferences for each alternative were given in distinct param-
eters, and thus a solution was found for the limitations expressed. Immediately after the occurrence of SS theory, Fuzzy Soft Sets [19] and
Intuitionistic Fuzzy Soft Set(IFSS) [20] were defined and their various properties were studied [31], [32]. Pythagorean Fuzzy Soft Set(PFSS)
is defined by Peng et al [21]. PFSS is a natural generalization of IFSS and is a parameterized family of PFSs. In [33]-[37], the main features
of PFSS were examined and applied to various areas such as medical diagnosis, selection of a team of workers for business, stock exchange
investment problem. The benefit of these extended theories is that they are capable of simplifying the characterization of real-life cases with
the help of their parameterized feature.

Entropy is an important concepts in generalized set theory. The entropy quantifies the degree of vagueness and Zadeh [38] introduced fuzzy
entropy. The entropy of a system directly proportional to the irregularity. Thus one can identify that which one is more stable if the entropy
of each system is given. The axiomatic definition of entropy is proposed by De Luca and Termini [39]. The concept of entropy is particu-
larly notable as it is applied across physics, information theory, mathematics, and many other branches of science and engineering. Originally
defined by Rudolph Clausius in 1865, entropy, is a measure in thermodynamics of the unavailability of a system’s energy to do work, also a
measure of disorder;the higher the entropy the greater the disorder.The concept of information entropy was first introduced by Shannon [40]. In
information theory, entropy is a measure of the uncertainty associated with a random variable. Shannon’s entropy represents an absolute limit
on the best possible lossless compression of any communication, under certain constraints: treating messages to be encoded as a sequence of
independent and identically-distributed random variables, Shannon’s source coding theorem shows that, in the limit, the average length of the
shortest possible representation to encode the messages in a given alphabet is their entropy divided by the logarithm of the number of symbols
in the target alphabet. According to information entropy, the number and quality of the information at hand is the most important determinant
of the accuracy and reliability of the decision to be made in a decision-making problem [41].

The Fermatean fuzzy set(ffs)was initiated by Senepati and Yager [42]. In the (ffs), the membership and non-membership degrees fulfill the
condition 0 ≤ m3

A + n3
A ≤ 1. (ffs), which is included in the literature as a new concept, gives better results than the intuitionistic fuzzy set(ifs)

and Pythagorean fuzzy set(Pfs) in defining uncertainties. For example 0.9 + 0.6 > 1, 0.92 + 0.62 > 1 and 0.93 + 0.63 < 1. Some properties,
score and accuracy functions of (ffs)s are given in [42]. Further, the TOPSIS method, which is frequently used in Multi Criteria Decision
Making(MCDM) problems, has been applied to (ffs). In addition, Senepathy and Yager [42], the TOPSIS method, which is frequently used
in MCDM problems, has been applied to (ffs). As a continuation of this work, Senapati ve Yager [43] investigated several new operations,
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subtraction, division, and Fermatean arithmetic mean operations over (ffs)s and employed Fermatean fuzzy weighted product model to solve
MCDM problems. In [44], new aggregation operators belonging to (ffs) have been defined, and properties related to these operators have been
examined. In study of Donghai and et al [45], the concept of Fermatean fuzzy linguistic term sets(fflt) is offered. Operations, score, and accu-
racy functions belonging to these sets were given. In [46], a new similarity measure related to (fflt)s is constructed. The new measurement is a
combination of Euclidean distance measure and cosine similarity measure.

In this paper, we suggested the concept of Fermatean fuzzy soft set(ffss). In Section 3, the fundamental properties of (ffss) such as fermatean
fuzzy soft subset, "AND","OR" operators, union, interseciton and complement of (ffss) is studied. Section 4 devoted the entropy of FFSS. In
Section 5, for decision-making problems, new algorithm is established and illustrative example is given.

2 Preliminaries

Let Σ be set of parameters and Υ be the universal set. A pair (Φ,Σ) is called a soft set(ss) over Υ, where Φ is a mapping Φ : Σ→ Pss(Υ). In
other word, the soft set is a parameterized family of subsets of the set Υ [30].

Let (Φ, A) and (Ψ, B) be two soft sets over a common universe Υ. Then,

i. (Φ, A) ⊆ (Ψ, B) if A ⊆ B and Φ(ε) ⊆ Ψ(ε), ∀ε ∈ A.
ii. If (Φ, A)⊆̃(Ψ, B) and ˜(Ψ, B) ⊆(Φ, A), then it is said to be soft equal.
iii. Complement: (Φ, A)t = (Φt, A), where Φt : A→ P (Υ) is a mapping given by Φt(ε) = {Φ(ε)}t = Υ− Φ(ε), ∀ε ∈ A.
iv. The union of two soft sets (Φ, A) and (Ψ, B) over the common universe Υ is a soft set (Ω, C), denoted by (Φ, A)∪̃(Ψ, B) = (Ω, C),
where C = A ∪B and for each ε ∈ C,

Ω(ε) =

 Φ(ε) , e ∈ A−B
Ψ(ε) , e ∈ B −A

Φ(ε) ∪Ψ(ε) , ε ∈ A ∩B.

v. The intersection of two soft sets (Φ, A) and (Ψ, B) over the common universe Υ is a soft set (Ω, C), denoted by (Φ, A)∩̃(Ψ, B) = (Υ, C),
where C = A ∪B, and Υ(ε) = Φ(ε) ∩Ψ(ε), ∀ε ∈ C [31].

Let Pfss(Υ) be a set of all fuzzy subset of Υ. A pair (Φ, A) is called a fuzzy soft set(fss) over Υ, if Φ : A→ Pfss(Υ) [19].

Let Pifs(Υ) denotes the intuitionistic fuzzy power set of Υ and A ⊂ Σ. A pair (Φ, A) is called an intuitionistic fuzzy soft set(ifss) over Υ,
where Φ is a mapping given by, Φ : A→ Pifs(Υ) [20].

An (ifss) is a parameterized family of intuitionistic fuzzy subsets of Υ. A fuzzy soft set is a special case of an ifss, because when all the
intuitionistic fuzzy subsets of Υ degenerate into fuzzy soft sets, the corresponding (ifss)s degenerate into (fss)s.

A (Pfs) in Υ is given by, P = {< a,mp(a), np(a) >: a ∈ Υ} where, mp : Υ→ [0, 1] denotes the degree of membership and np : Υ→
[0, 1] denotes the degree of nonmembership of the element a ∈ Υ to the set P with the condition that 0 ≤ m2

p(a) + n2
p(a) ≤ 1. The degree of

indeterminacy is denoted by πp(a) =
√

1− (m2
p(a) + n2

p(a)) [26].

The Pythagorean fuzzy soft sets(Pfss) is defind as the pair (Φ,Σ) where, Φ : Σ→ PPfs(Υ) and PPfs(Υ) is the set of all Pythagorean
fuzzy subsets of Υ.

The (ffs) Φ in Υ is an object having the form Φ = {< a,mΦ(a), nΦ(a) >: a ∈ Υ}, wheremp : Υ→ [0, 1] and np : Υ→ [0, 1], including
the condition 0 ≤ m3

Φ(a) + n3
Φ(a) ≤ 1 [42].

For any ffs Φ and a ∈ Υ, πp(a) = 3

√
1− (m3

p(a) + n3
p(a)) is identified as the degree of indeterminacy of a to Φ.

Theorem 1. [42] The set of Fermatean membership grades is larger than the set of Pythagorean membership grades and intuitionistic
membership grades.

3 Fermatean Fuzzy Soft Sets

Definition 1. Let Υ be a set, Σ be a parameter set. Denote Pffs(Υ) the whole of all (ffs)s on Υ. Let A ⊆ Σ. (Φ, A) is fermatean fuzzy soft
set (ffss) over Υ, where Φ : A→ Pffs(Υ).

A (ffs) on Υ is a family of parameters formed by some fermatean fuzzy subsets on Υ. For any parameter ε ∈ A, Φ(ε) is a (ffss) associated
with ε of Υ. Then, it is called fermatean fuzzy value set of parameter ε. Φ(ε) can be written as an (ffs) such that

Φ(ε) = {< a,mΦ(ε)(a), nΦ(ε)(a) >: a ∈ Υ},

wheremΦ(ε)(a) and nΦ(ε)(a) are the membership and non-membership functions, respectively. The condition (mΦ(ε)(a))3 + (nΦ(ε)(a))3 ≤
1 holds. Then, nΦ(ε)(a) = 3

√
1− (mΦ(ε)(a))3 for all a.
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Example 1. Let Υ = {a1 = HepatitisC, a2 = influenzaA(H1N1), a3 = norovirus} represent the infectious diseases and A ⊂ Σ =
{p1 = headache, p2 = temperature, p3 = nausea} is a parameter set. Then the (ffss) Φ(A) as follows (Table 1):

Φ(p1) = {< a1, 0.6, 0.9) >,< a2, 0.8, 0.7) >,< a3, 0.8, 0.9) >}
Φ(p2) = {< a1, 0.7, 0.9) >,< a2, 0.9, 0.5) >,< a3, 0.8, 0.8) >}
Φ(p3) = {< a1, 0.8, 0.7) >,< a2, 0.8, 0.9) >,< a3, 0.9, 0.6) >}

Table 1 Φ(A)

Υ/Σ p1 p2 p3

a1 (0.6, 0.9) (0.8, 0.7) (0.8, 0.9)
a2 (0.7, 0.9) (0.9, 0.5) (0.8, 0.8)
a3 (0.8, 0.7) (0.8, 0.9) (0.9, 0.6)

Definition 2. Let (Φ, A), (Ψ, B) be two (ffss)s, for A,B ⊂ Σ. (Φ, A) is called a (ffs) subset of (Ψ, B) if

1. A ⊆ B,
2. For all ε ∈ A, (Φ, A) is fermatean fuzzy subset of (Ψ, B), that is, for all a ∈ Υ and ε ∈ A, mA(x) ≥ mB(x) and nA(x) ≤ nB(x).

fermatean fuzzy soft subset is denoted by (Ψ, B)⊂̂(Φ, A).

Example 2. Choose B = {p1 = headache}. Then, (ffss) (Ψ, B) is defined as follows:

Φ(p1) = {< a1, 0.6, 0.8 >,< a2, 0.6, 0.8) >,< a3, 0.7, 0.9) >}

Then, (Ψ, B)⊂̂(Φ, A).

Definition 3. For the (ffss)s (Φ, A) and (Ψ, B), if (ψ,B)⊂̂(Φ, A) and (Φ, A)⊂̂(Ψ, B), then (Ψ, B)=̂(Φ, A), that is, (ψ,B) and (Φ, A) are
Fermatean fuzzy soft equals.

Definition 4. Let (Φ, A) be the (ffss) on Υ. The complement of (Φ, A), denoted by (Φ, A)t, is defined by (Φ, A)t = (Φt), where Φt : A→
Pffs(Υ) is a mapping given by Φt(ε) = (Φ(ε))t for every ε ∈ A.

Since (Φt(ε))t is equal to the Φ(ε), we get ((Φ, A)t)t = (Φ, A).

Example 3. Let the (ffss) (Ψ, B) on Υ be as defined in Example 2. If

Ψ(p1) = {< a1, 0.6, 0.8) >,< a2, 0.5, 0.7) >,< a3, 0.7, 0.6) >},

then

Ψt(p1) = {< a1, 0.8, 0.6) >,< a2, 0.7, 0.5) >,< a3, 0.6, 0.7) >}.

Definition 5. For the (ffss)s (Φ, A) and (Ψ, B), (Φ, A) AND (Ψ, B) is denoted as (Φ, A) ∧ (Ψ, B) = (Φ, (A×B)), (Φ, (α, β)) = (Φ, α) ∩
(Ψ, β), ∀α, β ∈ A×B. That is, (Φ, (α, β))(a) =< a,min(mα(a),mβ(a)),max(nα(a), nβ(a)) >, for all (α, β) ∈ A×B and a ∈ Υ.

Definition 6. For the (ffss)s (Φ, A) and (Ψ, B), (Φ, A) OR (Ψ, B) is denoted as (Φ, A) ∨ (Ψ, B) = (τ, A×B), (τ, (α, β)) = (Φ, α) ∪
(ψ, β), ∀α, β ∈ A×B. That is, (τ, (α, β)) = (max(mα,mβ),min(nα, nβ)), for all (α, β) ∈ A×B and a ∈ Υ.

Example 4. Choose B = {p1, p2}. Then, (ffss) (Ψ, B) is defined as follows:

Ψ(p1) = {< a1, 0.6, 0.8) >,< a2, 0.4, 0.8) >,< a3, 0.8, 0.5) >}
Ψ(p2) = {< a1, 0.6, 0.7) >,< a2, 0.6, 0.4) >,< a3, 0.9, 0.4) >}

Then, (Ψ, B)⊂̂(Φ, A). The AND and OR operations of (Φ, A) in Examples 2, 4 and (Ψ, B) are shown in Table 2 and 3.

Theorem 2. Choose the (ffss)s (Φ, A) and (Ψ, B). Then,

• (i.) ((Φ, A) ∧ (Ψ, B))t = (Φ, A)t ∨ (Ψ, B))t

• (ii.) ((Φ, A) ∨ (Ψ, B))t = (Φ, A))t ∧ (Ψ, B))t
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Table 2 (Φ, A) ∧ (Ψ, B)

Υ/Σ (p1, p1) (p1, p2) (p2, p1) (p2, p2) (p3, p1) (p3, p2)
a1 (0.6, 0.9) (0.6, 0.9) (0.6, 0.8) (0.6, 0.7) (0.6, 0.9) (0.4, 0.9)
a2 (0.4, 0.9) (0.6, 0.9) (0.4, 0.8) (0.6, 0.5) (0.4, 0.8) (0.6, 0.8)
a3 (0.8, 0.7) (0.8, 0.7) (0.8, 0.9) (0.8, 0.9) (0.8, 0.6) (0.9, 0.6)

Table 3 (Φ, A) ∨ (Ψ, B)

Υ/Σ (p1, p1) (p1, p2) (p2, p1) (p2, p2) (p3, p1) (p3, p2)
a1 (0.6, 0.8) (0.6, 0.7) (0.8, 0.7) (0.8, 0.7) (0.8, 0.8) (0.8, 0.7)
a2 (0.7, 0.8) (0.7, 0.4) (0.9, 0.5) (0.9, 0.4) (0.8, 0.8) (0.8, 0.4)
a3 (0.8, 0.5) (0.9, 0.4) (0.8, 0.5) (0.9, 0.4) (0.9, 0.5) (0.9, 0.4)

Definition 7. Let (Φ, A) and (Ψ, B) be the (ffss)s on Υ. If C = A ∪B and ∀ε ∈ C, the union (Γ, C) of (Φ, A) and (Ψ, B) is defined as

Γ(ε) =

 Φ(ε) , ε ∈ A−B
Ψ(ε) , ε ∈ B −A

Φ(ε) ∪Ψ(ε) , ε ∈ A ∩B.

That is, ∀ε ∈ A ∩B, we have Φ(ε) ∪Ψ(ε) =< a,max(mΦ(ε)(a),mΨ(ε)(a)),min(nΦ(ε)(a), nΨ(ε)(a)) >: a ∈ Υ. This relation is denoted
by (Φ, A) ∪ (Ψ, B) = (Γ, C).

Theorem 3. The union (Γ, C) of the (ffss)s (Φ, A) and (Ψ, B) is a (ffss).

Definition 8. Let (Φ, A) and (Ψ, B) be the (ffss)s on U . If C = A ∪B and ∀ε ∈ C, the intersection (Γ, C) of (Φ, A) and (Ψ, B) is defined
as

Γ(ε) =

 Φ(ε) , ε ∈ A−B
Ψ(ε) , ε ∈ B −A

Φ(ε) ∩Ψ(ε) , ε ∈ A ∩B.

That is, ∀ε ∈ A ∩B, we have Φ(ε) ∩Ψ(ε) =< a,min(mΦ(ε)(a),mΨ(ε)(a)),max(nΦ(ε)(a), nΨ(ε)(a)) >: a ∈ Υ. This relation is denoted
by (Φ, A) ∩ (Ψ, B) = (Γ, C).

Theorem 4. The intersection (Γ, C) of the (ffss)s (Φ, A) and (Ψ, B) is a (ffss).

Theorem 5. For the (ffss)s (Φ, A), (Ψ, B) and (Γ, C),

• i. (Φ, A) ∪ (Φ, A) = (Φ, A)
• ii. (Φ, A) ∩ (Φ, A) = (Φ, A)
• iii. (Φ, A) ∪ (Ψ, B) = (Ψ, B) ∪ (Φ, A)
• iv. (Φ, A) ∩ (Ψ, B) = (Ψ, B) ∩ (Φ, A)
• v. ((Φ, A) ∪ (Ψ, B)) ∪ (Γ, C) = (Φ, A) ∪ ((Ψ, B) ∪ (Γ, C))
• vi. ((Φ, A) ∩ (Ψ, B)) ∩ (Γ, C) = (Φ, A) ∩ ((Ψ, B) ∩ (Γ, C)).

Theorem 6. For the (ffss)s (Φ, A) and (Ψ, B),

• i. ((Φ, A) ∩ (Ψ, B))t = (Φ, A)t ∪ (Ψ, B)t

• ii. ((Φ, A) ∪ (Ψ, B))t = (Φ, A))t ∩ (Ψ, B))t

Example 5. Take the infectious diseases set Υ = {a1, a2, a3, a4, a5} = {HepatitisC,Crimean− CongoHemorrhagicFever(CCHF ), influenzaA(H1N1), sandflyfever, norovirus}.
Select Σ = {p1, p2, p3, p4, p5} = {headache, temperature, nausea, vomiting, anorexia} symptom set as parameter set. Assume that
(Φ, A), the complement of (Φ, A), (Ψ, B), and (Ω, C) are four (ffss)s over Υ given byA = {p1, p2},B = {p1, p2, p4} andC = {p1, p3, p4}
defined as

Table 4 (Φ, A)

Υ/Σ p1 p2

a1 (0.64, 0.88) (0.81, 0.72)
a2 (0.73, 0.79) (0.94, 0.53)
a3 (0.85, 0.59) (0.92, 0.49)
a4 (0.83, 0.67) (0.67, 0.85)

The operations (Φ, A) ∪ (Ω, C), (Φ, A) ∩ (Ω, C), (Φ, A) ∧ (Ω, C), (Φ, A) ∨ (Ω, C) are given in Tables 8-11.
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Table 5 (Φt, A)

Υ/Σ p1 p2

a1 (0.88, 0.64) (0.72, 0.81)
a2 (0.79, 0.73) (0.53, 0.94)
a3 (0.59, 0.85) (0.49, 0.92)
a4 (0.67, 0.83) (0.85, 0.67)

Table 6 (Ψ, B)

p1 p2 p4

a1 (0.82, 0.73) (0.92, 0.57) (0.85, 0.67)
a2 (0.66, 0.78) (0.75, 0.62) (0.54, 0.91)
a3 (0.84, 0.49) (0.72, 0.39) (0.71, 0.81)
a4 (0.43, 0.87) (0.67, 0.59) (0.76, 0.37)

Table 7 (Ω, C)

p1 p3 p4

a1 (0.44, 0.95) (0.57, 0.69) (0.86, 0.59)
a2 (0.56, 0.81) (0.68, 0.69) (0.79, 0.38)
a3 (0.68, 0.56) (0.92, 0.35) (0.72, 0.65)
a4 (0.63, 0.76) (0.84, 0.37) (0.95, 0.29)

[htb!]
Table 8 (Φ, A) ∪ (Ω, C)

p1 p2 p3 p4

a1 (0.64, 0.88) (0.81, 0.72) (0.57, 0.69) (0.86, 0.59)
a2 (0.73, 0.81) (0.94, 0.53) (0.68, 0.69) (0.79, 0.38)
a3 (0.85, 0.56) (0.92, 0.49) (0.92, 0.35) (0.72, 0.65)
a4 (0.83, 0.67) (0.67, 0.85) (0.84, 0.37) (0.95, 0.29)

Table 9 (Φ, A) ∩ (Ω, C)

p1 p2 p3 p4

a1 (0.44, 0.95) (0.81, 0.72) (0.57, 0.69) (0.86, 0.59)
a2 (0.56, 0.81) (0.94, 0.53) (0.68, 0.69) (0.79, 0.38)
a3 (0.68, 0.59) (0.92, 0.49) (0.92, 0.35) (0.72, 0.65)
a4 (0.63, 0.76) (0.67, 0.85) (0.84, 0.37) (0.95, 0.29)

Table 10 (Φ, A) ∧ (Ψ, B)

(p1, p1) (p1, p2) (p1, p4) (p2, p1) (p2, p2) (p2, p4)
a1 (0.64, 0.88) (0.64, 0.88) (0.64, 0.88) (0.81, 0.73) (0.81, 0.72) (0.81, 0.72)
a2 (0.66, 0.79) (0.73, 0.79) (0.54, 0.91) (0.66, 0.78) (0.75, 0.62) (0.54, 0.91)
a3 (0.84, 0.59) (0.72, 0.59) (0.71, 0.81) (0.84, 0.49) (0.72, 0.49) (0.71, 0.81)
a4 (0.43, 0.87) (0.67, 0.67) (0.76, 0.67) (0.43, 0.87) (0.67, 0.85) (0.67, 0.85)

Table 11 (Φ, A) ∨ (Ψ, B)

(p1, p1) (p1, p2) (p1, p4) (p2, p1) (p2, p2) (p2, p4)
a1 (0.82, 0.73) (0.92, 0.57) (0.85, 0.67) (0.82, 0.72) (0.92, 0.57) (0.85, 0.67)
a2 (0.73, 0.78) (0.75, 0.62) (0.73, 0.79) (0.94, 0.53) (0.94, 0.53) (0.94, 0.53)
a3 (0.85, 0.49) (0.85, 0.39) (0.85, 0.59) (0.92, 0.49) (0.92, 0.39) (0.92, 0.49)
a4 (0.83, 0.67) (0.83, 0.59) (0.83, 0.37) (0.67, 0.85) (0.67, 0.59) (0.76, 0.37)

4 Entropy Measure

Entropy is an essential tool to measure uncertain information. If the entropy is less the uncertainty is also less thus one can quickly identify that
which one is the more stable information. (ffss) being a more generalized structure, it is able to represent an information in which other existing
structures fail. Thus introducing the measure for entropy is important in the current scenario. In this section, by introducing some definitions
and results, the expression for entropy and distance measure for (ffss)s are obtained and illustrated with examples.

Definition 9. Choose the two (ffss)s (Φ, A) and (Ψ, B). Define the relation (Φ, A) is less than or equal to (Ψ, B), denoted as (Φ, A) � (Ψ, B)
if, for all a ∈ Υ and ε ∈ Σ, mΦ(ε)(a) ≤ mΨ(ε)(a) and nΦ(ε)(a) ≤ nΨ(ε)(a).
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The following definition is about a mapping which maps every (ffss) to a fuzzy soft set. It is also shown that the collection of images of
(ffss)s with α ∈ [0, 1] and with the relation ⊆ is a totally ordered family of fuzzy soft sets.

Definition 10. For α ∈ [0, 1], the mapping fα : (ffss)(Υ)→ (fss)(Υ) is defined as fα(Φ(P )) = Φα(P ), for every (ffss) Φ(P ) with
membership value mΦ(p) and non-membership value nΦ(p) and Φα(p) = fα(Φp) and,

fα(Φp) =< a,m3
Φ(p)(a) + α.π3

Φ(p)(a), 1−m3
Φ(p)(a)− α.π3

Φ(p)(a) : a ∈ Υ > . (1)

Thus the map fα assign every (ffss)s to a fuzzy soft set. The operator fα is an extension of [47]. That is, the operator fα is assign to a (ffss)
to a fuzzy soft set, however, the operator fα given in [47] is to assign a (ffss) to a fuzzy set.

Now,we give a example related to this definition:

Example 6. Let α = 0.8, and Φ(P ) = [aij ] =

(
(0.8, 0.7) (0.7, 0.4)
(0.5, 0.8 (0.9, 0.6)

)
. Then we can compute

Φα(p1) = fα[(u1, 0.8, 0.7), (u2, 0.7, 0.4)] = {(u1, 0.628, 0.372), (u2, 0.8174, 0.1826)}
Φα(p2) = fα[(u1, 0.5, 0.8), (u2, 0.9, 0.6)] = {(u1, 0.4154, 0.5846), (u2, 0.773, 0.227)}

Thus fuzzy soft set is obtained and is represented by matrix
(

(0.628, 0.372) (0.8174, 0.1826)
(0.4154, 0.5846 (0.773, 0.227)

)
Theorem 7. For any α, β ∈ [0, 1] and p, p̄ ∈ (ffss)(Υ), the following statements are true.

• i. If α ≤ β, then fα(p) ⊂ fβ(p).
• ii. If p ⊂ p̄, then fα(p) ⊂ fα(p̄).
• iii. fα(fβ(p)) = fβ(p)

• iv. (fα(pt))t = f1−α(p).

It is understood from this theorem that the ({pα}α∈[0,1],⊆) is totally ordered family of fuzzy soft sets, for p = (Φ,Σ) ∈ (ffss)(Υ).

Definition 11. A real functionD : (ffss)(Υ)→ R+ is called a fermatean fuzzy soft entropy on (ffss)(Υ), ifE has the following properties:

i. D(p) = 0 if and only if (fss)(Υ)
ii. Let p = (Φ, D) = [aij ]m×n, D(p) = mn if and only if mΦ(ε)(a) = nΦ(ε)(a) = 0, ∀ε ∈ D, ∀a ∈ Υ.
iii. E(p) = E(pt), p ∈ (ffss)(Υ)
iv. If p � p̄, then D(p) ≥ D(p̄), where (Φ, D) = p and (Ψ, D) = p̄.

When the entropy value is minimum, ie zero, it is understood that the (Pfss) has degenerated into a (ss).

Theorem 8. Entropy of (ffss) p is maximum if and only if p = (Φ, D) = [aij ]m×n = [0]m×n i.e., mΦ(ej)(ui) = nΦ(ej)(ui) = 0, ∀ej ∈ D,
ui ∈ Υ where 0 ≤ i ≤ m and 0 ≤ j ≤ n and p ∈ (fss)(Υ).

Our goal is give an expression which allows us to create entropies for (ffss)s. It is the same as the approach to crete entropies for (fss)s, let
us take the following set given K = {(a, b) ∈ [0, 1]× [0, 1] : a3 + b3 ≤ 1} and with it let us construct ΘK : K → [0, 1], which satisfies the
following conditions:

i. ΘK(a, b) = 1 if and only if (a, b) = (0, 1) or (a, b) = (1, 0)
ii. ΘK(a, b) = 0 if and only if a = b = 0
iii. ΘK(a, b) = ΘK(b, a)

iv. If a ≤ a
′

and b ≤ b
′

then ΘK(a, b) ≤ ΘK(a
′
, bΣ

′
).

Theorem 9. LetD : Pffss(Υ)→ R+ and p = (Φ, D) = [aij ]m×n ∈ Pffss(Υ). IfD(p) =
∑n
j=1

∑m
i=1[1− (ΘK(mΦ(εj)(ui), nΦ(εj)(ui)))]

where ΘK satisfies the conditions (i)-(iv) given above then D is a (ffss) entropy.

Example 7. D(p) =
∑n
j=1

∑m
i=1[1− (m4

(Φ,A), n
4
Φ,A))]. To verify that above expression is an entropy of (ffss)s it is enough to verify that

m4
(Φ,A), n

4
Φ,A) satisfy the conditions of ΘK . ΘK(a, b) = m4

(Φ,A), n
4
Φ,A) is a function fromK = {(m(Φ,A), n(Φ,A)) ∈ [0, 1]× [0, 1] : a3 +

b3 ≤ 1} to [0, 1]. Also m4
(Φ,A), n

4
Φ,A) = 1 if and only if m(Φ,A) = 1, nΦ,A) = 0 or m(Φ,A) = 0, nΦ,A) = 1 in the domain K.

Definition 12. Let Φ,Φ
′

: [0, 1]→ [0, 1] such that if a3 + b3 ≤ 1, then Φ(a3) + Φ
′
(b3) ≤ 1 with a, b ∈ [0, 1]. Define DΦ,Φ′ function of the

(ffss) p = (Φ, D) = [aij ]m×n to R+ as,

DΦ,Φ′ = mn−
n∑
j=1

m∑
i=1

Φ[mΦ(εj)(ui)] + Φ
′
[nΦ(εj)(ui)] (2)
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Obviously 0 ≤ DΦ,Φ′ (p) ≤ mn and ∀p = [aij ]m×n belonging to Pffss(Υ).

Theorem 10. If Φ : [0, 1]→ [0, 1] satisfies,

i. Φ is increasing
ii. Φ(a) = 0 if and only if a = 0
iii. Φ(a) + Φ(b) = 1 if and only if (a, b) = (0, 1) or (a, b) = (1, 0)

Then Φ(x) + Φ(y) satisfies the conditions (i)-(iv) of the ΘK function defined previously.

5 Decision Making Application

Let Υ = {a1, a2, · · · , am} be the universal set under consideration and Σ = {ε1, ε2, · · · , εn} be the parameter set which consists some qual-
ities of universal set. The algorithm given below explains how to solve the decision making problem using the expression for entropy.

Algortihm:

Step 1: Input each of the (ffss)s p1, p2, · · · pk

Step 2: Compute entropy of each (ffss)s using the expression

D(p) =

n∑
j=1

m∑
i=1

[1− (m3
Φ(εj)(ai) + n3

Φ(εj)(ai))].

Step 3: Find pr such that D(pr) = mini=1,2,··· ,kD(pi).

Step 4: Optimal decision is to select pr obtained from Step 3.

Step 5: If more than one optimal solution is obtained, any one of them may be chosen.

Example 8. Consider the infectious diseases set

Υ = {a1, a2, a3} = {HepatitisC, influenzaA(H1N1), norovirus}.

Let’s take the Σ = {p1, p2, p3} = {headache, temperature, nausea} set as the parameter set. Then,

Step 1: Construct the (ffss)s (Φ, A), (Ψ, A), (Ω, A) as follows:

Φ(p1) = {(a1, (0.75, 0.58)), (a2, (0.98, 0.15)), (a3, (0.47, 0.83))}
Φ(p2) = {(a1, (0.82, 0.66)), (a2, (0.59, 0.51)), (a3, (0.26, 0.95))}
Φ(p3) = {(a1, (0.54, 0.79)), (a2, (0.73, 0.55)), (a3, (0.87, 0.51))}

Ψ(p1) = {(a1, (0.63, 0.87)), (a2, (0.80, 0.72)), (a3, (0.56, 0.68))}
Ψ(p2) = {(a1, (0.72, 0.80)), (a2, (0.51, 0.92)), (a3, (0.67, 0.71))}
Ψ(p3) = {(a1, (0.82, 0.53)), (a2, (0.88, 0.45)), (a3, (0.73, 0.66))}

Ω(p1) = {(a1, (0.42, 0.93)), (a2, (0.56, 0.70)), (a3, (0.88, 0.62))}
Ω(p2) = {(a1, (0.67, 0.79)), (a2, (0.77, 0.64)), (a3, (0.76, 0.39))}
Ω(p3) = {(a1, (0.68, 0.52)), (a2, (0.91, 0.36)), (a3, (0.74, 0.67))}

Step 2: Calculate the entropies of (Φ, A), (Ψ, A), (Ω, A):

D(Φ, A) =

n∑
j=1

m∑
i=1

[1− (m4
Φ(εj)(ai) + n4

Φ(εj)(ai))] = 4.60312528

D(Ψ, A) = 3.96972281

D(Ω, A) = 4.17700393

Step 3: Find the (ffss) which has the minimum value of entropy, which is (Ψ, A).

Step 4: Optimal decision is to select (Ψ, A).
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Step 5: Since there is only one optimal decision,

Comparative Studies:

To compare the proposed entropy measure for (ffss)s, the (Pfs) entrpoy given in [33] is taken.

Example 9. Take the (ffss)s Φ1,Φ2,Φ3 in the feature space A = {a1, a2, a3} as follows:

Φ1 = {p1 = (a1, 0.3, 0.2), (a2, 0.6, 0.0), (a3, 0.5, 0.4), p2 = (a1, 0.6, 0.3), (a2, 0.7, 0.2), (a3, 0.4, 0.3), p3 = (a1, 0.8, 0.1), (a2, 0.8, 0.1), (a3, 0.6, 0.1)}
Φ2 = {p1 = (a1, 0.6, 0.2), (a2, 0.8, 0.1), (a3, 0.8, 0.1), p2 = (a1, 0.5, 0.5), (a2, 0.7, 0.2), (a3, 0.5, 0.4), p3 = (a1, 0.7, 0.1), (a2, 0.6, 0.3), (a3, 0.6, 0.3)}
Φ3 = {p1 = (a1, 0.5, 0.4), (a2, 0.4, 0.1), (a3, 0.6, 0.2), p2 = (a1, 0.6, 0.2), (a2, 0.7, 0.1), (a3, 0.8, 0.1), p3 = (a1, 0.9, 0.0), (a2, 0.5, 0.1), (a3, 0.6, 0.3)}

The entropy values of (Pfss)s are obtained as DPfss(Φ1) = 6.63, DPfss(Φ2) = 6.13, DPfss(Φ3) = 6.34 [33]. The entropy values sug-
gested in this study were measured as Dffss(Φ1) = 7.37, Dffss(Φ2) = 7.08, Dffss(Φ3) = 7.11. Then corresponding DPfss and Dffss,
we get Φ2 has minimum entropy and Φ1 has maximum entropy. So it can be concluded that proposed equations for entropy are consistent.

Table 12 Comparison of entropies for (Pfss) and (ffss)

DPfss Dffss
Φ1 6.63 7.37
Φ2 6.13 7.08
Φ3 6.34 7.11

6 Conclusion

The aim of this study is to define (ffss)s and to give an entropy measure. Firstly the concept of (ffss) is defined. Later, various operations
and properties of (ffss) are discussed. The (ffss)s are a generalization of the concept of fuzzy soft sets. Also, the entropy measure of (ffss)
is introduced. We can easily say that ffss is more sensible and more accurate than existing other soft sets models. Then as an application,
decision-making problem on (ffss) is proposed. (Pfs) entropy was compared with (ffs) entropy and suggested entropy was found to be consistent.

7 References
1 L. A. Zadeh, Fuzzy sets, Inf. Comp. 8 (1965), 338–353.
2 K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986, 87–96.
3 R. R. Yager, Pythagorean fuzzy subsets, In: Proc Joint IFSA World Congress and NAFIPS Annual Meeting, Edmonton, Canada 57âĂŞ-61, (2013).
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Abstract: It is a well-known fact that the representation of the Jost solution and analiticy regions of the Jost function strictly
depends on the transformation choosen for eigenparameter. Based on this ideas and using the results of Naimark, in this study,
we examine the spectral properties of the non-selfadjoint difference operator L generated in the Hilbert space l2 (N) by the Sturm-
Liouville type difference operator and a general boundary condition. In particular, we adopt and generalize the recent results to
the hyperbolic eigenparameter dependent case. Hence, we determine the eigenvalues and spectral singularities of the operator.

Keywords: Eigenvalues, Discrete equation, Spectral analysis, Sturm-Liouville equations.
AMS Mathematics Subject Classification [2010]: 47A10, 47A75

1 Introduction

The spectral theory of differential and discrete operators is very vital in the modern analysis, and there has been a lot published about it. It was
soon supplemented by close connections to fundamental quantum physics developments. The spectrum of self-adjoint operators already has
been carefully examined [1–3]. As new spectral features appeared, further spectral sets were generated. Pre-1980 spectral theory of self-adjoint
operators on separable Hilbert spaces, for example, defined spectral sets emerging from natural spectral decompositions on the Hilbert space
such as the discrete spectrum, σdisc, essential spectrum, σess, singular-continuous spectrum, σsc, etc. The appearance of spectral singularities
in the continuous spectrum for the non-selfadjoint Sturm-Liouville operator was first discovered by Naimark. Spectral singularities are described
as points embedded in a continuous spectrum that are the kernel’s poles but not the eigenvalues [4, 5]. Physical applications of spectral
singularities have been investigated in recent years [6, 7].

The aforementioned and other discoveries piqued people’s interest in spectral theory of differential and discrete operators with spectral
singularities. The reader is encouraged to the papers [8–21] and respective references for more details.

In this paper, the spectral properties of the operator L generated in l2 (N) by the discrete Sturm-Liouville type equations

an−1yn−1 + bnyn + anyn+1 = λyn, n ∈ N = {1, 2, ...} , (1.1)

and a general boundary condition
∞∑
n=0

knyn = 0, (1.2)

where {an}∞n=1, {bn}∞n=1 and {kn}∞n=1 are complex sequences such that a0 = 1, k0 6= 0, {kn}∞n=1 ∈ l2 (N) were taken into consideration.
Spectral singularities and the spectrum of discrete Sturm-Liouville type operator under the general boundary condition for the trigonometric
eigenparameter case has been considered in [17] . Spectral singularities of the discrete Dirac and discrete Klein-Gordon operators under the
general boundary condition has been studied for trigonometric eigenparameter case, too in [18, 19].

Concerning the non-selfadjoint discrete boundary value problems, let us mention some different approaches. For instance, in paper [21] , the
eigenparameter of the non-selfadjoint boundary value problem was taken as

λ = (iz)− (iz)−1 , |z| ≤ 1.

As a result of this transformation, Jost solution obtained the polynomial type representation which is analytic in unit disc. Also, in [20], the
spectrum of discrete analogue of Sturm-Liouville equation has been investigated for

λ =
1

2

(
z−1 + z

)
, |z| ≥ 1.

c© CPOST 2022 57



A non-standard representation for Jost solution has been obtained under this eigenparameter transformation, too. Therefore, it is clear that there
is a gap in the literature investigating the problem of under what transformations of the eigenparameter one can obtain solvable systems for
Sturm-Liouville type discrete equations (which is also known as infinite Jacobi matrices).

In contrast to the previous research, recent articles [15, 16] examined discrete Sturm-Liouville equations with hyperbolic eigenparameter.
The analycity region of the Jost function is relocated from the upper to the left half-plane by the hyperbolic eigenparameter. As a result of this
change, the Jost solution of the operator L has distinct analitic continuity regions.

We examine the general boundary condition of the non-selfadjoint Sturm-Liouville problem with a hyperbolic transformation of the eigenpa-
rameter, in addition to a complex valued potential. As a result, the calculations for deriving the Naimark’s and Pavlov’s criteria for the potential
necessitate a new view on trigonometric parameter cases.

In this study, we obtain the Jost function and the resolvent operator of L. The sets of eigenvalues and spectral singularities of L were
also introduced. Following the presentation of an example, the problem was subjected to Naimark’s and Pavlov’s conditions. As a result of
generalizing latest discoveries, the foundation for future research in spectral expansion, inverse problems, and scattering theory has been laid.

2 Jost Solution and resolvent of L

The Jost solution and other fundamental properties of the equation (1.1) will be discussed in detail. Following that, using the classical constant
coefficients technique for the solutions of differential and discrete equations, the resolvent operator and Jost function of the operator L were
derived.

Assume ∑
n∈N

n (|1− an|+ |bn|) <∞. (2.1)

Under the assumption (2.1), the following Jost solution has been constructed for z ∈ Cleft := {z : z ∈ C, Rez ≤ 0} and λ = 2 cosh z with
complete analogy with what have been referred in [9, 15, 17] in previous section that,

en (z) = αne
nz

(
1 +

∞∑
m=1

Kn,me
mz

)
, n ∈ N ∪ {0} . (2.2)

Note that Kn,m and αn can be solved uniquely in terms of (an) and (bn) . Moreover, we have the inequality for the kernel Kn,m

|Kn,m| ≤ C
∞∑

r=n+[|m2 |]
(|1− ar|+ |br|) , n ∈ N ∪ {0} , (2.3)

Therefore, en(z) is analytic with respect to z in Cleft := {z : z ∈ C, Rez < 0} and continuous in Rez = 0 and it also yields

en(z) = αne
nz [1 + o (1)] , n ∈ N, z = ξ + iτ, ξ → −∞.

Similar to en (z) , assume ϕ̂(λ) = {ϕ̂n(λ)} = ϕn (z) , n ∈ N ∪ {0} be the solution of (1.1) holding the initial conditions

ϕ0 (z) = 0, ϕ1 (z) = 1.

Also, assume
ϕ(z) = ϕ̂(2 cosh z) = {ϕ̂n(2 cosh z)} , n ∈ N ∪ {0} .

Clearly, ϕ is an entire function and
ϕ(z) = ϕ(z + 2πi).

Introduce the semi-strips

P0 :=

{
z : z ∈ C, z = ξ + iτ, − π

2
≤ τ ≤ 3π

2
, ξ < 0

}
,

and

P := P0 ∪
{
z : z ∈ C, z = ξ + iτ, − π

2
≤ τ ≤ 3π

2
, ξ = 0

}
.

The Wronskian of the solutions yn (z) and un (z) of (1.1) is defined as classical

W [yn, un] = an [ynun+1 − yn+1un] .

Therefore, we get
W [en (z) , ϕn (z)] = e0 (z) .

Define the functions

M(z) :=
∞∑
n=0

knen (z) , (2.4)
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and

M̃(z) : =

∞∑
n=0

knϕn (z) ,

Hk(z) : = − 1

e0 (z)

{
M(z)ϕk+1(z)− M̃(z)ek+1(z)

−ϕk+1(z)

∞∑
n=k+1

knen(z) + ek+1(z)

∞∑
n=k+1

knϕn(z)

 .

Let Gnk(z) := G
(1)
nk (z) +G

(2)
nk (z) denote the Green’s function of the operator L. The classical computations indicate that

G
(1)
nk (z) :=

en(z)Hk(z)

M (z)
, (2.5)

and

G
(2)
nk (z) :=

{
0,

[ϕk+1(z)en(z)−ϕn(z)ek+1(z)]
e0(z)

,
k < n,
k ≥ n, (2.6)

for all z ∈ P and e0(z) 6= 0. Hence, the resolvent operator of L is written as

(Rλ(L)φ)n :=

∞∑
k=0

Gnk(z)φk+1(z), φ = {φk} ∈ l2 (N) , k ∈ N ∪ {0} . (2.7)

3 Main Result

The eigenvalues and spectral singularities of the operator L, as well as their quantitative features, are the focus of this section. To achieve the
conditions by which the eigenvalues and spectral singularities are of finite number with finite multiplicities, we shall apply fundamental spectral
analysis definitions and boundary uniqueness theorems of analytic functions.

Let’s designate the sets of eigenvalues and spectral singularities of the operator L by σd(L) and σss(L), correspondingly. (2.5) -(2.7) and
the standard spectrum definitions indicate that

σd (L) = {λ : λ = 2 cosh z, z ∈ P0,M(z) = 0} , (3.1)

σss (L) =

{
λ : λ = 2 cosh z, z = ξ + iτ, ξ = 0, τ ∈

[
−π
2
,
3π

2

]
, M(z) = 0

}
� {0} . (3.2)

Now let us proceed with the sets

R1 : = {z : z ∈ P0,M(z) = 0} ,

R2 : =

{
z : z = ξ + iτ, ξ = 0, τ ∈

[
−π
2
,
3π

2

]
,M(z) = 0

}
,

and R3, R4 as the sets of limit points of the sets R1 and R2, correspondingly, and R5 as the set of zeros in P0 of the function M(z) with
infinite multiplicity. The preceding relationships are obviously valid.

R3 ⊂ R2, R4 ⊂ R2, R5 ⊂ R2, R1 ∩R5 = ∅,

and the linear Lebesgue measures of R2, R3, R4 and R5 are zero. Because all derivatives of M(z) are continuous up to the real axis, it can be
written that

R3 ⊂ R5, R4 ⊂ R5. (3.3)

The sets of eigenvalues and spectral singularities can readily be stated as

σd(L) = {λ : λ = 2 cosh z, z ∈ R1} ,
σss(L) = {λ : λ = 2 cosh z, z ∈ R2} .

Theorem 1. Suppose that (2.1) and {kn}∞n=1 ∈ l2 (N) are true. Consequently,
i) σd(L) is bounded, countable and its limit points can lie only in [−2, 2] .
ii) The set of spectral singularities of L is subset of [−2, 2] , µ(σss(L)) = 0 where µ denotes the linear Lebesgue measure and σss(L) =

σss(L).

Proof: M(z) is analytic in the upper half-plane and continuous up to the real axis, as is well known. Furthermore, the asymptotic follows

M(z) = α0 [1 + o(1)] , z ∈ P0, Rez → −∞. (3.4)

Using (3.1), (3.2), and (3.4) and analytic function uniqueness theorems, it is simple to conclude i) and ii) [22]. �
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Let us build an example for the following simple instance to clarify the above conclusions. Define the operator L̃ generated in the Hilbert
space l2 (N) by (

l̃y
)
n
= y

(v)
n−1 + y

(v)
n+1, n ∈ N,

and the boundary condition
∞∑
n=0

knyn = 0.

Let us choose the sequence (kn) with the terms k1 = 1, k0 = −ei
π
4 and kn = 0 for n ≥ 2. Computing the zeros of M (z) for these specific

choices and using the classical definitions, one can easily show that

σd(L̃) = ∅,

σss(L̃) =
{√

2, 1
}
∈ [−2, 2] .

Clearly, σc(L̃) = [−2, 2] from previous papers [15, 17]. Hence, we verify for this specific example that the set of spectral singularities lies in
continuous spectrum and do not belong to the set of discrete spectrum.

Definition 1.The multiplicity of a zero of M(z) in the region P is called as the multiplicity of the corresponding eigenvalue or spectral
singularity of the operator L.

Up to this point, the condition has been used to explore the Jost solution, resolvent operator, sets of eigenvalues, and spectral singularities of
the operator L. (2.1). Now we’ll look into the effects of stricter conditions on potential, such as Naimark’s and Pavlov’s conditions.

We shall assume
∞∑
n=1

eεn
β

(|1− an|+ |bn|+ |kn|) <∞, ε > 0,
1

2
≤ β ≤ 1. (3.5)

For β = 1, (3.5) reduces to Naimark’s condition:

∞∑
n=1

eεn (|1− an|+ |bn|+ |kn|) <∞, ε > 0. (3.6)

Theorem 2. If condition (3.6) is satisfied, the operator L has a finite number of eigenvalues and spectral singularities, each of which has a
finite multiplicity.

Proof: The following inequality can be calculated using (2.3) and (3.6).

|Kn,m| ≤ C exp
(−ε

2
(n+m)

)
, (3.7)

is satisfied for all C > 0 constant, n = 0, 1, 2, ... and m = 1, 2, .... Using (2.2), (2.8), (3.6) and (3.7) and after some mathematics, one derives,

|M(z)| ≤
∞∑
m=1

e−m( ε4−Rez). (3.8)

(3.8) suggests that M(z) continues analytically from real axis to the left half-plane Rez < ε
4 . Furthermore, M(z) is a 2πi periodic function,

the limit points of its zeros in the region P can not be in the interval

{
z ∈ C : z = ξ + iτ, ξ = 0, τ ∈

[
−π
2
,
3π

2

]}
.

Theorem 1 confirms the finiteness of eigenvalues and spectral singularities of L as a result of these findings. �

Apparently, (3.6) assures that M(z) continues analytically from the real axis to the left half-plane. Take the condition (3.5) for 1
2 ≤ β < 1,

∞∑
n=1

eεn
β

(|1− an|+ |bn|) <∞, ε > 0. (3.9)

It is evident that M(z) has analicity in the left half-plane and infinite differentiability on the imaginary axis. Analytic continuation of M(z)
from the real axis to the lower half-plane is not accomplished under condition (3.9). As a conclusion, a novel approach for analyzing the
finiteness of eigenvalues and spectral singularities of L is necessitated. The following theorem [17] will find a way to deal with this challenge.
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Theorem 3. [17] Suppose the 2π periodic function ξ is anaytic in the open half-plane, all of its derivatives are continuous in the closed upper
half-plane and

sup
z∈P

∣∣∣ξ(k)(z)∣∣∣ ≤ ηk, k ∈ N ∪ {0} . (3.10)

If the set G with linear Lebesgue measure zero is the set of all zeros of the function ξ with infinite multiplicity in P , and

ω∫
0

ln t(s)dµ(Gs) > −∞,

where µ(Gs) is the Lebesgue measure of the s-neighborhood of G, t(s) = inf
k

ηks
k

k! , k ∈ N ∪ {0} , and ω ∈ (0, 2π) is an arbitrary constant,

then ξ ≡ 0.

Theorem 4. If (3.9) holds, then R5 = ∅.

Proof: The following inequality for the k. th derivative of M(z) can be obtained from (3.9), (2.2) and (2.3) and after some algebra∣∣∣M (k)(z)
∣∣∣ ≤ ηk, k ∈ N ∪ {0} ,

where

ηk = 2kC

∞∑
m=1

mk exp
(
−εmβ

)
, (3.11)

and C > 0 is a constant. As a next step, one obtains the inequality for ηk using the classical inequalities in the literature

ηk ≤ 2kC

∞∫
0

xke−εx
β

dx ≤ Ddkk!kk
1−β
β ,

where D and d are constants depending C, ε and β.
Now, the previous theorem can be adopted to our case. Taking into account t(s) = inf

k

ηks
k

k! , k ∈ N ∪ {0} , µ(R5,s) is the Lebesgue measure
of the s-neighborhood of R5 and ηk is defined by (3.11), the following inequality is clear

ω∫
0

ln t(s)dµ(R5,s) > −∞. (3.12)

We get the inequality

t(s) ≤ D exp

{
−1− β

β
e−1d−

β
1−β s−

β
1−β

}
, (3.13)

using (3.11). (3.12) and (3.13) yield,
ω∫
0

s−
β

1−β dµ(R5,s) <∞. (3.14)

Because of β
1−β ≥ 1, the inequality (3.14) is true for arbitrary s if and only if µ(R5,s) = 0 or R5 = ∅. �

Theorem 5. If (3.9) holds to be true, then the operator L has a finite number of eigenvalues and spectral singularities, and each of them is of
finite multiplicity.

Proof: We are supposed to prove that M(z) has a finite number of zeros with finite multiplicities in the region P. From Theorem 4 and (3.3),
we haveR3 = R4 = ∅. Therefore, the accummulation points of the bounded setsR1 andR2 do not exist. Due to the these reasons,H(z) must
have only finite number of zeros in the region P. Because of R5 = ∅, these zeros must be of finite multiplicity. �

4 Conclusion

In this paper, the non-selfadjoint singular boundary value problem generated in l2 (N) including the Sturm-Liouville type difference equation
and a general boundary condition for hyperbolic eigenparameter has been investigated. After presenting the basic definitions and Jost solution
properties, we constructed the Naimark’s and Pavlov’s conditions for the problem and proved that the eigenvalues and spectral singularities are
of finite number with finite multiplicities.
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Abstract: Let p ∈ [1,+∞) be an integer. We study some properties of integration operator V, V f (z) =
z∫
0

f (t) dt, on the space of

analytic functions

`pA := `pA (D) =

{
f ∈ Hol (D) : f (z)

∞∑
an

n=0

zn and (an)n≥0 ∈`
p

}
,

where an =
f(n)(0)
n! , n ≥ 0, is the n th Taylor coefficients of f. Namely, we characterize the sets of so-called extended eigenvalues

and extended eigenvectors of operator V. We also calculate the spectral multiplicity of operator of the form V⊕A, where A is a
appropriate bounded linear operator on a Banach space X.

1 Introduction

Let p, 1 < p < +∞, be an integer, and let `pA = `pA (D) be a space of analytic functions f (z) =
∞∑
n=0

anz
n on the unit disk

D = {z ∈ C : |z| < 1} such that
∞∑
n=0
|an|p < +∞. With the norm ‖f‖p :=

( ∞∑
n=0
|an|p

)1/p

< +∞ the space `pA is a Banach space. It is

well known that
(
`pA
)∗

= `qA, where 1
p + 1

q = 1. In this article, we consider the classical Volterra integration operator V , V f (z) =
z∫
0

f (t) dt,

on the space `pA and study its some new properties. Namely, by using the Duhamel product method, we investigate the set of extended eigenval-
ues and characterize the corresponding set of extended eigenvectors (Section 2.1); we prove an addition formula µ (V ⊕A) = µ (V ) + µ (A)
for the spectral multiplicity of operator V ⊕A with a suitable bounded linear operator A acting in the Banach space (Section 2.2).
Before stating our results, we need some necessary background. For a Banach space X we denote by B (X) the set of all bounded linear
operators on X. Recall that if X is a separable Banach space and A ∈ B (X), if span

{
AkE : k = 0, 1, 2, . . .

}
= X, then E ⊂ X is a cyclic

subspace; vector x ∈ X is known as the cyclic vector (x ∈ Cyc (A)) of operatorA, is span
{
Akx : k = 0, 1, 2, . . .

}
= X, where span denotes

the closed linear hull of the set in X. Spectral multiplicity µ (A) of operator A is the following number (or the symbol∞):

µ (A) := inf
{
dimE : span

{
AkE : k ≥ 0

}
= X

}
.

If µ (A) = 1, A is a cyclic operator . For example, the Volterra integration operator V and the shift operator S, Sf (z) = zf, are cyclic
operators in many function spaces.
For a given operatorA ∈ B (X) the number λ ∈ C is called the extended eigenvalue of operatorA if there exists a nonzero operatorB ∈ B (X)
such that AB = λBA. Such operator B is called the corresponding extended eigenvector for operator A (see [1]). The set of all extended
eigenvalues of operator A is denoted by ext(A). Note that these topics were more popular after the celebrated result of Lomonosov [7]
concerning to the existence of hyperinwariant subspace for operators commuting with compact operator on the Banach space. Recall that a
subspace E ⊂ X is hyperinwariant with respect to A if BE ⊂ E for all operators B commuting with operator A.
In the present paper, we investigate these two problems mentioned above, that is, we study the structure of extended eigenvalues and extended
eigenvectors of an integration operator V on the space `pA; for this, we use the Duhamel product (see [11, 12]), which is defined for any two
functions f, g in `pA by the formula

(f ~ g) (z) :=
d

dz

z∫
0

f (z − t) g (t) dt =
z∫
0

f
p
(z − t) g (t) d(t) + f (0) g (z) . (1)

The Duhamel operator is defined by Dfg := f ~ g, g ∈ `pA. This product is also utilized in the study of spectral multiplicity µ (V⊕A) .
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2 Main Results

2.1 The extended eigenvalues and extended eigenvectors for integration operator

In this section, we describe the sets of extended eigenvalues and extended eigenvectors of operator V on the space `pA. The main tool is the use
of Duhamel product (1), which firstly used to Karaev in [5], see also Gürdal [2] and Tapdigoglu [9, 10].
Note that it is easy to see that ker(V ) = {0}, so λ = 0 is not an extended eigenvalue of V , i.e., 0 /∈ ext (V ) .

Here we will prove that, in fact, ext (V ) = C\ {0} .

Theorem 1. Let λ ∈ C\ {0} and 1 < p <∞, X ∈ B
(
`pA
)

be a nonzero operator and V be an integration operator on `pA.
(i) If λ ∈ D, then V X = λXV if and only if XCλ = DX1, where DX1 is the Duhamel operator on `pA and (Cλf) = f (λz) is a

composition operator on `pA.
(ii) If λ ∈ C\D, then V X = λXV if and only if X = DX1C1/λ, that is

Xf (z) =
d

dz

z∫
0

(X1) (z − t) f
(
t

λ

)
dt, f ∈ `pA.

Proof: (i) It is easy to see from the formula (1) that

V nf =
zn

n!
~ f, f ∈ `pA, (2)

for all n ≥ 0. Let V X = λXV . Then we have that V nX = λnXV n for each n ≥ 0, and therefore λnXV nf = V nXf for all f ∈ `pA. In
particular, λnXV n1 =V nX1, and according to (2), we get that

X

(
(λz)n

n!
~ 1

)
=

(
zn

n!
~X1

)
,

orX (λz)n = zn ~X1 =X1~ zn, n ≥ 0. Since the polynomials are dense in `pA, from this we decude that (Xf) (λz) = X1~ f = DX1f
for all f ∈ `pA, and hence XCλf = DX1f , thus XCλ = DX1, as desired.
Moreover if XCλ = DX1, then for any polynomial p we achieve that

V Xp (z) = V XCp
(
λ−1z

)
= VDX1p

(
λ−1z

)
= DX1V p

(
λ−1z

)
= XCλV p

(
λ−1z

)
= XCλ

(
z ~ p

(
λ−1z

))
= λXC1/λ

(
λ−1z ~ p

(
λ−1z

))
= λXCλ (V p)

(
λ−1z

)
= λXV p (z) ,

this brings the proof of (i) , on account of density of polynomials in `pA.
(ii) Let λXV=V X. Then 1

λV X = XV, and therefore 1
λn V

nX = XV n, n ≥ 0. Now the same arguments, which were used in the proof of
(i) , yield that Xf (z) = X1~ f

(
z
λ

)
, f ∈ `pA, which means that X = DX1C1/λ, i.e.,

(Xf) (z) =
d

dz

z∫
0

(X1) (z − t) f
(
t

λ

)
dt.

It remains only to demonstrate every operator X of the form X = DX1C1/λ satisfies the equation λXV=V X. In fact, for any f ∈ `pA we
have

(XV f) (z) =
(
DX1C1/λV f

)
(z) = DX1 (V f)

( z
λ

)
= X1~ (V f)

( z
λ

)
= X1~

( z
λ
~ f

( z
λ

))
=
z

λ
~
(
X1~ f

( z
λ

))
=
z

λ
~DX1C1/λf (z)

=
1

λ
VDX1C1/λf (z) =

1

λ
V Xf (z) .

The theorem is proven. �

2.2 On the spectral multiplicity of a direct sum of operators V and A

Recall that the direct sum A⊕B of operators A ∈ B (X) and B ∈ B (Y ) is defined by (A⊕B) (x⊕ y) = Ax⊕By, x⊕ y ∈ X ⊕ Y. It is
well-known that (see, for instance, Nikolskii [6])

max {µ (A) , µ (B)} ≤ µ (A⊕B) ≤ µ (A) + µ (B) . (3)

In the following theorem the spectral multiplicity µ (V ⊕A) of operator V ⊕A with some appropriate summand A ∈ B
(
`pA
)

is calculated.
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Theorem 2. Let V be an integration operator on `pA, where 1 < p <∞, and let A ∈ B
(
`pA
)

be an operator such that( ∞∑
n=0

(n! ‖Anx‖)q
)1/q

<∞ for every x ∈ X, where 1
p + 1

q = 1. Then µ (V ⊕A) = µ (V ) + µ (A) = 1 + µ (A) .

Proof: It follows from inequalities in (3) that if µ (A) = +∞, then the proof is trivial, and therefore we assume that µ (A) = n < +∞. We
prove that µ (V ⊕A) = n+ 1 (the fact that µ (V ) = 1 is clear from the density of polynomials in `pA, 1 < p < +∞). Suppose in contrary that
µ (V ⊕A) < n+ 1, that is µ (V ⊕A) = n. Let {gi ⊕ xi}ni=1 be a cyclic set for operator V ⊕A. Then it is easy to see that {gi}ni=1 is a cyclic
set of V, i.e., {gi}ni=1 ∈ Cyc (V ) (see, for instance, [6]). Then there exists a number i0 ∈ {1, 2, . . . , n} such that gi0 (0) 6= 0; we suppose
without losing generality that i0 = 1, so g1 (0) 6= 0, otherwise we obtained span

{
g1, V g1, V

2g2, . . .
}
⊂
{
g ∈ `pA (D) : g (0) = 0

}
6= `pA,

which contradicts to the cyclicity property of g1.
It is known that

(
`pA,~

)
is a Banach algebra (see [4, 8] ) . Since g1 is invertible in the this algebra, there exists a function G1 ∈ `pA such

that (G1 ~ g1) (z) ≡ 1, since (G1 ~ g1) (0) = G1 (0) g1 (0) = 1, (see formula (1)), we see that G1 (0) 6= 0. Now we consider the following
n× n matrix-function

N (z) =


G1 0 0 · · · 0

−g2 ~G1 1 0 · · · 0
−g3 ~G1 0 1 · · · 0

...
...

...
...

...
−gn ~G1 0 0 · · · 1

 .

Let B be a classical Borel transformation from the space Hol (D) of all analytic functions to the space of formally power series C [[Z]] over
the field of complex numbers C defined by

B

( ∞∑
n=0

ĝ (n) zn
)

:=

∞∑
n=0

n!ĝ (n)Zn.

The formula B−1
( ∞∑
n=0

anZn
)

:=
∞∑
n=0

an
n! z

n defines the inverse Borel transform B−1. It is known (and easy to verify) that if g, h ∈ Hol (D)

and V is an integration operator on Hol (D) , then

g ~ h = (Bg) (V )h = (Bh) (V ) g, (4)

where (Bg) (V )h :=
∞∑
n=0

n!ĝ (n) (V nh) (z) . Denoting −→g =


g1
g2
...
gn

 and considering (4), we get :

(BN) (V )−→g :=


(BG1) (V ) 0 0 . . . 0

(B (−g2 ~G1)) (V ) I 0 . . . 0
(B (−g3 ~G1)) (V ) 0 I . . . 0

...
...

...
...

...
(B (−gn ~G1)) (V ) 0 0 . . . I




g1
g2
g3
...
gn



=


(BG1) (V ) g1

(B (−g2 ~G1)) (V ) g1 + g2
(B (−g3 ~G1)) (V ) g1 + g3

...
(B (−gn ~G1)) (V ) g1 + gn



=


G1 ~ g1

(−g2 ~G1)~ g1 + g2
(−g3 ~G1)~ g1 + g3

...
(−gn ~G1)~ g1 + gn



=


1
0
0
...
0

 .

Since ~-det (BN) (0) = (BG1) (0) 6= 0, it is easy to show that (BG) (V ) and (BG) (A) are invertible operators on
(
`pA
)n

:= `pA × `
p
A ×

. . .× `pA and Xn := X ×X × . . .×X, respectively. It is also not difficult to see that (see Karaev [3] ){
((BN) (V )−→g )i ⊕ ((BN) (A)x)i : i = 1, 2, . . . , n

}
is the cyclic set of operator V +A. Therefore, we get a now cyclic set {1⊕ y1,0⊕ y2, . . . ,0⊕ yn} , and hence for any x ∈ X there exists a

family of polynomials
{
Pm,i

}n
i=1

such that lim
m−→∞

pm,1 (V )1 =0 in `pA and lim
m−→∞

n∑
i=1

pm,i (A) yi = x in X. From this by using (4), we
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obtain that lim
m−→∞

qm,1 (z) = 0 in `pA, where

qm,1 (z) :=
(
B−1pm,1

)
(z) =

∑
k≥0

1

k!
p̂m,1 (k) z

k,

where B−1 is the inverse Borel transform. Then, by using the condition of the theorem we have

∥∥pm,1 (A) y1∥∥X =

∥∥∥∥∥∥
∑
k≥0

p̂m,1 (k)A
ky1

∥∥∥∥∥∥
X

≤
∑
k≥0

∣∣pm,1 (k)∣∣ ∥∥∥Aky1∥∥∥
X

=
∑
k≥0

1

k!

∣∣p̂m,1 (k)∣∣ k! ∥∥∥Aky1∥∥∥
≤

∑
k≥0

(
1

k!

∣∣p̂m,1 (k)∣∣p)1/p
∑

k≥0

(
k!
∥∥∥Aky1∥∥∥)q

1/q

= C
1/2
y1

∑
k≥0

∣∣q̂m,1 (k)∣∣p
1/p

= C
1/2
y1

∥∥qm,1∥∥`pA −→ 0,m −→∞.

Thus,

lim
m−→∞

n∑
i=2

pm,i (A) yi = x.

Since the vector x is arbitrary, the latter assertion means that {yi}ni=2 is a cyclic set for A and card
{
y2, y3,...,yn

}
= n− 1, hence µ (A) ≤

n− 1. But, this contradicts to µ (A) = n. The theorem is proven. �
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Abstract: In this study, we consider the best linear unbiased predictors (BLUPs) in the context of partitioned linear
models and their correctly-reduced models. Some properties of the BLUPs and their analytical expressions are
given under these models. We derive some results about the comparison of covariance matrices of BLUPs with
other types of predictors by using formulas in matrix algebra, especially ranks of block matrices and elementary
matrix operations. Also, results for special cases are given.
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1 Introduction and preliminary results

This paper is concerned with the comparison of covariance matrices of predictors in linear regression models. We consider a
partitioned linear model and its correctly-reduced models. Before proceeding, we introduce the notations used in this paper.
Let Rm×n stand for the set of all m× n real matrices. A′, r(A), C (A), and A+ denote the transpose, the rank, the column
space, and the Moore–Penrose generalized inverse of A ∈ Rm×n, respectively. Im denotes the identity matrix of order m.
EA = A⊥ = Im −AA+ stands for the orthogonal projectors. The inequality A < 0 means that symmetric matrix A is a
positive semi-definite matrix in the Löwner partial ordering.

Consider a linear model with partitioned form

M : y = Xα+ ε =
[
X1, X2

] [
α′1, α′2

]′
+ ε = X1α1 + X2α2 + ε (1)

with E(ε) = 0 and cov(ε, ε) = D(ε) = σ2Σ,

where y ∈ Rn×1 is a vector of observable response variables, X =
[
X1, X2

]
∈ Rn×k is a known matrix of arbitrary rank

with Xi ∈ Rn×ki ,α =
[
α′1, α′2

]′ ∈ Rk×1 is a vector of fixed but unknown parameters withαi ∈ Rki×1, ε ∈ Rn×1 is an
unobservable vector of random errors, σ2 is a positive unknown parameter, and Σ ∈ Rn×n is a known positive semi-definite
matrix of arbitrary rank, i = 1, 2, k1 + k2 = k.

Reduced linear models are obtained by using linear transformations on linear models. They are one of the different forms
of partitioned linear models to meet the analysis’ requirements. Especially, they can be considered when estimation/prediction
problems on general parametric functions of partial parameters are considered. To examine the relations between the linear
modelM in (1) and its reduced models, we can consider the following reduced model ofM:

M1 : X⊥2 y = X⊥2 X1α1 + X⊥2 ε. (2)

The reduced modelM1 in (2) is obtained by pre-multiplying X⊥2 on the both sides of partitioned model in (1) and this model is
also known as a correctly-reduced linear model ofM. In this study, we assume thatM is consistent, i.e., y ∈ C

[
X, Σ

]
holds

with probability 1, see, [13]. We note thatM1 is consistent, i.e., X⊥2 y ∈ C
[
X⊥2 X1, X⊥2 ΣX⊥2

]
holds with probability 1,

under the assumption of consistency ofM.
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To establish the results on predictors of all unknown vectors with partial parameters , we can consider the following vector

φ1 = K1α1 + Hε (3)

for given matrices K1 ∈ Rs×k1 and H ∈ Rs×n. Then, according to the assumptions on expectation vector and covariance
matrix in (1), we obtain

cov(φ1,y) = σ2HΣ, cov(φ1,X
⊥
2 y) = σ2HΣX⊥2 , D(φ1) = σ2HΣH′.

In this study, we consider the best linear unbiased predictors (BLUPs) as predictors. For the comparison process, we use
covariance matrices of BLUPs. BLUPs are defined according to the unbiasedness criteria of predictors and the minimum covari-
ance matrix requirement in the Löwner partial ordering. Under our considerations, we review the predictability/estimability
requirement of φ1 in (3) and its special cases underM1 before giving the definition of the BLUP.

(a) φ1 is predictable by X⊥2 y inM1⇐⇒ C (K′1) ⊆ C [(X⊥2 X1)
′]⇐⇒K1α1 is estimable by X⊥2 y inM1,

(b) X1α1 is estimable by X⊥2 y inM1⇐⇒ C (X′1) ⊆ C [(X⊥2 X1)
′],

(c) X⊥2 X1α1 is always estimable underM1 and ε is always predictable underM1,

see, e.g., [1]. Further, if φ1 is predictable underM1 then it is predictable underM. Let φ1 be predictable underM1. If there
exists L1X

⊥
2 y such that

D(L1X
⊥
2 y − φ1) = min subject to E(L1X

⊥
2 y − φ1) = 0

holds in the Löwner partial ordering, the linear statistic L1X
⊥
2 y is defined to be the BLUP of φ1 underM1 and is denoted

by L1X
⊥
2 y = BLUPM1

(φ1) = BLUPM1
(K1α1 + Hε). If H = 0 in φ1, L1X

⊥
2 y corresponds the best linear unbiased

estimator (BLUE) of K1α1, denoted by BLUEM1
(K1α1), underM1; see, e.g., [3] and [12].

The results, in the present paper, are established by making use of formulas of ranks of block matrices and elementary matrix
operations which are effective algebraic tools in matrix theory. Three types of elementary row and column operations for block
matrices are reviewed as follows; see, e.g., [15].

(a) Interchange two block rows or two block columns in a partitioned matrix.
(b) Multiply a block row by a nonsingular matrix from the left or a block column by a nonsingular matrix from the right in a
partitioned matrix.
(c) Multiply a block row by a matrix from the left and add it to another block row or multiply a block column by a matrix from
the right and add it to another block column in a partitioned matrix.

The related subject can also be found in [2], [4]-[9], [17] and [18]. A group of well-known formulas for ranks of block matrices
are collected in the following lemma; see [10] and [14].

Lemma 1.1. Let A ∈ Rm×n, B ∈ Rm×k, C ∈ Rl×n, D ∈ Rl×k, F ∈ Rm×t, and let X ∈ Rm×m be a symmetric matrix.
Then,

r
[
A, B

]
= r(A) + r(EAB) = r(B) + r(EBA), (4)

r

[
A
C

]
= r(A) + r(CEA′) = r(C) + r(AEC′), (5)

r

[
A B
C 0

]
= r(B) + r(C) + r(EBAEC′), (6)

r

[
A 0
0 D

]
= r(A) + r(D), (7)

r

[
A B
C D

]
= r(A) + r(D−CA+B) if C (B) ⊆ C (A) and C (C′) ⊆ C (A′), (8)

r

[
X B
B′ 0

]
= r

[
X, B

]
+ r(B), and r

[
X B F
B′ 0 0

]
= r

[
X B F

]
+ r(B) if X < 0. (9)

The following well-known result was given by [11].

Lemma 1.2. The linear matrix equation AX = B is consistent if and only if r
[
A, B

]
= r(A), or equivalently, AA+B =

B. In this case, the general solution of AX = B can be written in the following form X = A+B + (I−A+A)U, where U
is an arbitrary matrix.

2 Main results

In this section, some results on the comparison of covariance matrices of BLUPs with other types of predictors under the
correctly-reduced linear model M1 are derived by using block matrices’ rank formulas. Firstly, we review the fundamental
equations of BLUPs of all unknown vectors and then we give some properties of BLUPs.
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The fundamental BLUP equation and some of the properties of the BLUPs underM1 are given as follows; see, e.g., [16].
Let φ1 be predictable underM1. Then

E(L1X
⊥
2 y − φ1) = 0 and D(L1X

⊥
2 y − φ1) = min

⇐⇒ L1
[
X⊥2 X1, X⊥2 ΣX⊥2 (X⊥2 X1)

⊥] = [K1, HΣX⊥2 (X⊥2 X1)
⊥] . (10)

The matrix equation in (10) is consistent and the BLUPM1
(φ1) is given by

BLUPM1
(φ1) = L1X

⊥
2 y =

([
K1, HΣX⊥2 (X⊥2 X1)

⊥]W+
1 X⊥2 + U1W

⊥
1 X⊥2

)
y, (11)

by using the general solution L1 of (10), where U1 ∈ Rs×n is an arbitrary matrix and W1 =
[
X⊥2 X1, X⊥2 ΣX⊥2 (X⊥2 X1)

⊥].
In particular,

L1 is unique ⇐⇒ r(W1) = n,

BLUPM1
(φ1) is unique with probability 1 ⇐⇒M1 is consistent.

Further, the rank of W1 satisfies the equalities

r(W1) = r
[
X⊥2 X1, X⊥2 ΣX⊥2

]
= r

[
X⊥2 X1, (X⊥2 X1)

⊥X⊥2 ΣX⊥2
]
.

The covariance matrices of BLUPM1
(φ1) and φ1 − BLUPM1

(φ1) are unique and satisfy the equalities

D[BLUPM1
(φ1)] = σ2

[
K1, HΣX⊥2 (X⊥2 X1)

⊥]W+
1 X⊥2 ΣX⊥2

([
K1, HΣX⊥2 (X⊥2 X1)

⊥]W+
1

)′
,

D[φ1 − BLUPM1
(φ1)] = σ2

([
K1, HΣX⊥2 (X⊥2 X1)

⊥]W+
1 X⊥2 −H

)
Σ

×
([

K1, HΣX⊥2 (X⊥2 X1)
⊥]W+

1 X⊥2 −H
)′
.

Theorem 2.1. Let consider the correctly-reduced modelM1 and assume that φ1 is predictable underM1. Let G = G′ ∈
Rs×s and BLUPM1

(φ1) be as given in (11). Denote

M =


Σ ΣH′ X1 X2

HΣ HΣH′ −G K1 0
X′1 K′1 0 0
X′2 0 0 0

 .
Then

r(G−D[φ1 − BLUPM1
(φ1)]) = r(M)− r(X2)− r(X).

In consequence, G = D[φ1 − BLUPM(φ1)]⇐⇒ r(M) = r(X2) + r(X).

Proof: The rank of the difference between G and D[φ1 − BLUPM1
(φ1)] is

r(G−D[φ1 − BLUPM1
(φ1)]) = r

(
G−

([
K1, HΣX⊥2 (X⊥2 X1)

⊥]W+
1 X⊥2 −H

)
×Σ

([
K1, HΣX⊥2 (X⊥2 X1)

⊥]W+
1 X⊥2 −H

)′)
.

(12)

We can apply (8) to (12) by using the equality Σ = ΣΣ+Σ. Then

r(G−D[φ1 − BLUPM1
(φ1)])

= r

 Σ Σ
([

K1, HΣX⊥2 (X⊥2 X1)
⊥]W+

1 X⊥2 −H
)′([

K1, HΣX⊥2 (X⊥2 X1)
⊥]W+

1 X⊥2 −H
)

Σ G


− r(Σ)

= r

([
Σ −ΣH′

−HΣ G

]
+

[
ΣX⊥2 0

0
[
K1, HΣX⊥2 (X⊥2 X1)

⊥]] [ 0 W1

W′
1 0

]+

×

[
X⊥2 Σ 0

0
[
K1, HΣX⊥2 (X⊥2 X1)

⊥]′
])
− r(Σ) (13)
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is obtained. We can reapply (8) to (13) since C (X⊥2 Σ) = C (X⊥2 ΣX⊥2 ) ⊆ C (W1) and C
([

K1, HΣX⊥2 (X⊥2 X1)
⊥]′) ⊆

C (W′
1), where W1 =

[
X⊥2 X1, X⊥2 ΣX⊥2 (X⊥2 X1)

⊥]. Then, by using elementary matrix operations and (4)-(9),

r(G−D[φ1 − BLUPM1
(φ1)])

= r


0 −X⊥2 X1 −X⊥2 ΣX⊥2 (X⊥2 X1)

⊥ X⊥2 Σ 0

−X′1X
⊥
2 0 0 0 K′1

−(X⊥2 X1)
⊥X⊥2 ΣX⊥2 0 0 0 (X⊥2 X1)

⊥X⊥2 ΣH′

ΣX⊥2 0 0 Σ −ΣH′

0 K1 HΣX⊥2 (X⊥2 X1)
⊥ −HΣ G


− r

[
X⊥2 X1, X⊥2 ΣX⊥2 (X⊥2 X1)

⊥]− r(Σ)

= r


−X⊥2 ΣX⊥2 −X⊥2 X1 −X⊥2 ΣX⊥2 (X⊥2 X1)

⊥ X⊥2 ΣH′

−X′1X
⊥
2 0 0 K′1

−(X⊥2 X1)
⊥X⊥2 ΣX⊥2 0 0 (X⊥2 X1)

⊥X⊥2 ΣH′

HΣX⊥2 K1 HΣX⊥2 (X⊥2 X1)
⊥ G−HΣH′


− r

[
X⊥2 X1, X⊥2 ΣX⊥2

]
= r

−X⊥2 ΣX⊥2 −X⊥2 X1 X⊥2 ΣH′

−X′1X
⊥
2 0 K′1

HΣX⊥2 K1 G−HΣH′

− r [X⊥2 X1, X⊥2 ΣX⊥2
]

+ r((X⊥2 X1)
⊥X⊥2 ΣX⊥2 (X⊥2 X1)

⊥)

= r

X⊥2 ΣX⊥2 X⊥2 ΣH′ X⊥2 X1

HΣX⊥2 HΣH′ −G K1

X′1X
⊥
2 K′1 0

+ r

[
X⊥2 ΣX⊥2 X⊥2 X1

X′1X
⊥
2 0

]
− r

[
X⊥2 X1, X⊥2 ΣX⊥2

]
− 2r(X⊥2 X1)

= r


Σ ΣH′ X1 X2

HΣ HΣH′ −G K1 0
X′1 K′1 0 0
X′2 0 0 0

+ r

 Σ X1 X2

X′1 0 0
X′2 0 0

− r [X1 Σ X2

0 X′2 0

]
− 2r(X2)

− 2r(X⊥2 X1)

= r


Σ ΣH′ X1 X2

HΣ HΣH′ −G K1 0
X′1 K′1 0 0
X′2 0 0 0

+ r
[
Σ, X

]
+ r(X)− r

[
Σ, X

]
− 3r(X2)− 2r(X⊥2 X1)

= r


Σ ΣH′ X1 X2

HΣ HΣH′ −G K1 0
X′1 K′1 0 0
X′2 0 0 0

− r(X2)− r(X). (14)

(14) establishes the required results. �

Many consequences can be derived from Theorem 2.1 for different choices of the matrices K1 and H. Some of these are
given in the following.

Corollary 2.1. Let consider the correctly-reduced modelM1 and assume that X1α1 is estimable underM1. Let G = G′ ∈
Rs×s. Denote

M1 =


Σ 0 X1 X2
0 −G X1 0

X′1 X′1 0 0
X′2 0 0 0

 and M2 =


Σ Σ X1 X2
Σ Σ−G 0 0
X′1 0 0 0
X′2 0 0 0

 .
Then

r(G−D[BLUEM1
(X1α1)]) = r(M1)− r(X2)− r(X).

r(G−D[ε− BLUPM1
(ε)]) = r(M2)− r(X2)− r(X).

In consequence,
G = D[BLUEM1

(X1α1)]⇐⇒ r(M1) = r(X2) + r(X).

G = D[ε− BLUPM1
(ε)]⇐⇒ r(M2) = r(X2) + r(X).
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Abstract: Let A be a positive bounded linear operator acting on a complex Hilbert space H. Let berA (X) denote the A-Berezin
number of an operator X. In this paper, we give new inequalities of A-Berezin number of operators on the reproducing kernel
Hilbert space. Some more related results are also obtained. In particular, we show that

bernA (X) ≤ 1

2n−1
berA

(
Xn)+ ‖X‖A−Ber

n−1∑
s=1

1

2s
bern−s−1

A (X)
∥∥Xs∥∥

A−Ber
,

for all n = 2, 3, ...

Keywords: A-Berezin symbol, reproducing kernel Hilbert space, positive operator, semi-inner product.

1 Introduction

The purpose of this section is to gather all of the technical components needed to read the text. Let H = H (Ω) be a Hilbert functional space
(H.f.s.) on some set Ω with the reproducing kernel kξ ∈ H, i.e., f (ξ) =

〈
f, kξ

〉
for all f ∈ H and all ξ ∈ Ω. It is supposed that for every

ξ ∈ Ω there exists a function fξ ∈ H such that fξ (ξ) 6= 0, or equivalently there is no ξ0 ∈ Ω such that f (ξ0) = 0 for all f ∈ H. Let B (H)
denote the Banach algebra of all bounded linear operators on H with an inner product 〈., .〉 and the corresponding norm ‖.‖ . For an operator
X ∈ B (H), its Berezin symbol (B.s.) X̃ is defined by

X̃ (ξ) =
〈
Xk̂ξ, k̂ξ

〉
, ξ ∈ Ω,

where k̂ξ :=
kξ
‖kξ‖H

is the normalized reproducing kernel ofH. For more facts about H.f.s. and B.s., see, [4, 5, 21].

R (X) , N (X) , R (X) and X∗ stand for the range, null space, closure of the range and adjoint of X, respectively, for each operator
X ∈ B (H) . An operator A ∈ B (H) is called positive if 〈Ax, x〉 ≥ 0 for any x ∈ H and we write a positive operator as A ≥ 0. It is clear that
a positive operatorA induces a positive semi-definite sesquilinear form 〈·, ·〉A : H×H −→ C defined by 〈x, y〉A = 〈Ax, y〉 for all x, y ∈ H.
The semi-norm induced by 〈·, ·〉A is given by ‖x‖A = 〈Ax, x〉1/2 =

∥∥∥A1/2x
∥∥∥. Then ‖.‖A is a norm onH iff A is injective operator and the

semi-normed space
(
B (H) , ‖.‖A

)
is complete iffR (A) is closed. An operator Y ∈ B (H) is called anA-adjoint of an operatorX if 〈Xx, y〉A

= 〈x, Y y〉A holds for all x, y ∈ H. The set of all operators in B (H) admitting A-adjoint is denoted by BA (H). By Douglas theorem [8], we
get

BA(H) =
{
X ∈ B (H) : R

(
X∗A

)
⊂ R (A)

}
.

If X ∈ BA(H) then X admits an A-adjoint operators. Moreover, there exists a distinguished A-adjoint operator of X , namely the reduced
solution of the equation AX = X∗A, i.e., X# = A†X∗A, where A† is the Moore-Penrose inverse of A. Also, by applying Douglas theorem,
we can see that

BA1/2(H) =
{
X ∈ B (H) : ∃c > 0; ‖Xx‖A ≤ c ‖x‖A , ∀x ∈ H

}
.

It is well-known that the semi-inner product 〈., .〉 induces an inner product on the quotient space H/N(A) which is not complete unless
R(A) is closed. However, a canonical construction due to de Branges and Rovnyak [7] shows that the completion ofH/N(A) is isometrically
isomorphic to the Hilbert space R

(
A1/2

)
with the inner product

〈
A1/2x,A1/2y

〉
R(A1/2)

:=

〈
P
R
(
A1/2

)x, P
R
(
A1/2

)y〉 (1)

for all x, y ∈ H. For the sequel, the Hilbert space
(
R
(
A1/2

)
, 〈., .〉R(A1/2)

)
will be denoted by R

(
A1/2

)
. Moreover, we have

〈Ax,Ay〉R(A1/2) = 〈x, y〉A for all x, y ∈ H, whence ‖Ax‖
R(A1/2)

= ‖x‖A for all x ∈ H. The definitions and properties needed in this

paper are shown in [2, 6, 13, 22, 26, 27].
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In 2022, Huban [19] and Gürdal and Başaran [17] obtained the notions ofA-Berezin number,A-Berezin set andA-Berezin norm of operators,
and discussed the further generalizations and refinements of A-Berezin number.

The A-Berezin set, A-Berezin number and A-Berezin norm of operators X ∈ BA (H) are defined, respectively, by

BerA (X) :=
{〈
Xk̂ξ, k̂ξ

〉
A

: ξ ∈ Ω
}

, berA (X) := sup
ξ∈Ω

∣∣∣〈Xk̂ξ, k̂ξ〉
A

∣∣∣ ,
and

‖X‖A−Ber := sup
ξ∈Ω

∥∥∥AXk̂H,ξ

∥∥∥
H

.

We get the Berezin number ifA = I.As a result, the Berezin number of Hilbert functional space operators and the Berezin norm of operators
are both generalized by this new idea.

In this work, we give several inequalities involving A-Berezin radius. In particular, we show and generalize recent some numerical radius
and Berezin number inequalities of bounded linear operators due to Dragomir [9–11], Guesba [16], Kittaneh et al. [23] and Huban et al. [20].

2 A-Berezin number inequalities

2.1 Prerequisites

We need several requirements before we can express and prove our findings. To begin, consider the following facts: [3] demonstrated that for
each X ∈ B (H), X ∈ BA1/2 (H) occurs iff there exists a unique operator X̃ ∈ B

(
R
(
A1/2

))
such that VAX = X̃VA with VA : H →

R
(
A1/2

)
is defined by VAx = Ax. Moreover, we have ‖X‖A = ‖X‖B(R(A1/2)) for each X ∈ BA1/2 (H)

The following four lemmas are stated in order to prove our primary conclusions in this study. In the case of operators in Hilbert spaces, the
first lemma is known as the Hölder-McCarthy inequality (see [25]).

Lemma 1. If X ∈ B (H) , X ≥ 0, and x ∈ H is an any unit vector, then〈
Xrx, x

〉
≤ 〈Xx, x〉r , for all r ∈ [0, 1] , (2)

〈Xx, x〉r ≤
〈
Xrx, x

〉
, for all r ≥ 1. (3)

Lemma 2. ([1]) If ai, i = 1, k, is a positive real number, then we have(
k∑
i=1

ai

)n
≤ kn−1

k∑
i=1

ani , (4)

for every n = 1, 2, ...

Lemma 3. ([12]) If Xj ∈ BA (H) , i = 1, k, then we have

k̃∑
j=1

Xj =

k∑
j=1

X̃j (5)

and

X ∈ BA1/2 (H)⇒ X̃n =
(
X̃
)n

. (6)

Lemma 4. ([24]) If X ∈ BA (H), then we have X̃# =
(
X̃
)∗
.

The following lemmas are important in our subsequent proofs, which may be found in [10, 26].

Lemma 5. If x, y, e are vectors inH and ‖e‖ = 1, then

|〈x, e〉 〈e, y〉| ≤ 1

2
(‖x‖ ‖y‖+ |〈x, y〉|) . (7)

∣∣〈x, e〉A 〈e, y〉A∣∣ ≤ 1

2

(
‖x‖A ‖y‖A +

∣∣〈x, y〉A∣∣) . (8)

Lemma 6. If x, y ≥ 0 and α ∈ (0, 1), then we have

αx+ (1− α) y ≤
(
αxp + (1− α) yp

)1/p (9)

for all p ≥ 1.
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2.2 Main Results

We can first give the following result required for the next theorem.

Remark 1. The inequality in [20, Theorem 3.11] states that

bern
(
Y ∗X

)
≤ 1

2

∥∥(Y ∗Y )n +
(
X∗X

)n∥∥
ber

(10)

for n ≥ 1.

We now provide one of the section’s primary outcomes.

Theorem 1. If Y,X ∈ BA (H), then

bernA

(
Y #X

)
≤ 1

2

∥∥∥(Y #Y
)n

+
(
X#X

)n∥∥∥
A

for all n = 1, 2, ...

Proof: Y,X ∈ BA1/2 (H) because BA (H) ⊆ BA1/2 (H) . As a result, there exists unique Ỹ and X̃ in B
(
R
(
A

1
2

))
such that VAY = Ỹ VA,

VAX = X̃VA. Since R
(
A

1
2

)
is a complex Hilbert space and the inequality (10),

bern
(
Ỹ ∗X

)
≤ 1

2

∥∥∥(Ỹ ∗Y )n +
(
X̃∗X

)n∥∥∥
B
(
R
(
A

1
2

))
is obtained. From (5) and (6), we get

bern
(
Ỹ ∗X

)
≤ 1

2

∥∥∥∥((Ỹ )∗ Ỹ )n +
((
X̃
)∗
X̃
)n∥∥∥∥

B
(
R
(
A

1
2

)) .

Applying Lemma 4 to the operators
(
Ỹ
)∗

and
(
X̃
)∗

, we have

bern
(
Ỹ #X̃

)
≤ 1

2

∥∥∥(Ỹ #Ỹ
)n

+
(
X̃#X̃

)n∥∥∥
B
(
R
(
A

1
2

))
=

1

2

∥∥∥∥ ˜(
Y #Y

)n
+
(
X#X

)n∥∥∥∥
B
(
R
(
A

1
2

)) ,
and so,

bernA

(
Y #X

)
≤ 1

2

∥∥∥(Y #Y
)n

+
(
X#X

)n∥∥∥
A−Ber

.

The evidence is now complete. �

The following conclusion applies Theorem 1 directly to the situation Y = X#.

Corollary 1. If X ∈ BA,r (H), then we have

bernA

(
X2
)
≤ 1

2

∥∥∥(XX#
)n

+
(
X#X

)n∥∥∥
A−Ber

.

The following result will be needed for further investigation.

Theorem 2. Let X ∈ B (H). Then we have

ber2 (X) ≤ 1

2

(
ber

(
X2
)

+ ‖X‖2Ber

)
. (11)

Proof: Now, by choosing in (7), e = k̂ξ, x = Xk̂ξ and y = X∗k̂ξ, we get

1

2

(∥∥∥Xk̂ξ∥∥∥∥∥∥X∗k̂ξ∥∥∥+
∣∣∣〈Xk̂ξ, X∗k̂ξ〉∣∣∣) ≥ ∣∣∣〈Xk̂ξ, k̂ξ〉∣∣∣2 (12)

for any ξ ∈ Ω. Taking the supremum in (12) over ξ ∈ Ω, we deduce the desired inequality

ber2 (X) ≤ 1

2

(
ber

(
X2
)

+ ‖X‖2Ber

)
.

�
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The following is a generalization of the inequality in (11).

Theorem 3. If X ∈ BA,r (H), then, we have

bernA (X) ≤ 1

2n−1
berA

(
Xn)+ ‖X‖A−Ber

n−1∑
s=1

1

2s
bern−s−1

A (X)
∥∥Xs∥∥

A−Ber
,

for any n = 2, 3, ...

Proof: Let ξ ∈ Ω be arbitrary. First we need to show that

∣∣∣〈Xk̂ξ, k̂ξ〉
A

∣∣∣n ≤ 1

2n−1

∣∣∣〈Xnk̂ξ, k̂ξ

〉
A

∣∣∣+

n−1∑
s=1

1

2s

∣∣∣〈Xk̂ξ, k̂ξ〉
A

∣∣∣n−s−1 ∥∥∥Xsk̂ξ

∥∥∥
A

∥∥∥X#k̂ξ

∥∥∥
A
, (13)

for any n = 2, 3, ... To establish the needed inequality, we shall utilize induction on n. Simply substituting e = k̂ξ, x = Xk̂ξ and y = X#k̂ξ
in (8), established that that the inequality (13) is valid for n = 2. Presume, on the other hand, that (13) holds true for n. We get∥∥∥Xnk̂ξ

∥∥∥
A

∥∥∥X#k̂ξ

∥∥∥
A

+
∣∣∣〈Xn+1k̂ξ, k̂ξ

〉
A

∣∣∣ ≥ 2
∣∣∣〈Xnk̂ξ, k̂ξ

〉
A

∣∣∣ ∣∣∣〈Xk̂ξ, k̂ξ〉
A

∣∣∣
by using the inequality (8) with x = Xnk̂ξ and y = X#k̂ξ . We get

∥∥∥Xnk̂ξ

∥∥∥
A

∥∥∥X#k̂ξ

∥∥∥
A

+
∣∣∣〈Xn+1k̂ξ, k̂ξ

〉
A

∣∣∣ ≥ 2n
∣∣∣〈Xnk̂ξ, k̂ξ

〉
A

∣∣∣n+1

−
n−1∑
s=1

2n−s
∣∣∣〈Xk̂ξ, k̂ξ〉

A

∣∣∣n−s ∥∥∥Xsk̂ξ

∥∥∥
A

∥∥∥X#k̂ξ

∥∥∥
A

under the premise. Then, we have

∣∣∣〈Xn+1k̂ξ, k̂ξ

〉
A

∣∣∣ ≥ 2n
∣∣∣〈Xnk̂ξ, k̂ξ

〉
A

∣∣∣n+1
−

n∑
s=1

2n−s
∣∣∣〈Xk̂ξ, k̂ξ〉

A

∣∣∣n−s ∥∥∥Xsk̂ξ

∥∥∥
A

∥∥∥X#k̂ξ

∥∥∥
A
.

Thus, ∣∣∣〈Xnk̂ξ, k̂ξ

〉
A

∣∣∣n+1
≤ 1

2n

∣∣∣〈Xn+1k̂ξ, k̂ξ

〉
A

∣∣∣+

n∑
s=1

1

2n

∣∣∣〈Xk̂ξ, k̂ξ〉
A

∣∣∣n−s ∥∥∥Xsk̂ξ

∥∥∥
A

∥∥∥X#k̂ξ

∥∥∥
A
.

and so by taking the supermum over ξ ∈ Ω in (13) and using the fact
∥∥∥X#

∥∥∥
A

= ‖X‖A for every X ∈ BA (H), we get

bernA (X) ≤ 1

2n−1
berA

(
Xn)+ ‖X‖A−Ber

n−1∑
s=1

1

2s
bern−s−1

A (X)
∥∥Xs∥∥

A−Ber

as required. �

The following is a consequence of Theorem 3.

Corollary 2. If X ∈ BA,r (H), then we have

ber2
A (X) ≤ 1

2

(
berA

(
X2
)

+ ‖X‖2A−Ber

)
.

Theorem 4. ([18, Theorem 2.12]) Let Y,X ∈ B (H). Then

ber2 (Y +X) ≤ ber2 (Y ) + ber2 (X) + ‖Y ‖Ber ‖X‖Ber + ber
(
Y ∗X

)
.

The following result is an extension of Theorem 4.

Theorem 5. If Y,X ∈ BA,r (H), then we have

ber2
A (Y +X) ≤ ber2

A (Y ) + ber2
A (X) + ‖Y ‖A−Ber ‖X‖A−Ber + berA

(
Y #X

)
.
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Proof: We have

∣∣∣〈(Y +X) k̂ξ, k̂ξ

〉
A

∣∣∣2 =
∣∣∣〈(Yk̂ξ +X

k̂ξ

)
, k̂ξ

〉
A

∣∣∣2
=
∣∣∣〈Y k̂ξ, k̂ξ〉

A
+
〈
Xk̂ξ, k̂ξ

〉
A

∣∣∣2
≤
(∣∣∣〈Y k̂ξ, k̂ξ〉

A
+
〈
Xk̂ξ, k̂ξ

〉
A

∣∣∣)2

=
∣∣∣〈Y k̂ξ, k̂ξ〉

A

∣∣∣2 +
∣∣∣〈Xk̂ξ, k̂ξ〉

A

∣∣∣2 + 2
∣∣∣〈Y k̂ξ, k̂ξ〉

A

∣∣∣ ∣∣∣〈Xk̂ξ, k̂ξ〉
A

∣∣∣ .
By taking x = Xk̂ξ and y = Y k̂ξ in the inequality (8), we have

∣∣∣〈Y k̂ξ, k̂ξ〉
A

∣∣∣2 +
∣∣∣〈Xk̂ξ, k̂ξ〉

A

∣∣∣2 + 2
∣∣∣〈Y k̂ξ, k̂ξ〉

A

∣∣∣ ∣∣∣〈Xk̂ξ, k̂ξ〉
A

∣∣∣
≤
∣∣∣〈Y k̂ξ, k̂ξ〉

A

∣∣∣2 +
∣∣∣〈Xk̂ξ, k̂ξ〉

A

∣∣∣2 + ‖Y ‖A−Ber ‖X‖A−Ber +
∣∣∣〈Y #Xk̂ξ, k̂ξ

〉
A

∣∣∣
and ∣∣∣〈(Y +X) k̂ξ, k̂ξ

〉
A

∣∣∣2 ≤ ∣∣∣〈Y k̂ξ, k̂ξ〉
A

∣∣∣2 +
∣∣∣〈Xk̂ξ, k̂ξ〉

A

∣∣∣2 + ‖Y ‖A−Ber ‖X‖A−Ber +
∣∣∣〈Y #Xk̂ξ, k̂ξ

〉
A

∣∣∣ . (14)

By taking the supremum over ξ ∈ Ω in the above inequality,

sup
ξ∈Ω

∣∣∣〈(Y +X) k̂ξ, k̂ξ

〉
A

∣∣∣2 ≤ sup
ξ∈Ω

{∣∣∣〈Y k̂ξ, k̂ξ〉
A

∣∣∣2 +
∣∣∣〈Xk̂ξ, k̂ξ〉

A

∣∣∣2 + ‖Y ‖A−Ber ‖X‖A−Ber +
∣∣∣〈Y #Xk̂ξ, k̂ξ

〉
A

∣∣∣}

which is equivalent to

ber2
A (Y +X) ≤ ber2

A (Y ) + ber2
A (X) + ‖Y ‖A−Ber ‖X‖A−Ber + berA

(
Y #X

)
as desired inequality. �

In the following, we define

B = ReAX :=
1

2

(
X +X#

)
and C = ImAX :=

1

2i

(
X −X#

)
for any arbitrary operator X = B + iC ∈ BA,r (H)

We are now ready to express the following theorem.

Theorem 6. If Xj ∈ BA,r (H) with Xj = Bj + iCj for j = 1, ..., k, then we have

bernA

 k∑
j=1

Xj

 ≤ (√2k
)n−1 k∑

j=1

∥∥∥B2n
j + C2n

j

∥∥∥1/2

A−Ber

for all n ≥ 1. In particular, ber (X) ≤
(√

2
)n−1

∥∥∥B2n + C2n
∥∥∥1/2

A−Ber
.

Proof: Let ξ ∈ Ω be arbitrary. It is not difficult to demonstrate that

∣∣∣∣∣∣
k∑
j=1

〈
Xj k̂ξ, k̂ξ

〉∣∣∣∣∣∣
n

≤

 k∑
j=1

(∣∣∣〈Bj k̂ξ, k̂ξ〉∣∣∣2 +
∣∣∣〈Cj k̂ξ, k̂ξ〉∣∣∣2) 1

2

n .
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By using the Cauchy-Schwarz inequality, we get

∣∣∣∣∣∣
k∑
j=1

〈
Xj k̂ξ, k̂ξ

〉∣∣∣∣∣∣
n

≤

 k∑
j=1

(∥∥∥Bj k̂ξ∥∥∥2 ∥∥∥k̂ξ∥∥∥2
+
∥∥∥Cj k̂ξ∥∥∥2 ∥∥∥k̂ξ∥∥∥2

) 1
2

n

=

 k∑
j=1

(〈(
B∗jBj

)
k̂ξ, k̂ξ

〉
+
〈(
C∗jCj

)
k̂ξ, k̂ξ

〉) 1
2

n

=

 k∑
j=1

(〈
B2
j k̂ξ, k̂ξ

〉
+
〈
C2
j k̂ξ, k̂ξ

〉) 1
2

n

≤ kn−1
k∑
j=1

(〈
B2
j k̂ξ, k̂ξ

〉
+
〈
C2
j k̂ξ, k̂ξ

〉)n
2

(by the inequality (4))

≤
(√

2k
)n−1 k∑

j=1

(〈
B2
j k̂ξ, k̂ξ

〉n
+
〈
C2
j k̂ξ, k̂ξ

〉n) 1
2

(by the inequality (9))

≤
(√

2k
)n−1 k∑

j=1

(〈(
B2
j

)n
k̂ξ, k̂ξ

〉
+
〈(
C2
j

)n
k̂ξ, k̂ξ

〉) 1
2

(by the inequality (3))

=
(√

2k
)n−1 k∑

j=1

〈(
B2n
j + C2n

j

)
k̂ξ, k̂ξ

〉 1
2

≤
(√

2k
)n−1 k∑

j=1

∥∥∥(B2n
j + C2n

j

)
k̂ξ

∥∥∥ 1
2
.

and so, ∣∣∣∣∣∣
k∑
j=1

〈
Xj k̂ξ, k̂ξ

〉∣∣∣∣∣∣
n

≤
(√

2k
)n−1 k∑

j=1

∥∥∥(B2n
j + C2n

j

)
k̂ξ

∥∥∥1/2
.

Taking the supremum over ξ ∈ Ω in above inequality, we deduce

bern

 k∑
j=1

Xj

 ≤ (√2k
)n−1 k∑

j=1

∥∥∥B2n
j + C2n

j

∥∥∥1/2
.

SinceXj , Bj , Cj ∈ B
A

1
2

(H) , so there exists unique X̃j , B̃j , and C̃j in B
(
R
(
A

1
2

))
such that VABj = B̃jVA, VACj = C̃jVA, VAXj =

X̃jVA. This implies that

bern

 k∑
j=1

X̃j

 ≤ (√2k
)n−1 k∑

j=1

∥∥∥∥(B̃j)2n
+
(
C̃j

)2n
∥∥∥∥1/2

B
(
R
(
A

1
2

)) .
By using (5) and (6), we deduce

bern

 k̃∑
j=1

Xj

 ≤ (√2k
)n−1 k∑

j=1

∥∥∥∥ ˜B2n
j + C2n

j

∥∥∥∥ 1
2

B
(
R
(
A

1
2

)) .
which is equivalent to

bernA

 k∑
j=1

Xj

 ≤ (√2k
)n−1 k∑

j=1

∥∥∥B2n
j + C2n

j

∥∥∥1/2

A−Ber
.

This completes the proof. �

Finally, we will provide the following outcome.
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Theorem 7. If Xj ∈ BA,r (H) with Xj = Bj + iCj for j = 1, ..., k, then, we have

bernA

 k∑
j=1

Xj

 ≤ 2
n
2−1kn−1

n∑
j=1

∥∥∥(Bj + Cj
)2n

+
(
Bj − Cj

)2n∥∥∥
A−Ber

for all n ≥ 1. In particular, bernA (X) ≤ 2
n
2−1

∥∥∥(B + C)2n + (B − C)2n
∥∥∥1/2

A−Ber
.

Proof: Let ξ ∈ Ω be arbitrary. By using the inequalities in (2), (3) and (4), we get∣∣∣∣∣∣
k∑
j=1

〈
Xj k̂ξ, k̂ξ

〉∣∣∣∣∣∣
n

≤

 k∑
j=1

(〈
Bj k̂ξ, k̂ξ

〉2
+
〈
Cj k̂ξ, k̂ξ

〉2
) 1

2

n

=

 k∑
j=1

(
1

2

(〈(
Bj + Cj

)
k̂ξ, k̂ξ

〉2
+
〈(
Bj − Cj

)
k̂ξ, k̂ξ

〉2
)) 1

2

n

≤ kn−12−
n
2

k∑
j=1

(〈(
Bj + Cj

)
k̂ξ, k̂ξ

〉2
+
〈(
Bj − Cj

)
k̂ξ, k̂ξ

〉2
)n

2

≤ kn−12−
n
2

k∑
j=1

(〈(
Bj + Cj

)2
k̂ξ, k̂ξ

〉
+
〈(
Bj − Cj

)2
k̂ξ, k̂ξ

〉)n
2

≤ kn−12
n
2−1

k∑
j=1

(〈(
Bj + Cj

)2
k̂ξ, k̂ξ

〉n
+
〈(
Bj − Cj

)2
k̂ξ, k̂ξ

〉n) 1
2

≤ kn−12
n
2−1

k∑
j=1

(〈(
Bj + Cj

)2n
k̂ξ, k̂ξ

〉
+
〈(
Bj − Cj

)2n
k̂ξ, k̂ξ

〉) 1
2

= kn−12
n
2−1

k∑
j=1

(〈((
Bj + Cj

)2n
+
(
Bj − Cj

)2n)
k̂ξ, k̂ξ

〉) 1
2
.

By the Cauchy-Schwarz inequality, we see that∣∣∣∣∣∣
k∑
j=1

〈
Xj k̂ξ, k̂ξ

〉∣∣∣∣∣∣
n

≤ kn−12
n
2−1

k∑
j=1

(∥∥∥(Bj + Cj
)2n

+
(
Bj − Cj

)2n∥∥∥) .
Taking the supremum over ξ ∈ Ω in above inequality, we have

bern

 k∑
j=1

Xj

 ≤ kn−12
n
2−1

n∑
j=1

∥∥∥(Bj + Cj
)2n

+
(
Bj − Cj

)2n∥∥∥ .
Now, for all j = 1, 2, ..., k, we have Xj , Bj , Cj ∈ B

A
1
2

(H) , so there exists unique X̃j , B̃j , and C̃j in B
(
R
(
A

1
2

))
such that VABj =

B̃jVA, VACj = C̃jVA, VAXj = X̃jVA. This implies that

bern

 k∑
j=1

X̃j

 ≤ kn−12
n
2−1

n∑
j=1

∥∥∥∥(B̃j + C̃j

)2n
+
(
B̃j − C̃j

)2n
∥∥∥∥
B
(
R
(
A

1
2

)) .
By using (5), (6) and ‖X‖A = ‖X‖

B
(
R
(
A

1
2

)) , X ∈ B
A

1
2

(H) , we deduce

bern

 k̃∑
j=1

Xj

 ≤ 2
n
2−1kn−1

n∑
j=1

∥∥∥(Bj + Cj
)

2̃n+
(
Bj − Cj

)2n∥∥∥
B
(
R
(
A

1
2

))

and

bernA

 k∑
j=1

Xj

 ≤ 2
n
2−1kn−1

n∑
j=1

∥∥∥(Bj + Cj
)2n

+
(
Bj − Cj

)2n∥∥∥
A−Ber

.

This concludes the theorem’s proof. �

We recommend [14, 15] for more current studies on Berezin radius inequalities for operators and other relevant results.
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Abstract: In this paper, Convolutional Neural Network(CNN) based traffic sign recognition has been introduced for various condi-
tions that an autonomous vehicle may encounter. The recognition performance of the CNN based traffic sign recognizer has been
examined for nominal, snowy, obstacle and damaged cases. For this purpose, CNN has been trained primarily by using nominal
traffic signs. Then, for validation phase, the approximation accuracy of CNN based traffic sign recognizer has been evaluated for
traffic signs covered with snow, obstacle and damaged conditions. Even in the toughest conditions, CNN correctly recognizes
traffic signs with approximately 70% accuracy. The acquired results indicate that the CNN can be deployed successfully in traffic
sign recognition.

Keywords: Convolutional Neural Network, Deep Learning, Optimization Theory, Traffic Sign Recognition.

1 Introduction

Convolutional Neural Networks(CNN) have been frequently used in pattern recognition-based engineering problems in recent years due to their
superior non-linear estimation capabilities. The most significant advantage of the CNN structure compared to Multi Layer Perceptron(MLP) is
that the dimension of the data is reduced by using various filters in the convolution layers and thus the low-dimensional data is prepared for the
MLP structure. Thus, the computational load of the MLP is reduced.

The pattern recognition problem in which the CNN structure is deployed most effectively is the recognition of traffic signs. In recent years,
the control and driving performance of autonomous vehicles is directly related to the correct recognition of traffic signs pattern. For this reason,
artificial intelligence-based pattern recognition algorithms are frequently used in autonomous vehicles.

In technical literature, there are various traffic sign recognition architectures based on machine learning. Castellano et al[1] proposed an
automatic traffic sign detection method based on k-Nearest Neighbors and Support Vector Machines(SVM) to enhance performance limitations
of current automatic sign detection systems, specially for achromatic signs and variable lighting conditions. Fourier descriptors with SVM based
classification algorithm is deployed for the description of sign shapes[1]. Lorsakul and Suthakorn[2] introduced neural network-based traffic
sign recognizer. Image processing techniques, such as, threshold technique, Gaussian filter, Canny edge detection, Contour and Fit Ellipse
deployed in preprocessing phase[2]. The supervised backpropogation algorithm is deployed to train MLP structure with sigmoid activation
functions[2]. Zhang et al [3] utilized multiscale cascaded regional convolutional neural network(RCNN) structure in traffic sign recognizer to
overcome some drawbacks of traffic sign detection problem such as undetected smal signs and false signs owing to interferences caused by
illumination variation, bad weather and some signs similiar to the traffic signs. Cao et al[4] deployed faster region-based CNN(Faster R-CNN)
for small object detection in traffic to deal with the positioning deviation caused by traditional methods and recognizing small traffic signs
lost in the complexity of the background.For this purpose, Convolutional feature fusion and soft-non-maximum supression(NMS) algorithm
are employed to enhance recognition accuracy[4]. Tabernik and Skocaj[5] proposed to use Mask RCNN(extension of faster RCNN) based
architecture for the problem of detecting and recognizing a large number of traffic-sign categories for the main purpose of automating the
traffic-sign inventory management. Stochastic gradient descent is deployed as learning algorithm[5].

In this paper, CNN based traffic sign recognition has been proposed for self-driving cars. More complex patterns with snowy, obstacle and
damaged features have been applied to assess the recognition performance of the CNN structure.

This paper is organized as follows: the fundamentals of CNN are overviewed in Section section 2. Traffic sign recognition via CNN is
given in Section section 3. The performance of the CNN traffic sign recognizer is evaluated in Section section 4. The paper ends with a brief
conclusion part in Section section 5.

2 Convolutional Neural Network

In this section, the fundamentals of ANN and CNN are overviewed. Since the CNN structure is exactly the same as MLP, except for the
filters that provide the preprocessing process, and CNN is based on MLP, the basis of ANN topology is given in Section subsection 2.1. In
section subsection 2.2, the CNN architecture is explained.
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2.1 An Overview of Artificial Neural Network

Artificial neural networks are learning systems inspired by human biological neural networks. ANNs aim is to mimic the learning mechanism
of neuron by utilizing optimization theory. The MIMO(multi input-multi output) MLP architecture is illustrated in Figure 1 which is composed
of input, hidden and output layers, respectively where wh

S,N , is hidden layer weights,bhS denotes the bias of hidden neurons, Φ(, ) stands
for activation function and wo

m,S represents the weights of output layer[6, 7]. In order to provide nonlinearity, various nonlinear activation
functions can be used in hidden layer. Depending on the complexity of the identification problem, it is possible to increase the number of the
hidden layers. ANN aims to find the optimal weights which map input feature vector to the given output by optimizing the network weights.
For this purpose, first order and second order learning algorithms such as gradient descent and Newton-Raphson can be employed to minimize
learning error. In addition to the weights that provide the connection between neurons, the parameters of the activation functions can also
be optimized. Since MLPs are accepted as universal approximators, it is possible to employ ANN to solve various engineering problem by
obtaining the optimal set of weights for MLP.

Fig. 1: MIMO MLP Structure[8, 9]

2.2 Convolutional Neural Network

Convolutional neural network is one of the most popular deep learning algorithms. CNN is generally used for image classification, object
detection, recommender systems, medical image analyses, natural language processing(NLP) etc.[4, 9, 11]. CNN illustrated in Figure 2 is
composed of convolutional, pooling layers and fundamental MLP architecture. In convolutional and pooling layer, it is aimed to obtain the

Fig. 2: CNN Architecture[12, 13]

significant features for MLP structure. This process can be considered as preprocessing operation to reduce the dimension of the input pattern.
Therefore, one of the main purposes of convolutional neural networks is to reduce the number of the parameters in ANN[11]. In the convolution
and pooling layers, filters are applied to the input pattern in order to extract the features of the input image. If the input pattern is considered as a
traffic sign, the convolution and pooling layer allows to find the features of the plate shape such as rectangular, circle etc. and the characteristic
of the sign such as stop, zigzag, speed limit etc. The pooling process is applied to reduce the complexity for further layers[11]. Max-pooling
method is commonly deployed as pooling method[11]. In the max pooling process, the highest value pixels among some pixels in the image
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are taken and the input is made simpler. Depending on the complexity of the input pattern, convolution and pooling operations can be increased
as desired. Thus, the complex input pattern in input layer is made suitable for MLP by reducing its dimension to increase the performance of
MLP. Using the input-output data set, the network parameters of the MLP can be optimized to learn the correlation among input-output data
via derivative or evolutionary based optimization algorithms.

3 Traffic Sign Recognition via CNN

CNN is frequently deployed in traffic sign detection. The data set composed of various traffic signs is divided into train and test data sets before
training phase[14]. By using convolutional and pooling layers, the features of the input training pattern are extricated to simplfy the recognition
problem for MLP structure. These features can be the outer shape of the sign, the color of the sign, the characteristic of the sign such as stop,
zigzag, speed limit etc[14, 15]. Then, the outputs of convolutional and pooling layer are flattened as an input vector for MLP. Then, the outputs

Fig. 3: CNN Approximation accuracy for traffic sign detection for nominal case (%).

of convolutional and pooling layer are flattened as an input vector for MLP. Then, using the processed input data for MLP and output data, the
weights of the MLP can be optimized by using learning algorithms. After each training phase, test data is applied to the CNN. When the testing
error starts to increase, training phase is terminated in order to prevent overfitting. Owing to the non-convex structure of the objective function
in CNN, the algorithm may get stuck at local minima. In order to overcome this situation, some weights in MLP can be randomly changed to
jump from this stuck local minima. In addition to this, it is possible to deploy evolutionary or swarm based learning algorithm to train weights
of the CNN. In validation phase, the recognition accuracy of the model which belows a certain threshold value can be ignored. In addition to
the recognition accuracy of CNN, the computational load is significant in applications. Therefore, CNN model with low computational load is
more preferable than those with the same recognition accuracy.

Fig. 4: CNN Approximation accuracy for traffic sign detection for snowy case (%).

4 Simulation Results and Discussion

The performance of the CNN has been examined for four different cases: Nominal, snowy, obstacle, damaged. The CNN architecture is trained
by using the nominal case data. CNN is trained by using 58, 92 and 136 training data for speed limit, stop sign and zigzag traffic signs,
respectively. In order to evaluate the robustness and performance of the CNN, the CNN is tested on obstacle, damaged and snowy cases in
addition to nominal case. The performance of the CNN for nominal case is shown in Figure 3. As it is expected, the CNN model has the best
approximation accuracy in nominal case. As illustrated in Figure 4 for snowy case, the traffic signs are covered with snow. In spite of this
condition, the minimum prediction accuracy of the CNN is about 87%. Since the trees grow in front of the traffic signs and they get in front
of the sign until the authorities correct this situation, so that it becomes impossible to recognize the sign or it becomes difficult to recognize.
Therefore, the CNN performance is assessed with respect to obstacle case as illustrated in Figure 5. As shown in Figure 5 for obstacle case,
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CNN has about 91% recognition performance. Owing to the weather conditions, human factor, traffic accidents, the traffic signs may wear
out and get damaged. For this reason, it becomes difficult to recognize these damaged signs. Therefore, the performance of the CNN has been
tested by considering damaged cases as depicted in Figure 6. As illustrated for damaged case, CNN has 70% accurate recognition performance.
In a nutshell, even in the worst condition given in Figure 6, CNN has almost 70% accuracy. By using traffic signs under snowy, obstacle and

Fig. 5: CNN Approximation accuracy for traffic sign detection for obstacle case (%).

Fig. 6: CNN Approximation accuracy for traffic sign detection for damaged case (%).

damaged cases in training data set, the approximation performance can be enhanced for snowy, obstacle and damaged cases.

5 Conclusion and Future Works

In this paper, traffic sign recognizer based on CNN has been introduced for various forceful conditions in pattern recognition. The validation
performance of the CNN based traffic sign recognizer has been assessed for snowy, obstacle and damaged cases. Even in damaged conditions,
which is one of the most difficult conditions for pattern recognition, CNN has approximately 70% approximation accuracy. Only nominal data
has been utilized in training phase of the CNN. By using snowy, obstacle and damaged patterns, the recognition performance of CNN can be
enhanced. As future work, in addition to traffic sign recognition, it is intended to be used in recognition of pedestrians and obstacles on road
such as stones, potholes etc.
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Abstract: In this paper, an adjustment mechanism based on peak observer for fuzzy PID controller has been proposed for nonlin-
ear dynamical systems. The peak observer based adjustment mechanism proposed by Qiao and Mizumoto [1] has been improved
for nonlinear control systems by taking into account adaptation of all controller parameters and peak observer parameter. The
peak observer mechanism is constituted by considering mth order term derived over tracking error. Thus, in addition to scaling
coefficients of fuzzy PID controller, the degree of the observer is also considered as a design parameter. Therefore, in order to
enhance closed-loop system performance, the degree of the term used in observer is optimized by using grid search algorithm.
The performance of introduced adaptive fuzzy controller has been examined on nonlinear continously stirred tank reactor (CSTR)
system. The obtained results indicate that the proposed adjustment mechanism is quite successful for the adaptive control of
nonlinear dynamical systems.

Keywords: Adaptive Control, Fuzzy PID Controller, Grid Search, Peak Observer, Peak Observer based Optimization.

1 Introduction

Fuzzy control is one of the most popular and convenient field where fuzzy set theory is most frequently deployed. Fuzzy controllers provide
very successful performance in the control of systems whose mathematical model is difficult to obtain, especially those with non-linear and
uncertain dynamics. Fuzzy PID has an effective control structure because it combines the information representation feature of fuzzy logic and
the robustness of the PID controller.

Adaptive control architectures can be utilized so as to enhance the adaptability of the fuzzy PID controller parameters against the uncertainties
in the system dynamics and the disturbances affecting the system behaviour.

In technical literature, there are various adadaptation architecture for fuzzy controllers. Chou and Lu [2] presented a self-tuning fuzzy
controller based on adjustment of scaling factors. In this structure, the adaptation rules are transformed into numerical tuning tables by applying
the appropriate membership functions, so that the adaptation of the scaling factors is just matrix mapping. Jung et al (1995) [3] proposed a
real-time adaptation mechanism based on instantaneous system fuzzy performance (ISFP). This adaptation method uses a variable reference
setting directory. An instantaneous system fuzzy performance uses two reference setting indices for overshoot and non-overshoot, respectively
[3]. Maeda and Murakami [4] proposed a mechanism that adapts the controller parameters according to a fuzzy rule base created depending
on the exceedance value, the time to reach the reference and the amplitude value. Mudi and Pal [5] proposed a structure that adapts the output
scaling coefficients online according to the trend of the controlled system. The rule base required for the output scaling coefficients is defined
depending on the derivative of the tracking error and the tracking error [5]. Zheng [6] proposed a mechanism by which the peak values and
scaling coefficients of the membership functions and rules are adapted[6]. Chung et al [7] presented a mechanism for adapting the tracking
error coefficient, tracking error derivative coefficient and integrator scaling coefficients for a PI type fuzzy controller, depending on the tracking
error and the derivative of the error[7]. Chao and Teng [8] presented an adaptation mechanism based on the gradient descent method for the
adaptation of fuzzy PD scaling coefficients.

In this paper, an incremental fuzzy PID controller in which all scaling coefficients are adjusted via peak observer has been proposed for
nonlinear dynamical systems. The peak observer based adjustment mechanism introduced by Qiao and Mizumoto [1] has been enhanced to
tune all controller parameters. In addition to scaling coefficients, the degree of the term produced by peak observer is considered as a design
parameter, and optimized via grid search algorithm. Thus, the flexibility of the fuzzy PID controller and peak observer is deepened so as to
improve the performance of the nonlinear control system. This organization of the paper is given as follows: the fundamentals of peak observer
based adaptation mechnanism introduced by Qiao and Mizumoto [1] has been overviewed in Section 2. The contribution introduced in this
paper has been detailed in Section 3. The adaptation performance of the proposed mechanism has been evaluated on a nonlinear CSTR system
in Section 4. The paper ends with a brief conclusion part in Section 5

c© CPOST 2022 85



2 An Overview of Adaptive Fuzzy PID Controller based on Peak Observer

The block diagram of incremental fuzzy PID controller is shown in Figure 1 where K and Kd input parameters to scale tracking error and
derivative of tracking error, and α and β are output parameters to weight the PD and PI parts of the fuzzy PID controller, respectively[9–11].
The incremental fuzzy PID control law is composed of PD and PI control laws as follows:

Fig. 1: Incremental Fuzzy PID Controller[1, 9, 11].

uPID [n] =

uPD[n]︷ ︸︸ ︷
αfFLC (es [n] ,∆es [n]) +

uPI[n]︷ ︸︸ ︷
βfFLC (es [n] ,∆es [n]) + uPI [n− 1] (1)

where es [n] and ∆es [n] are scaled error and derivative of error, α and β are output scaling coefficients. The input membership functions
in FLC are given in Figure 2. As illustrated in Figure 2, four(4) rules are fired from the rule base depending on current es [n] and ∆es [n]
values[10, 11]. Product-sum inference method and center of gravity defuzzification method [1] are utilized in FLC. Thus, the output of the FLC
can be derived as follows [1, 10, 11]:

fFLC (es [n] ,∆es [n]) =

wi j︷ ︸︸ ︷
Ai (es [n])Bj (∆es [n])ui j +

wi+1 j︷ ︸︸ ︷
Ai+1 (es [n])Bj (∆es [n])ui+1 j

+Ai (es [n])Bj+1 (∆es [n])︸ ︷︷ ︸
wi j+1

ui j+1 +Ai+1 (es [n])Bj+1 (∆es [n])︸ ︷︷ ︸
wi+1 j+1

ui+1 j+1
(2)

where wij ’s denote the firing strength of the corresponding fired rule, and corresponding membership values are given as follows[1, 10, 11]:

Ai (es [n]) =
ei+1 − es [n]

ei+1 − ei
, Ai+1 (es [n]) =

es [n]− ei
ei+1 − ei

Bj (∆es [n]) =
ėj+1 −∆es [n]

ėj+1 − ėj
, Bj+1 (∆es [n]) =

∆es [n]− ėj
ėj+1 − ėj

(3)

Fuzzy rule base proposed in [1] to constitute FLC is given in Table 1, and rule base is depictured in Figure 3.
Table 1: Fuzzy Control Rule Base[1].

MFs ė−2 ė−1 ė0 ė1 ė2
e−2 -1.0 -0.7 -0.5 -0.3 0.0
e−1 -0.7 -0.4 -0.2 0 0.3
e0 -0.5 -0.2 0.0 0.2 0.5
e1 -0.3 0.0 0.2 0.4 0.7
e2 0.0 0.3 0.5 0.7 1.0

In order to analyse the dynamic behavior of the fuzzy PID controller over standart PID parameters, the control law can be linearized in the

neighborhood of fired rules as detailed in [1]. Thus, the control law can be reexpressed as[1]:

u = A+ Pes [n] +D∆es [n]

A = uij − Pei −Dėj

P =
ui+1 j − uij
ei+1 − ei

D =
ui j+1 − uij
ėj+1 − ėj

(4)

If the input-output scaling coefficients are substituted in (4) and the terms are matched with conventional PID controller, the equivalent stan-
dart PID components can be acquired as âĂIJαKP + βKdDâĂİ proportional term, âĂIJβKP âĂİ integral term and âĂIJαKdDâĂİ derivative
term. In order to improve the performance of fuzzy PID, Qiao and Mizumoto [1] proposed peak observer based adjustment mechanism which
tunes the controller parameters depending on peak values of controlled system output. Peak observer based adjustment mechanism is illus-
trated in Figure 4. The adjustment mechanism aims to decrease the integral term(βKP ) while increasing the derivative term(αKdD) so as
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Fig. 2: Input Membership Functions and Fuzzy Rule Base[1, 10, 11].

Fig. 3: Linear Fuzzy Rule Base constituted via Table 1[1].

to strengthen the resistance against the overshoots and oscillations in controlled system[1]. For this purpose, Kd input and β output scaling
coefficients can be adjusted as in (5) depending on the absolute error value(δk = |ek|) observed at peak times:

Kd =
Kd0
δk

, β = β0δk (5)

where tk, k ∈ {1, 2, 3, · · · } are the peak times[1].

3 Adaptive Fuzzy PID Controller based on Peak Observer with mth Order Term

The aim in this study is to adapt all scaling coefficients of the fuzzy PID controller inspired by the peak observer based adaptation mechanism
proposed by Qiao and Mizumoto in [1]. For this purpose, the K parameter, which scales the error signal, and the α parameter, which scales the
derivative term, are also adapted. The derivative coefficient is increased while the integrator is decreased by keeping proportional term fixed.
Thus, all scaling coefficients can be updated as follows:

KnewKdnew

αnew
βnew

 =


Kδm
Kd
δmα
δm
βδm

 (6)
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Fig. 4: Peak Observer based Adjustment Mechanism[1].

where δm indicates the corresponding peak observer value and âĂIJmâĂİ is the power of this term. The introduced adaptation mechanism
is illustrated in Figure 5. The internal structure of fuzzy PID controller with adaptive parameters is depicted in the Figure 6 where triangular

Fig. 5: Adaptive Fuzzy MIMO PID controller based on Peak Observer.

type membership functions given in Figure 2 and the fuzzy rule base in Table 1 and Figure 3 are deployed to constitute fuzzy rules. Product

Fig. 6: Adaptive Fuzzy PID Controller.

operation and center of gravity method are utilized as inference mechanism and defuzzification method respectively. When the proposed
adaptive mechanism is compared to an equivalent standard PID controller, the proportional term is attained as âĂIJαKP + βKdDâĂİ, the
integral term is obtained as âĂIJβ0K0δ

2mP âĂİ, and derivative term is derived as âĂIJαKdD
δ2m

âĂIJ. It is very significant to emphasize that the
equivalent PID parameters obtained for m = 0.5 and the equivalent parameters of the controller structure proposed by Qiao and Mizumoto [1]
are different since the P , A and D terms are a function of the scaled error and derivative of error as given in (4).

4 Simulation Results

The adaptation mechanism has been examined on a nonlinear CSTR system. The schematic diagram of CSTR system is depicted in Figure 7
[10, 12, 13]. The dynamics of the CSTR can be expressed by using the following differential equations:
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Fig. 7: CSTR system[10, 12, 13].

ẋ1 (t) = 1− x1 (t)−Da1x1 (t) +Da2x
2
2 (t)

ẋ2 (t) = −x2 (t) +Da1x1 (t)−Da2x22 (t)−Da3d2 (t)x22 (t) + u (t)

ẋ3 (t) = −x3 (t) +Da3d2 (t)x22 (t) + u (t)

(7)

where x1 (t) and x2 (t) denote the inlet reactants(A,B), and x3 (t) represents the product C, Da1 = 3, Da2 = 0.5, Da3 = 1, u (t) is the
control signal, x3 (t) is the system output, d2 (t) is time varying system parameter[13–15]. Grid search algorithm has been employed to

Fig. 8: Optimization of n term via Grid Search Algorithm.

determine the optimal m value(degree of the δ term) that minimize the following objective function:

J (m) =

∫ t=tf
t=0

[
|e (t) |+ |du (t)

dt
|
]
dt (8)

It has been aimed to minimize the tracking error and alternation on control signals as given in (8) for m ∈ [−1 3] with 0.01 intervals. The
results of the grid search algorithm is illustrated in Figure 8. The initial parameters are chosen as K0 = 2.5, Kd,0 = 0.5, α0 = 0.25 and
β0 = 7.5. The tracking performances of the CSTR system for various m values are illustrated in Figure 9 in response to step function. The
performances of the non-adaptive fuzzy PID controller(m = 0) and adjustment mechanism proposed by Qiao and Mizumoto [1] are illustrated
in Figure 9 (a). While the non-adaptive controller includes oscillation, the controller structure proposed by Qiao and Mizumoto [1] improves
the tracking performance of the closed-loop system. As mentioned in Section 3, the equivalent standard PID parameters for controller proposed
by Qiao and Mizmoto [1] and the proposed controller structure in this paper can be assumed to be equivalent. However, the difference of the
P A and D terms in (4) ensures that the equivalent standard PID parameters are different. As given in Figure 9 (b), the introduced controller
for m = 0.5 has better tracking performance than fuzzy PID controller proposed by Qiao and Mizmoto [1]. The performace of the fuzzy PID
controller for different values of m are shown in Figure 9 (c,d). The tracking performance for optimal m value is depicted in Figure 9 (d). The
performace index in (8) is deployed to compare the controller performances numerically as given in Figure 10. As can be explicitly seen from
Figure 9(d) and Figure 10, the adaptive fuzzy PID controller with optimalm value has the best tracking performance. The tracking performance
of the introduced adaptive fuzzy PID controller with optimal m value is assessed for staircase input signal as given in Figure 11. As illustrated
in Figure 11, the closed-loop system tracks the desired reference signal as close as possible. The evaluations of the controller parameters for
optimal m value(m∗ = 1.64) are depicted in Figure 12. Depending on the alternation of the desired reference signal, the controller parameters
are adjusted to minimize the tracking error. As given in Figure 12, the resistance against the overshoot and oscillation of the system can be
increased by increasing the equivalent derivative term via α and Kd parameters[1]. Similarly, K and β parameters are diminished to decrease
the equivalent integral term. The main drawback of peak observer based adjustment is that the controller parameters are not updated and are
fixed by the next peak time. This situation is an open problem to enhance the performance of the adjustment mechanism.
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Fig. 9: System Outputs for various m values.

Fig. 10: Performace indeces for various m values.

Fig. 11: System Output(a) and Control Signal(b) for Adaptive Fuzzy PID(m∗ = 1.64).
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Fig. 12: Input Scaling Coefficients(a), and Output Scaling Coefficients(b) (m∗ = 1.64).

5 Conclusion

In this paper, the adjustment mechnanism proposed by Qiao and Mizumoto [1] for Kd and β parameters has been enhanced for all controller
parameters of fuzzy PID controller. In addition to this, the degree of the peak observer is considered as a design parameter and optimal value for
peak observer is optimized via grid search algorithm. The performance of the introduced mechanism is examined on nonlinear CSTR system
by comparing with various degrees of peak observer and Qiao and Mizumoto adaptation method. It has been observed that adaptation of all
controller parameters and degree of peak observer improves the tracking performance of the fuzzy PID controller for nonlinear dynamical
system. As future works, it is aimed to introduce novel adjustment mechanism for fuzzy PID controllers to overcome the drawbacks of the peak
observer based adaptation mechanism.

Acknowledgement
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Abstract: Fermi system is a relativistic field theory for the interaction of fermions. It is two-dimensional massless model. Since
the fermi scale interaction model is the simplest nonlinear spinor model, it has an important place in particle physics as a toy
model. Fermi model exhibits soliton type solutions. The finite-energy, steady-wave solutions of the classical equations of motion
of Lagrangian field theories are called solitons. In this study, the dynamics of soliton type solutions of the Fermi system are inves-
tigated analyzed by constructing spatial-temporal evolution and phase space diagrams.

Keywords: spinor, lagrangian, nonlinear dynamics, phase space, Fermi

1 Introduction

In 1926, SchrÃűdinger turned the strange behavior of electrons in an atom discovered by Bohr into precise mathematical equations, that is, it
was understood that the behavior of small bodies could be determined by nonlinear quantum wave equations, and the success of the spinor-field
nonlinear wave equation solutions written by Dirac in electron and anti-electron interpretation encouraged theoretical physicists to write new
nonlinear field equations and seek physical wave solutions of these equations. With the discovery of new particles, these theoretical studies and
searches became even more attractive. Especially since the 1950s, a great increase has been observed in these efforts in the world of theoretical
physics. A number of theoretical models with broad symmetries that are hoped to cover all particles have been developed and proposed. For this
purpose, the 2-dimensional massless Fermi model was proposed by Walter Thirring [1] in 1958. It is a relativistic field theory for the interaction
of fermions. The interest in Fermi interactions has increased again due to the extraordinary weight of the top quark compared to other quarks
and leptons [2–4].Vector-vector interaction is closely related to Quantum electrodynamics and is also studied in a variety of other contexts.
The model plays an important role in particle physics as it represents a fully solvable coherent field theory with the n-point correlation known
as analytical. In higher dimensions, the model cannot be resolved and renormalized in perturbation theory. Fermi model which is among the
simplest interacting field theories, has been one of the remarkable study areas in the literature due to its thermodynamic properties [5–8]. Also
the model has soliton-type solutions.

It is known that solitons are very important because the soliton approach is universal in different fields of modern nonlinear science. Solitons
are defined as localized waves that can propagate without changing their shape and velocity properties and are stable against mutual interactions.
Solitons were found in the solution of nonlinear wave equations by applied mathematicians in the 19th century. The first observation of solitons
was made by a British marine engineer, J. Scoot Russel, in 1938, by examining wave motion in narrow water channels. Russell found that
there are stable, unchanging waves between long and shallow water waves, and that there may be a relationship between their velocity and
amplitude. Solitons, which are the solutions of nonlinear wave equations discovered by applied mathematicians in the 19th century, were later
used to explain some problems in solid state physics, particle physics and plasma physics. The fact that they have a vacuum state has been
interpreted as corresponding to meaningful solutions in particle physics. In this study, Fermi model is analyzed as a toy model by constructing
the spatial-temporal evolution and phase spaces plots to better understanding the dynamics of soliton solutions.

2 Model

The Lagrangian for extended Fermi model is

L(φ) = Ψ̄
(
iγµ∂µ −m

)
Ψ + λΨ̄ΨU(φ), (1)

where U , is a function of φ = Ψ̄Ψ. The solitonic solution for Fermi model was firstly discovered by M. Soler[9]. The Equation of motion for
Fermi model is given below,

iγµ∂µΨ−mΨ + λV
(
Ψ̄Ψ
)

= 0. (2)

Here λ coupling constant and fermion field Ψ has scale dimension 1
2 . In order to solve the equation we will use soler ansatzs given in Eq. 3.

Ψ = e−iωt

 g(r)

(
1
0

)
if(r)

(
cosθ

eiφsinθ

)
 , (3)
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here f and g are real functions of r and r = x2 + y2 + z2 + t2. Fermi model has 4 component time and 3 dimensional spatial dimensions. If
we insert Eq. 3 in to Eq. 2 then we found,

f ′ +
2

r
f + (m− ω) g + 2λg

(
g2 + f2

)
= 0 (4a)

g′ + (m+ ω) f − 2λf
(
g2 + f2

)
= 0. (4b)

Numerical calculations we transform the Eq. 4a and 4b dimensionless for by using,

f(r) =

(
(m+ ω)

2λ

) 1
2

F (ρ)

g(r) =

(
(m+ ω)

2λ

) 1
2

G(ρ)

r =
ρ

m+ ω
.

Finally we obtain dimesionless form of the fermi model given below,

F ′ +
2

ρ
F + νG−G

(
G2 + F 2

)
= 0 (5a)

G′ + F − F
(
G2 + F 2

)
= 0. (5b)

3 Numerical Results

System fix points are (F,G) = (0, 0.176068); (0, 0); (0,−0.176068) for ν = 0.031 and (F,G) = (0, 0.774597); (0, 0); (0,−0.774597) for
ν = 0.6, respectively. The Jacobian matrix for the system is

J =

[
− 2
r + 2FG F 2 + 3G2 − ν

−1 + 3F 2 +G2 2FG

]
. (6)

The Eigenvalues of the system are given below for both ν0.031 and ν0.6,

fix points λ1 λ2

ν =
0.031

(0, 0.176068)
0.03(−33.29−

√
1108.23−66.58r2)
r

0.03(−33.29+
√

1108.23−66.58r2)
r

(0, 0)
0.015(−64.51−

√
4162.33−129.032r2)
r

0.015(−64.51−
√

4162.33+129.032r2)
r

(0,−0.176068)
0.03(−33.29−

√
1108.23−66.58r2)
r

0.03(−33.29+
√

1108.23−66.58r2)
r

ν = 0.6
(0, 0.774597)

0.24(−4.16−
√

17.36−8.33r2)
r

0.24(−4.16−
√

17.36+8.33r2)
r

(0, 0)
0.3(−3.33−

√
11.11−6.66r2)
r

0.3(−3.33−
√

11.11+6.66r2)
r

(0,−0.774597)
0.24(−4.16−

√
17.36−8.33r2)
r

0.24(−4.16−
√

17.36+8.33r2)
r

Table 1 Eigenvalues for ν = 0.031.

According to Table 1, the system has singularity for r = 0. All eigenvalues are positive and negative real number for all r > 0. We solve
Eq. 5a and 5b Runge-Kutta method by using matlab. We fixed the initial conditions (F (0);G(0)) = (−0.1; 0.5). We evaluate the system 0.1
to 400 with step size 0.001 both ν = 0.031, ν = 0.1 and ν = 0.6. The system exhibit regular dynamics along the flow. According to the phase
space displays and spatial-temporal evolution graphics system has damped and the attractor for the system is a sink.
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Fig. 1: (a), (b) Fermi Model spatial-temporal evolution and phase space for ν = 0.031, respectively; (c) and (d) spatial-temporal evolution and
phase space for ν = 0.1, respectively; (e) and (f) spatial-temporal evolution and phase space for ν = 0.6, respectively
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Fig. 2: Fermi Model phase spaces displays for possible ten different initial conditions for a) ν = 0.031 and b) ν = 0.6.

4 Conclusion

Studies on field theories are continuing. The set of formations, which we can call the standard model of particle physics, has led to important
developments. Important developments in particle physics have made it important to find large symmetrical physical solutions of nonlinear
field equations emerging with models by developing new techniques and to discuss the physical properties and location of these solutions. In
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this paper, we investigate the nonlinear dynamics of Fermi Model. Firstly, we obtain the dimensionless form of the model from the equation
of motion. After that we solve the equation numerically. There are three fix points for the model. There is singularity for the fix points
(F,G) = (0, 0) both for ν = 0.0031 and ν = 0.6. The other two fix points are asymptotically stable saddle points in phase space (Fig. 2).
According to the phase space displays and spatial-temporal evolution graphics system has damped and the attractor for the system is a sink.
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Abstract: The spinor field equation proposed by Feza Gursey in 1956 is the first nonlinear spinor wave equation with conformal
invariance. Soliton type solutions are found by adding the mass term to the equation for certain values of the coupling constant.
Also the system is open to the spin particle structuring outside of fermions. In this study, the generalized version of the Gursey
model is given and spatial-temporal evolution and phase spaces plots are constructed to examine the dynamics of the system.
Considering the importance of the model in particle physics, chaos analysis techniques were applied to make the dynamics of the
nonlinear structure of the system more understandable.
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1 Introduction

After the success in the electron and anti-electron (positron) interpretation of the nonlinear spinor field wave equation was created by Dirac,
Heisenberg spent years formulating a "theory of everything" using fermions alone [1, 2]. Later, another attempt in this direction came with the
work of Gursey [3]. As a possible basis for a unitary definition of elementary particles, Gursey proposed a new spinor wave equation similar
to the nonlinear generalization of Heisenberg’s Dirac equation, which exhibits additional invariance with respect to conformal transformations
[3]. Gursey model was proposed in 1956 to realize Heisenberg’s dream [3]. This system is the first nonlinear spinor wave equation to have
conformal symmetry. Due to these properties, Gursey nonlinear spinor wave equation has a wider dynamic symmetry than Dirac equation and
the equations proposed by Heisenberg et al. It is also open to other spin particle structuring outside of fermions. For these reasons, the model
is very important in particle physics. Due to the importance of the gursey model in particle physics, the generalized version of the system
with soliton solutions is discussed in this study. For certain values of coupling constants, soliton-type solutions are found by adding the mass
term to the generalized gursey system [4]. It is known that the finite energy, stable wave solutions of the classical equations of motion of
Lagrangian field theories are called solitons. Solitons were found in the solution of nonlinear wave equations by applied mathematicians in
the 19th century [5, 6]. Solitary waves and solitons arise in a wide range of areas such as particle physics, optics, Bose-Einstein condensates
and biological models. Topological classical solutions, including solitons, are classified as fixed, static and dependent on both space and time.
Soliton solutions of the expanded form of Gursey spinor equation [7] and Wu-Yang type monopole solutions were found [8].

Since nonlinear equations do not have exact solutions, phase diagrams and strange attractors give information about nonlinear dynamic
structure. Numerical methods and the phase spaces of the solutions obtained from these methods are applied to have a view on the dynamics
and evolution of nonlinear equation solutions. Therefore, in this study, spatial-temporal evolution and phase spaces structures are applied to
understand the dynamics of the nonlinear generalized Gursey equation system.

2 Model

Internal symmetry form for Gursey model was suggested in 1982 and integral of orbit with quantization was also shown for the model [7]. It
was realized that the version of applied the Solar ansatz Gursey model with mass term and internal symmetry and the studies before the Gursey
model had not separate from the each other. The problem was solved adding the term including the axial symmetry [9]. The Lagrangian for
generalized Gursey model is

L = iΨ̄γµ∂µΨ−mΨ̄Ψ + λ1
[(
Ψ̄γµΨ

) (
Ψ̄γµΨ

)] 2
3 + λ2

[(
Ψ̄γ5Ψ

) (
Ψ̄γ5Ψ

)] 2
3
. (1)

The Equation of motion for generalized Gursey model is given below,

iγµ∂µΨ−mΨ+
4

3
λ1

(
Ψ̄γµΨ

)
γµΨ[(

Ψ̄γµΨ
) (

Ψ̄γµΨ
)] 1

3

+
4

3
λ2

(
Ψ̄γ5Ψ

)
γ5Ψ[(

Ψ̄γ5Ψ
) (

Ψ̄γ5Ψ
)] 1

3

= 0, (2)
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here λ1 and λ2 are coupling constant and fermion field Ψ has scale dimension 3
2 . In order to solve the equation we will use soler ansatzs given

in Eq. 3.

Ψ = e−iωt

 g(r)

(
1
0

)
if(r)

(
cosθ

eiϕsinθ

)
 , (3)

here f and g are real functions of r and r = x2 + y2 + z2 + t2. Fermi model has 4 component time and 3 dimensional spatial dimensions. If
we insert Eq. 3 in to Eq. 2 then we found,

f ′ +
2

r
f + (m− ω) g − 4

3
λ2g

(
g2 − f2

) 1
3

(
1−

∣∣∣∣λ1λ2
∣∣∣∣3
) 1

3

= 0, (4a)

g′ + (m+ ω) f − 4

3
λ2f

(
g2 − f2

) 1
3

(
1−

∣∣∣∣λ1λ2
∣∣∣∣3
) 1

3

= 0. (4b)

Where |λ2| = 1

(2)
1
3
|λ1|, λ = 4

3λ2. The equations become,

f ′ +
2

r
f + (m− ω) g + λg

(
g2 + f2

) 1
3
= 0 (5a)

g′ + (m+ ω) f + λf
(
g2 + f2

) 1
3
= 0. (5b)

Numerical calculations we transform the Eq. 5a and 5b dimensionless for by using,

f(r) = (m+ ω)
3
2 F (ρ)

g(r) = (m+ ω)
3
2 G(ρ)

r =
ρ

m+ ω
.

Finally we obtain dimesionless form of the fermi model given below,

F ′ +
2

ρ
F + νG+ λ1G

(
G2 + F 2

) 1
3
= 0 (6a)

G′ + F + λ2F
(
G2 + F 2

) 1
3
= 0. (6b)

3 Numerical Results

We fixed the λ1 = 0.8 and λ2 = −0.1. System fix points are (F,G) = (0, 0.0441942); (0, 0); (0,−0.0441942) for ν = 0.1 and (F,G) =
(0, 0.649519); (0, 0); (0,−0.649519) for ν = 0.6, respectively. The Jacobian matrix for the system is

J =

 − 2
r + 2FGλ1

3(F 2+G2)
3
2

2G2λ1

3(F 2+G2)
3
2
+ (F 2 +G2)

1
3 λ1 − ν

−1 + 2F 2λ2

3(F 2+G2)
3
2
+ (F 2 +G2)

1
3 λ2

2FGλ2

3(F 2+G2)
3
2

 . (7)

The Eigenvalues of the system are given below for both ν0.031 and ν0.6,

fix points λ1 λ2

ν = 0.1
(0, 0.0441942)

0.03(−29.62−
√

877.91−59.25r2)
r

0.03(−29.62+
√

877.91−59.25r2)
r

(0, 0) Indeterminate Indeterminate

(0,−0.0441942)
0.03(−29.62−

√
877.91−59.25r2)
r

0.03(−29.62+
√

877.91−59.25r2)
r

ν = 0.6
(0, 0.774597)

0.28(−3.51−
√

12.36−7.03r2)
r

0.28(−3.51+
√

12.36−7.03r2)
r

(0, 0) Indeterminate Indeterminate

(0,−0.774597)
0.28(−3.51−

√
12.36−7.03r2)
r

0.28(−3.51+
√

12.36−7.03r2)
r

Table 1 Eigenvalues for ν = 0.031.

According to Table 1, the system has singularity for r = 0. In addition, there is no eigenvalue for (F,G) = (0, 0) due to singularity for both
ν = 0.1 and 0.6. All eigenvalues are positive and negative real number for all r > 0. We solve Eq. 6a and 6b Runge-Kutta method by using
matlab. We fixed the λ1 = 0.8 and λ2 = −0.1 and initial conditions (F (0);G(0)) = (−0.01; 0.1). We evaluate the system 0.1 to 400 with
step size 0.001 both ν = 0.1, ν = 0.4 and ν = 0.6. According to the phase space displays and spatial-temporal evolution graphics system has
damped and the attractor for the system is a sink.
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Fig. 1: (a), (b) Generalized Gursey Model spatial-temporal evolution and phase space for ν = 0.1, (c) and (d) spatial-temporal evolution and
phase space for ν = 0.4 respectively; (e) and (f) spatial-temporal evolution and phase space for ν = 0.6, respectively
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Fig. 2: Generalized Gursey Model phase spaces displays for possible ten different initial conditions for a) ν = 0.1 and b) ν = 0.6..

4 Conclusion

In this study, the dynamical structuring and spatial evolution of Soler soliton solutions of the generalized version of the four-dimensional pure
spinor conformal invariant nonlinear Gursey wave were examined according to the system parameters. Firstly, we obtain the dimensionless form
of the model from the equation of motion. After that we solve the equation numerically and phase diagrams expressing the spatial evolution
were drawn. There are three fix points for the model. There is singularity for the fix points (F,G) = (0, 0) both for ν = 0.1 and ν = 0.6.
The other two fix points are asymptotically stable saddle points in phase space (Fig. 2). . Considering the importance of the model in particle
physics, we think that this study is important to understand the dynamics of the nonlinear structure of the system. According to the phase space
displays and spatial-temporal evolution graphics system has damped and the attractor for the system is a sink.
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Abstract: Examining the impact of slope on immiscible phase flow in a porous media is the main objective of the paper. By ana-
lyzing the governing equation using the variational iteration method, the saturation profile in the fingering occurrence corresponds
chances of getting a solution. The effect on concentration rate, which has been explored at a different scale, is shown by paramet-
ric values. Maple software has been used to create tabular and graphical representations.

Keywords: Capillary pressure, Equation of continuity, Fractured porous media, Variational Iteration Method (VIM).

1 Introduction

Imbibition is a phenomenon in which a soaking phase spontaneously infuses into a porous medium, swamping the non-wetting phase and
causing a counterflow of the resident fluid from the medium to the wetting phase. This procedure emerged as a significant recovery mechanism
while water is flooded into damaged reservoirs containing heterogeneous porous medium. Tavassoli, Zimmerman and Blunt [1] invested an
approximate solution for the flood hydrocarbon reservoirs with water or to remove non-aqueous phase liquid (NAPL) with water. For one-
dimensional flow, they determined the recovery of the non-wetting phase as a function of time. Zimmerman and Bodvarsson [2] approached
an approximative closed-form solution for the one-dimensional hydration in an unsaturated porous medium with van Genuchten type model
parameters which is obtained using the "boundary layer" or "integral" technique. Mirzaei-Paiaman [3] investigates numerical simulation tests
which demonstrate that there are considerable variations between Counter-current spontaneous imbibition with and without the gravitational
forces in terms of the final recovery and imbibition velocity.
Many researchers have a huge interest in fluid flow problem which is based on real-world problems. These can be investigated with the
help of different numerical or analytical methods. In many oil recovery process problems, the adomain decomposition method was used,
for these problems, an analytical solution for the saturation rate as well as the recovery rate for various models is described [4], for the
Fingero-Imbibition occurrence [5], the counter-current imbibition occurrence in heterogeneous porous media with gravitational and inclination
effect [6], or with various porous materials [7]. The homotopy analysis method has been used for problems like a motion of immiscible
fluids with some inclination effect [8], fluid flow across fractured porous media of different porous materials [9], the restrained invertible issue
predicated on the nonlinear convection-diffusion equation in the multiphase porous media ïňĆows [10], counter-current imbibition phenomenon
in a heterogeneous [11] and homogeneous [12] porous medium which is further investigated by optimal homotopy analysis method [13,14],
one-dimensional groundwater recharge phenomenon [15], finite difference method [16] is studied to get a numerical solution for imbibition
phenomenon in porous media for double phase flow.
The variational iteration method (VIM) is an approximate analytical method that is used many times to solve a nonlinear ordinary and partial
differential equation. The VIM differs from all the other perturbation and non-traditional perturbation methods in that it provides a solution in a
few iterations, and hence it is being used to solve nonlinear problems. The VIM has been successfully used to solve a wide variety of nonlinear
problems, as well as with nonlinear Newell-Whitehead-Segel equation[17], nonlinear equation in one-dimensional destabilization occurrence
in homogeneous porous media in horizontal direction [20], solution for the Glioblastoma Tumor Cells Growth in Homogeneous Medium[18],
space and time fraction KdV equation [19] and for solving Burger’s equations [21,22].
Figure (1) depicts the structure of the fingering occurrence. Throughout this analysis, we implemented some slope and gravitational effects to
identify an analytical solution to the nonlinear partial differential equation that emerges during the fingering occurrence in a porous medium.
We also discussed how the inclined surface, capillary pressure, and relative permeability including both phases in the fluid reservoir affect the
saturation rate for the fingering occurrence.

2 Formulation of the model

Consequently, this was described as a cylindrical frame with a length L0 that has all surfaces encased in a contamination surface apart from
one open end. The cylindrical slab is slanted at an angle with the ground surface as indicated in figures 1 and the imbibition surface is repre-
sented by face α = 0. In addition, it is assumed that the presence of magnetic fluid components in the injected fluids results in a low capillary
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Fig. 1: Schematic representation of the fingering occurance.

pressure during another wetting phase and a thin layer of magnetic field on the surface. The counter-current imbibition exists also in the line
of the interface because of the low capillary pressure of the wetting phase. The conservation of mass equation is given below for this model [23].

φ
∂Mw

∂t
+
∂nw
∂x

= 0 (1)

φ
∂M0

∂t
+
∂n0
∂x

= 0 (2)

According to Darcy’s law, the speeds of oil and water are

nw = −AAw
µw

(
∂pw
∂x
− ρwg sinα

)
(3)

n0 = −AA0

µ0

(
∂p0
∂x
− ρ0g sinα

)
(4)

The difference in pressure at the interface of two immiscible fluids, such as oil and water in the reservoir, is known as capillary pressure pc.
The value of pc is only because capillary pressure seems to have an effect on the distribution of fluids.

pc = p0 − pw (5)

Due to phase saturation, we get

Mw +M0 = 1 (6)

As we use Equations (3) and (4) to modify the value of nw in Equations (1) and (2), we obtain

φ
∂Mw

∂t
=

∂

∂x

∣∣∣∣AAwµw

(
∂pw
∂x
− ρwg sinα

)∣∣∣∣ (7)

φ
∂M0

∂t
=

∂

∂x

[
AA0

µ0

(
∂p0
∂x
− ρ0g sinα

)]
(8)

Integrating Equation (7) and (5)

φ
∂Mw

∂t
=

∂

∂x

[
AAw
µw

(
∂p0
∂x
− ∂pc

∂x
− ρwg sinα

)]
(9)

now, Equation (9), (8) and (6), we get as:

∂

∂x

[
AAw
µw

(
∂p0
∂x
− ∂pc

∂x
− ρwg sinα

)]
+

∂

∂x

[
AA0

µ0

(
∂p0
∂x
− ρ0g sinα

)]
= 0

=⇒ A

[
∂p0
∂x

(
Aw
µw

+
A0

µ0

)
− Aw
µw

∂pc
∂x
− g sinα

(
Aw
µw

ρw +
A0

µ0
ρ0

)]
= C (10)

∂p0
∂x

=
C +K Aw

µw

∂pc
∂x − g sinαA

(
Aw
µw

ρw + A0
µ0
ρ0

)
A
(
Aw
µw

+ A0
µ0

) (11)

Here,C = Integration constant. Integrating Equations (11) and (9), and then we get that

φ
∂Aw
∂t

=
∂

∂x

Aw
µw

A

C +AAw
µw

∂pc
∂x − g sinαA

(
Aw
µw

ρw + A0
µ0
ρ0

)
A
(
Aw
µw

+ A0
µ0

) − ∂pc
∂x
− ρwg sinα

 (12)

Also we have

p0 = P +
pc
2
, whereP =

1

2
(p0 + pw) (13)

where P = 1
2 (p0 + pw) says about a mean pressure. By integrating equation (13) and (10)

100 c© CPOST 2022



C =
1

2
A
A0

µ0

∂pc
∂x
− 1

2
A
Aw
µw

∂pc
∂x
− g sinαA

(
Aw
µw

ρw +
A0

µ0
ρ0

)
(14)

After simplified and swapping the value of C from equation (14) into equation (12), we inevitably obtain at as the equation of continuity in a
porous matrix.

∂Mw

∂t
φ+

∂

∂x

(
A

2

Aw
µw

∂pc
∂x

+ gA
Aw
µw

ρw sinα

)
= 0 (15)

Now, we use [24] as our frame of reference for the capillary pressure and relative permeability function for water.

pc =

(
M
−1
2
w − C1

)
β (16)

Aw =M3
w (17)

The following results are obtained from equation (15) after entering all the values from equation (16)
∂Mw

∂t
+

A

φµw

∂

∂x

(
−β
4
M

3
2
w
∂Mw

∂x
+M3

wρwg sinα

)
= 0 (18)

The dimensionless variable is used to make the aforementioned equation dimensionless.

X =
x

L
and T =

Aβ

φµwL2
t

The dimensionless equation is now transformed as:
∂Mw

∂T
− 1

4

∂

∂x

(
M

3
2
w
∂Mw

∂X

)
+B sinαS2

w
∂Mw

∂X
= 0 (19)

where B =
3ρwg

β

The movement of saturation of the fluid medium in a homogeneous porous material with an elevation and gravitational action is described by
the equation (19).

3 Variational Iteration Method

The approach of He’s Variational Iteration Method [25-31] can be described by assuming the non-linear partial differential equation.

L (M(x, t)) +N (M(x, t)) +R (M(x, t)) = f(x) (20)

M(x,0)=g(x)

where f(x) depicts an inhomogeneous term, L(x) depicts a linear term, N(x) depicts a non-linear term, and R denotes a linear operator with
partial derivatives with respect to x. We may put up a correction functional for the equation(4) in accordance with the method:

Mn+1(x) =Mn(x) +

∫x
0
λ(x)

[
L(Mn(x)) +R(

︷︸︸︷
Mn (x)) +N(

︷︸︸︷
Mn (x))− f(x)

]
dτ (21)

The VIM can be recognized by the λ and λ is a Lagrange multiplier [32,33]. M0(x) signifies an initial approximation with unknowns, Hn

implies the nth approximation, and
︷︸︸︷
Mn is in view of a restriction variation i.e. δ

︷︸︸︷
Mn = 0. The Lagrange Multiplier and the beginning approx-

imation M0 can easily determine the solution M’s consecutive approximation Mn+1, n ≥ 0 of the solution M = limn→+∞Mn . Equation (
5) can be used to solved iteratively using M0(x, t) = g(x).

4 Application of method

A proposed method is applied to solve Equation(19) with the initial condition equation(20) is taken.
Applying VIM in the above equation,

(Mw)n+1 = (Mw)n +

∫x
0
λ(x)

[
∂(Mw)n
∂T

− 1

4

∂

∂x

(
(M

3
2
w )n

∂(Mw)n
∂X

)
+A sinα(M2

w)n
∂(Mw)n
∂X

]
(22)

Its stationary condition will come as follow:

λ
′
(τ) = 0

1 + λ(τ)|τ=t = 0

The Lagrange Multiplier will be recognized as the λ = −1. Consequently, the correction functional will be revised and the initial condition
(25) will be treated as the initial estimate
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(MW )0 = e−X

After using the initial approximation in equation (26) we can get our first approximation solution:

(Mw)1 = e−X + (5/8)T e−(5/2)X +A sin (α) e−2XT

then second approximation or iteration solutions obtained as:

(Mw)2 =5/8

√
16 e−X + 10T e−5/2X + 16A sin (a) e−2XTA2 (sin (a))2 e−4XT 2 +

45A sin (a) e−9/2XT
16

+ 4A2 (sin (a))2 e−4XT +
75A sin (a) e−6XT 2

32
+ 5A3 (sin (a))3 e−5XT 2

+
175A2 (sin (a))2 T 3e−7X

64
+

65A3 (sin (a))3 T 3e−13/2X

16
+ e−X − 5/8 e−5/2X

+
5
√

16 e−X + 10T e−5/2X + 16A sin (a) e−2XT e−2X

32
+ 5/8T e−5/2X −A sin (a) e−2X

+
3125

√
16 e−X + 10T e−5/2X + 16A sin (a) e−2XTT 2e−5X

8192
+A sin (a) e−3X

+
11
√

16 e−X + 10T e−5/2X + 16A sin (a) e−2XT e−3XA sin (a)T

16

+
505

√
16 e−X + 10T e−5/2X + 16A sin (a) e−2XTT 2e−9/2XA sin (a)

512
+

55A2 (sin (a))2 e−11/2XT 2

8

+A sin (a) e−2XT +
295

√
16 e−X + 10T e−5/2X + 16A sin (a) e−2XT e−7/2XT

512

+
625A sin (a)T 3e−15/2X

1024
+ 2A4 (sin (a))4 e−6XT 3

...

and so on. Hence, we can get the approximate analytical solution for equation ( )is obtained as:

Mw =5/8

√
16 e−X + 10T e−5/2X + 16A sin (a) e−2XTA2 (sin (a))2 e−4XT 2 +

45A sin (a) e−9/2XT
16

+ 4A2 (sin (a))2 e−4XT +
75A sin (a) e−6XT 2

32
+ 5A3 (sin (a))3 e−5XT 2

+
175A2 (sin (a))2 T 3e−7X

64
+

65A3 (sin (a))3 T 3e−13/2X

16
+ e−X − 5/8 e−5/2X

+
5
√

16 e−X + 10T e−5/2X + 16A sin (a) e−2XT e−2X

32
+ 5/8T e−5/2X −A sin (a) e−2X

+
3125

√
16 e−X + 10T e−5/2X + 16A sin (a) e−2XTT 2e−5X

8192
+A sin (a) e−3X

+
11
√

16 e−X + 10T e−5/2X + 16A sin (a) e−2XT e−3XA sin (a)T

16

+
505

√
16 e−X + 10T e−5/2X + 16A sin (a) e−2XTT 2e−9/2XA sin (a)

512
+

55A2 (sin (a))2 e−11/2XT 2

8

+A sin (a) e−2XT +
295

√
16 e−X + 10T e−5/2X + 16A sin (a) e−2XT e−7/2XT

512

+
625A sin (a)T 3e−15/2X

1024
+ 2A4 (sin (a))4 e−6XT 3 + ...

5 Results and Discussions

The effects of taking inclination and concentration rates into consideration on the fingering phenomena in a porous matrix have been examined.
The varying parameters that were employed are shown in Table 1. The numerical results for concentration rates at various inclined planes are
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Fig. 2: Concentration rates for the fingering occurrence for
various inclination angle α for X = 0.1.

Fig. 3: Concentration rates for the fingering occurrence for
various inclination angle α for X = 0.5

shown in Table 2. Figure 2 displays the rate of water saturation in the porous medium at different inclined angles at the entry, X = 0.1 and X =
0.5. The results show that as the angle of inclination increases, the water saturation rate will decrease and be greater at the zero inclined plane
close to the inlet X = 0.1. Figures 3 and 4 illustrate the effect of the concentration rates in relation to dimensionless time, indicating that the
concentration rates will be greater for dimensionless time T = 1.

Parameters Values
β 6895N/m2

g 9.8m/s2

ρw 1000kg/m2

µw 0.894Nm/s2

ρ0 982kg/m3

K 10−12m2

Table 1 The numerical values used in this calculation are given as follows

X=0.1
T α = 0 α = 5 α = 10 α = 15

0.1 1.134059084 2.230216575 1.611639529 0.973513334
0.2 1.389935531 4.161167501 2.563324695 0.976803266
0.3 1.673519932 6.674033205 3.724841844 0.978774502
0.4 1.985829554 9.838028536 5.114226127 0.979455218
0.5 2.327849035 13.72111949 6.749103249 0.978873706
0.6 2.700533215 18.39024481 8.646749358 0.97705838
0.7 3.104809597 23.9114797 10.82413785 0.974037784
0.8 3.541580479 30.35016046 13.29797666 0.969840593
0.9 4.011724845 37.7709821 16.08473874 0.964495639
1 4.516100026 46.23807626 19.20068692 0.958031867

Table 2 Comparison of the concentration rates for the fingering occurrence at X = 0.1 .
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Fig. 4: Concentration rates for the fingering occurrence atα = 0
. Fig. 5: Concentration rates for the fingering occurrence atα = 5

Fig. 6: 3D behaviour of the concentration rates for the fingering
occurrence at α = 0 .

Fig. 7: 3D behaviour of the concentration rates for the fingering
occurrence at α = 5

X=0.5
T α = 0 α = 5 α = 10 α = 15

0.1 0.659698629 0.736652051 0.677681198 0.715372382
0.2 0.715766235 1.104620484 0.8714704 0.705042806
0.3 0.774799108 1.540678479 1.089781041 0.69452472
0.4 0.836861564 2.050405004 1.333999803 0.683826017
0.5 0.902016685 2.639288944 1.605487911 0.672954537
0.6 0.970326375 3.312741245 1.905583819 0.661918079
0.7 1.041851426 4.076104612 2.235605441 0.650724381
0.8 1.116651573 4.934661371 2.596852076 0.639381133
0.9 1.194785543 5.893639946 2.990606043 0.627895969
1 1.276311102 6.958220277 3.418134076 0.616276463

Table 3 Comparison of the concentration rates for the fingering occurrence at X = 0.5 .

6 Conclusion

Throughout this work, we presented an analytical solution for the wetting phase concentration profile during the fingering occurrence using
the variational iteration method. The variation of the water concentration profile with dimensionless length (X) and dimensionless time is also
discussed (T). Since the zero inclined planes is physically comparable to the occurrence in real life, we can conclude that the concentration
rates are higher there. The precision and efficiency of VIM have been illustrated graphically as well as through tables to verify the method’s
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accuracy and efficiency, which is extremely effective when dealing with highly nonlinear challenges. The VIM has the capability of giving an
iterative solution utilizing rapidly convergent consecutive approximations. For nonlinear operators, the VIM has no objective requirement, such
as linearization, limited parameters, Adomian polynomials, and many more.
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Abstract: We have studied the heat and mass transfer phenomena by using weakly non-linear stability analysis on the combined
effect of g-jitter and thermal difference of a Rivlin-Ericksen nano-fluid in Hele-Shaw cell, when there is temperature difference
between fluid and nano-particle. For non-linear stability analysis, we used double Fourier series technique for studying amount of
heat and mass transfer. From analysis it is concluded that convection sets in earlier for in situation of temperature difference as
compared to similar temperature between fluid and nano-particles.

Keywords: Gravity modulation, Hele-Shaw cell, Non-linear instability, Rivlin-Ericksen nanofluid, Thermal difference.

1 Introduction

Revlin-Ericksen fluid, one type of viscoelastic fluid, is theoretically introduced by Rivilin-Ericksen [1]. Srivastava [2] examined the unsteady
flow of Rivlin-Ericksen fluid with uniform distribution of dust particles through channels of different cross sections in the presence of time
dependent pressure gradient. Bhadauria et al. [3] examined the effect of gravity modulation of thermal instability in a Revlin-Ericksen fluid
Saturated anisotropic porous medium. They have used Hill’s equation and the Floquet theory, for obtaining the convective threshold. It is found
that gravity modulation can significantly affect the stability limits of the system. Rana and Kumar [4] studied the thermal instability of a Rivlin-
Ericksen elastico-viscous rotating fluid permeated with suspended particles and variable gravity field in porous medium. These investigation
of gravity modulation of thermal instability with Rivlin-Ericksen simple fluid. Sheu [5] investigated the linear stability of convection in a
viscoelastic nanofluid layer. He used Oldroyd B model to describe the rheological behavior of a viscoelastic nanofluid. The model used for the
nanofluid is incorporated the effects of Brownian motion and thermophoresis. They showed that there was competition among the processes of
thermophoresis, Brownian diffusion, and viscoelasticity which caused oscillatory rather than stationary convection to occur. Rana and Thakur
[6], investigated the effect of suspended particles on thermal convection in Rivlin-Ericksen elastico-viscous fluid in a Brinkman porous medium.
Chand and Rana [7] studied the thermal instability of Rivlin-Ericksen elastico-viscous nanofluid saturated by a porous medium. Chand et al.
[8] investigated the revised model of thermal instability in a Rivlin-Ericksen elastico-viscous nanofluid in a porous medium. Rana et al. [9]
studied the more realistic model of thermal instability of a Rivlin-Ericksen nanofluid saturated by a Darcy-Brinkman porous medium. Saini and
Sharma [10] studied the effect of vertical throughflow in Rivlin-Ericksen elastico-viscous nanofluid in a non-Darcy porous medium.
A situation when a vessel containing a heavy liquid vibrates vertically with constant frequency and amplitude, known as Gravity modulation.
Benjamin and Ursell [11], investigated the effect of gravity modulation on the existence of standing waves on the free surface of a liquid in a
vessel. They used Mathieu’s equation to discuss the stability criteria. The stability of a horizontal layer of fluid heated from above or below is
examined by Gresho and Sani [12] for the case of a time-dependent buoyancy force which is generated by shaking the fluid layer, thus causing
a sinusoidal modulation of the gravitational field. They found that gravity modulation can significantly affect the stability limits of the system.
Several works [13]-[17] have been devoted for analysing the linear and non-linear stability analysis of onset of convection under the influence
of gravity modulation. Out of many, some of closely related work is reported here.
For visualizing the hydrodynamical circulation penetration into earth, a laboratory apparatus was set up and studying the two dimensional
convection patterns. Firstly, its mathematical representation is given by Hele-Shaw in 1898, [18]. He studied a slow two-dimensional flow in
a uniformly porous medium and laminar flow in a narrow slot sandwiched between parallel walls i.e. Hele-Shaw cell. Incipient, Straus [19],
investigated thermal instability in a porous medium. He reported that thermal convection is two dimensional and roll convection persists to
a Rayleigh number nearly ten times the critical value of Rayleigh number. While calculating the Rayleigh number for onset of convection
in Hele-Shaw cell, the conduction heat transfer form walls of Hele-Shaw cell is also taken into account. Lapwood [20], derived the correct
Rayleigh number for the thin Hele-Shaw cell also verified with experimental data for critical Rayleigh number equal to 4π2. In 1976, Hartline
and Lister [21], derived the Rayleigh number for the thermal convection in a Hele-Shaw cell with gap d and full width (gap plus walls) Y . They
concluded that the system of equations are identical to that describing flow through porous medium for marginal stability. They also calculated
the vertical flow velocity.
Most of the above cited papers related to nano-fluid, authors considered the thermal equilibrium between nano particles and fluid particles. In
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his work, Vadasz explained the higher thermal conductivity of nano-fluids due to thermal differences between the particle and fluid phases.
Agrawal et al. in (2014) have been investigated Rayleigh Benard convection in a nano fluid layer using a thermal non-equilibrium model. They
considered the temperature difference as local thermal non-equilibrium (LTNE) for fluid and nano particles. But in this paper we considered it
temperature difference between nano-fluid and fluid particle because LTNE is standard terminology used for temperature difference between
fluid and porous matrix. Here, we investigated the effect of temperature difference between fluid and nano particles and gravity modulation on
the heat and mass transfers on a non-Newtonian nano-fluid in Hele-Shaw cell.

2 Problem Definition

Assuming a Rivlin-Ericksen nano-fluid layer of depth d1 between two free-free permeable boundaries at z̃ = 0 and z̃ = d1, with temperature
on boundaries, denoted by T̃h and T̃u (T̃h >T̃u) of lower and upper boundaries respectively. We consider such a system, which is extended in
x-direction but in the y-direction, it is supposed to be bounded by vertical impermeable boundaries (side walls) at ỹ = 0 and ỹ = b (<< d1).

Fig. 1: Physical presentation of the problem

2.1 Mathematical-Equations

For Mathematical equation in a HS-cell filled saturated by nanofluid with porous material, the Brinkman model has been applied. Therefore,
the Mathematical equations are as per (Agarwal et al. [22] and Bhadauria and Kumar [24]):

∇̃ · q̃ = 0 (1)

ρnl

[
∂

∂t̃
+ (q̃ · ∇̃)

]
q̃ = −∇̃p̃− 1

K11
(µ+ µ̃

∂

∂t̃
)q̃+ µ∇̃2q̃+ [ϕ̃ρp + ρnl(1− ϕ̃){1− β(T̃nl − T̃u)}]g (2)

[
∂

∂t̃
+ (q̃ · ∇̃)

]
T̃nl = αnl∇̃2T̃nl +

(ρc)p
(ρc)nl

[DB∇̃ϕ̃ · ∇̃T̃nl +

(
DT

T̃nl

)
∇̃T̃nl · ∇̃T̃nl] +

h

(1− ϕ0)(ρc)nl
(T̃p − T̃nl) (3)

[
∂

∂t̃
+ (q̃ · ∇̃)

]
T̃p =

kp
(ρc)p

∇̃2T̃p +
h

ϕ0(ρc)p
(T̃nl − T̃p) (4)

[
∂

∂t̃
+ (q̃ · ∇̃)

]
ϕ̃ = DB∇̃2ϕ̃+

(
DT

T̃u

)
∇̃2T̃nl (5)

Here volumetric fraction and temperature for nano-particles on the boundaries are assumed as constant. The boundary conditions are

q̃ = 0, T̃nl = T̃h, T̃p = T̃h, ϕ̃ = ϕ̃0 at z̃ = 0,

q̃ = 0, T̃nl = T̃u, T̃p = T̃u, ϕ̃ = ϕ̃1 at z̃ = d1.

}
(6)

where, t̃ is time, q̃ is Rivlin-Ericksen nanofluid velocity, ϕ̃ is nanoparticle-volume fraction, K11 = b2/12 is the fluid-flow permeability, DB
is brownian diffusion-coefficient, p̃ is pressure, d1 is dimensional layer-depth, h is interface heat-transfer coefficient between the fluid and
particle phases, DT is thermophoresis diffusion-coefficient, (ρc)nl and (ρc)p is heat-capacities, β is proportionality-factor, µ̃ is kinematic
visco-elasticity, µ is viscosity, ρnl is fluid-density, ρp is nanoparticle-density, T̃nl is temperature of fluid, T̃p is temperature of nanoparticle,
g is gravitational acceleration[g = g0g1,g1 = (1 + ϵ1cos(Ωt))êz], g0 is mean-gravity, ϵ1 is amplitude of modulation, Ω is modulating-
frequency, ϕ0 is reference nanoparticle volume-fraction, knl is effective thermal conductivity of fluid, kp is effective thermal conductivity of
particle, αnl is thermal diffusivity of the Rivlin-Ericksen nanofluid and ∇2 ≡ ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is operator.
For non-dimensionlizing the Mathematical equations, the following scale has been utilized:
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1

d1
(x̃, ỹ, z̃) = (x∗, y∗, z∗),

αnl

d21
t̃ = t∗, αnl =

knl
(ρc)nl

,
d1
αnl

q̃ = q∗,

d21
µαnl

p̃ = p∗, ϕ∗ =
(ϕ̃− ϕ̃0)

(ϕ̃1 − ϕ̃0)
, T ∗

nl =
(T̃nl − T̃u)

(T̃h − T̃u)
, T ∗

p =
(T̃p − T̃u)

(T̃h − T̃u)
, d1∇̃ = ∇∗

 (7)

Putting eqn.(7) into the eqns.(1-5), after non-dimensionlizing and dropping ∗ for convenient, the mathematical equations become:

∇ · q = 0 (8)

Hs

Pr

[
∂

∂t
+ (q · ∇)

]
q = −Hs∇p− (1 + F

∂

∂t
)q+Hs∇2q− g1 Rm êz + g1Rh Tnl êz − g1Rn ϕ êz (9)

[
∂

∂t
+ (q · ∇)

]
Tnl = ∇2Tnl +

(
NB

Le

)
∇ϕ · ∇Tnl +

(
NA NB

Le

)
∇Tnl · ∇Tnl +NH(Tp − Tnl) (10)

[
∂

∂t
+ (q · ∇)

]
Tp = ϵ∇2Tp + γNH(Tnl − Tp) (11)

[
∂

∂t
+ (q · ∇)

]
ϕ =

(
1

Le

)
∇2ϕ+

(
NA

Le

)
∇2Tnl (12)

The boundary conditions become

q = 0, Tnl = 1, Tp = 1, ϕ = 0, at z = 0,

q = 0, Tnl = 0, Tp = 0, ϕ = 1, at z = 1.

}
(13)

where,

Rh =
ρnlg0βK11d1(T̃h − T̃u)

µαnl
is HS-Rayleigh number,

Rn =
(ρp − ρnl)(ϕ̃1 − ϕ̃0)g0K11d1

µαnl
is nanoparticle-concentration HS-Rayleigh number,

Rm =
{ρpϕ̃1 − ρc(1− ϕ̃1)}g0K11d1

µαnl
is basic density HS-Rayleigh number,

Pr =
ν

αnl
is Prandtl number,

Hs =
K11

d21
is HS-number,

Le =
αnl

DB
is Lewis number,

NA =
DT

DB T̃u

(T̃h − T̃u)

(ϕ̃1 − ϕ̃0)
is modified diffusivity ratio,

NB =
(ρc)p
(ρc)nl

(ϕ̃1 − ϕ̃0) is modified particle density increment,

F =
µ̃

µ

αnl

d21
is kinematic viscoelasticity permeability,

NH =
hd21

(1− ϕ0)knl
is the Nield number or the interphase heat transfer parameter,

γ =
(1− ϕ0)(ρc)nl

ϕ0(ρc)p
is the modified thermal capacity ratio and

ϵ =
kp(ρc)nl
knl(ρc)p

is the thermal diffusivity ratio.

2.2 Basic-Solution

At the basic state the quantities depends on z only:

q = 0, ϕ = ϕb(z), p = pb(z), Tnl = Tnlb(z), Tp = Tpb(z) (14)

Applying eqn.(14) into eqns.(8-12), we obtain:
d2Tnlb
dz2

= 0 (15)

d2Tpb
dz2

= 0 (16)

d2ϕb

dz2
+NA

d2Tnlb
dz2

= 0 (17)
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Applying the boundary conditions eqn.(13) in eqns.(15-17), we get the basic state solutions as:

Tnlb = 1− z (18)

Tpb = 1− z (19)

ϕb = z (20)

3 Stability Exploration

3.1 Perturbation-State

Now, we superimposed very small perturbation on the basic state, then

q = 0+ ϵ1
′q′, p = pb + ϵ1

′p′, Tnl = Tnlb + ϵ1
′T ′

nl, Tp = Tpb + ϵ1
′T ′

p, ϕ = ϕb + ϵ1
′ϕ′. (21)

Applying eqn.(21) into the eqns.(8-12), we get:

∇ · q = 0 (22)

Hs

Pr

∂q′

∂t
= −Hs∇p′ − (1 + F

∂

∂t
)q′ +Hs∇2q′ − g1

[
−Rh T ′

f êz +Rn ϕ′ êz
]

(23)

In view of eliminating pressure-term from eqn.(23), taking curl two-times on both side, then we obtain:

Hs

Pr

∂(∇2w′)
∂t

= −∇2w′ − F
∂(∇2w′)

∂t
+Hs∇4w′ + g1Rh∇2

2T
′
nl − g1Rn∇2

1ϕ
′ (24)

∂T ′
nl

∂t
+ (q′ · ∇)Tnlb = ∇2T ′

nl +NH(T ′
p − T ′

nl) (25)

∂T ′
p

∂t
+ (q′ · ∇)Tpb = ϵ∇2T ′

p + γNH(T ′
nl − T ′

p) (26)

∂ϕ′

∂t
+ (q′ · ∇)ϕb =

1

Le
∇2ϕ′ +

(
NA

Le

)
∇2T ′

nl (27)

Where, ∇2
2 ≡ ∇2 − ∂2

∂z2 .

3.2 Non-Linear Exploration

We implement stream function Ψ such that u = ∂Ψ
∂z and w = −∂Ψ

∂x and apply into the eqns.(23,25,26 and 27), then we yield:

Hs

Pr

∂(∇2Ψ)

∂t
= Hs∇4Ψ−∇2Ψ− F

∂(∇2Ψ)

∂t
− g1Rh

∂Tnl
∂x

+ g1Rn
∂ϕ

∂x
(28)

∂Tnl
∂t

− ∂Ψ

∂x

dTnlb
dz

= ϵ∇2Tnl +
∂(Ψ, Tnl)

∂(x, z)
+NH(Tp − Tnl) (29)

∂Tp
∂t

− ∂Ψ

∂x

dTpb
dz

= ∇2Tp +
∂(Ψ, Tp)

∂(x, z)
+ γNH(Tnl − Tp) (30)

∂ϕ

∂t
− ∂Ψ

∂x

dϕb

dz
=

1

Le
∇2ϕ+

NA

Le
∇2Tnl +

∂(Ψ, ϕ)

∂(x, z)
(31)

Where, ∇2 ≡ ∂2

∂x2
+

∂2

∂z2
. Here we assume all physical quantities are independent of y and hence for non-linear stability exploration, we
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utilize the Fourier-series expansions:
Ψ = A11(t)sin(ax)sin(πz) (32)

Tnl = B11(t)cos(ax)sin(πz) +B02(t)sin(2πz) (33)

Tp = C11(t)cos(ax)sin(πz) + C02(t)sin(2πz) (34)

ϕ = D11(t)cos(ax)sin(πz) +D02(t)sin(2πz) (35)

Putting the expressions (32-35) into the eqns.(28-31) and leaving second and third term of RHS of eqn.(29) and (30 ) as they are small according
to Agrawal.et.al [22] and utilizing the orthogonalization procedure of Galerkin’s method, we get:

A′
11(t) = −

Pr
(
a (ϵ1 cos(tΩ) + 1) (RhB11(t)−RnD11(t)) + δ2A11(t)

(
δ2Hs+ 1

))
δ2(F Pr+Hs)

(36)

B′
11(t) = A11(t)(−(πaB02(t) + a))−B11(t)

(
δ2 +NH

)
+ C11(t)NH (37)

B′
02(t) =

1

2
πaA11(t)B11(t)−B02(t)

(
NH + 4π2

)
+ C02(t)NH (38)

C′
11(t) = −A11(t) (πaC02(t) + a) + γB11(t)NH − C11(t)

(
δ2ϵ+ γNH

)
(39)

C′
02(t) =

1

2
πaA11(t)C11(t) + γB02(t)NH − C02(t)

(
γNH + 4π2ϵ

)
(40)

D′
11(t) =

aLeA11(t) (1− πD02(t))− δ2 (NAB11(t) +D11(t))

Le
(41)

D′
02(t) =

π (aLeA11(t)D11(t)− 8π (NAB02(t) +D02(t)))

2Le
(42)

The above described system of autonomous concurrent ODE is solved via numerical technique.

3.3 Heat and Nanoparticle Concentration Transportation

The nanoliquide phase thermal Nusselt-number is declared as:

Nuf (t) =
Heat transport by (conduction+convection)

Heat transport by conduction

Nunl(t) = 1 +


2π/a∫
0

(
∂Tnl
∂z

)
dx

2π/a∫
0

(
∂Tnlb
∂z

)
dx


z=0

(43)

Applying eqn.(18) and (33) into the eqn.(43), then
Nuf (t) = 1− 2πB02(t) (44)

The particle phase thermal Nusselt-number is declared as:

Nup(t) = 1 +


2π/a∫
0

(
∂Tp

∂z

)
dx

2π/a∫
0

(
∂Tpb
∂z

)
dx


z=0

(45)

Applying eqn.(19) and (34) into the eqn.(45), then
Nup(t) = 1− 2πC02(t) (46)

Nuϕ(t) =
Solute transport by (diffusion+advection)
Solute transport by molecular diffusion

Nuϕ(t) = 1 +


2π/a∫
0

(
∂ϕ
∂z +NA

∂Tnl
∂z

)
dx

2π/a∫
0

(
∂ϕb

∂z

)
dx


z=0

(47)

Applying eqns.(20,33 and 35) into the eqn.(47), then

Nuϕ(t) = 1 + 2π (NAB02(t) +D02(t)) (48)
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4 Results and Discussion

In this manuscript, a weakly non-linear stability exploration has been done by investigating the combined effect of g-giter and thermal difference
on heat and mass transportation. Here, Nuf , Nup and Nuϕ shows fluid-phase, particle-phase and concentration nusselt-number respectively.
Figs. (2a) and (2b), shows that on increasing Hs then decreases nusselt number that is heat-transfer in both fluid/particle phases in the system
decreases. This happens because on increasing the Hs number permeability will increase. Thus it takes more time for convection to start.
Fig.(2c), give information about mass-transfer and shows similar behavior to that of fluid/particle phases. In fig.(3a), we see clearly on increasing
the value of HS-number Hs, heat-transfer reduces in the fluid-phase and convection gets delayed. In fig.(3b), we see clearly heat-transfer in
particle-phase is maximum as compared to fluid-phase. This excess heat-transfer is possibly due to the enhanced thermal conductivity of
nanoparticles. Fig.(3c), give information about mass-transfer and shows similar behavior to that of fluid phase.
Figs. (4a),(4b) and (4c), shows that an increment in the amount of kinematic-viscoelastic parameter F , then decreases heat-transfer in both
fluid/particle phases as well as mass-transfer in the system. In figs.(5a), (5b) and (5c), we see clearly similar behavior as figs. (4a), (4b) and
(4c), but in case of particle-phase heat-transfer is maximum as compared to fluid-phase in the system.
In figs.(6a),(6b) and (6c), we see clearly an increment in the amount of amplitude of modulation(ϵ1), heat-transfer increases in both fluid/particle
phases. But mass-transfer decreases in the system. In figs.(7a),(7b) and (7c), we see clearly similar behavior as figs. (6a), (6b) and (6c), but in
case of particle-phase heat-transfer is maximum as compared to fluid-phase in the system.
In figs.(8a),(8b) and (8c), we see clearly an increment in the amount of modulating-frequency (Ω), heat-transfer decreases in both fluid/particle
phases. But mass-transfer increases in the system. In figs.(9a), (9b) and (9c), we see clearly similar behavior as figs. (8a),(8b) and (8c), but in
case of particle-phase heat-transfer is maximum as compared to fluid-phase in the system.
In figs. (10a),(10b) and (10c), we see clearly convection sets in earlier for NH = 50 as compared to NH = 0. In case of NH = 50 heat-
transport in particle-phase is more than the heat-transport in the fluid-phase and in case of NH = 50 mass-diffusion (advection) earlier than
NH = 0.

(a) (b) (c)

Fig. 2: Curves of Nuf , Nup and Nuϕ versus time t for various values of (a),(b) and (c) Hs When NH = 0, Rn = 2,Pr = 10, Le =
10, NA = 0.2, a = 2.22, F = 1.2, ϵ1 = 0.4, ϵ = 1,Ω = 10.

(a) (b) (c)

Fig. 3: Curves of Nuf , Nup and Nuϕ versus time t for various values of (a),(b) and (c) Hs When NH = 50, Rn = 2,Pr = 10, Le =
10, NA = 0.2, a = 2.22, F = 1.2, ϵ1 = 0.4, ϵ = 1,Ω = 10, γ = 0.5.
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(a) (b) (c)

Fig. 4: Curves of Nuf , Nup and Nuϕ versus time t for various values of (a),(b) and (c) F When NH = 0, Rn = 2,Pr = 10, Le = 10, NA =
0.2, a = 2.22, Hs = 0.1, ϵ1 = 0.4, ϵ = 1,Ω = 10.

(a) (b) (c)

Fig. 5: Curves of Nuf , Nup and Nuϕ versus time t for various values of (a),(b) and (c) F When NH = 50, Rn = 2,Pr = 10, Le =
10, NA = 0.2, a = 2.22, Hs = 0.1, ϵ1 = 0.4, ϵ = 1,Ω = 10, γ = 0.5.

(a) (b) (c)

Fig. 6: Curves of Nuf , Nup and Nuϕ versus time t for various values of (a),(b) and (c) ϵ1 When NH = 0, Rn = 2,Pr = 10, Le =
10, NA = 0.2, a = 2.22, Hs = 0.1, F = 1.2, ϵ = 1,Ω = 10.

(a) (b) (c)

Fig. 7: Curves of Nuf , Nup and Nuϕ versus time t for various values of (a),(b) and (c) ϵ1 When NH = 50, Rn = 2,Pr = 10, Le =
10, NA = 0.2, a = 2.22, Hs = 0.1, F = 1.2, ϵ = 1,Ω = 10, γ = 0.5.
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(a) (b) (c)

Fig. 8: Curves of Nuf , Nup and Nuϕ versus time t for various values of (a),(b) and (c) Ω When NH = 0, Rn = 2,Pr = 10, Le = 10, NA =
0.2, a = 2.22, Hs = 0.1, F = 1.2, ϵ = 1, ϵ1 = 0.4.

(a) (b) (c)

Fig. 9: Curves of Nuf , Nup and Nuϕ versus time t for various values of (a),(b) and (c) Ω When NH = 50, Rn = 2,Pr = 10, Le =
10, NA = 0.2, a = 2.22, Hs = 0.1, F = 1.2, ϵ = 1, ϵ1 = 0.4, γ = 0.5.

(a) (b) (c)

Fig. 10: Curves of Nuf , Nup and Nuϕ versus time t for various values of (a),(b) and (c) NH When Rn = 2,Pr = 10, Le = 10, NA =
0.2, a = 2.22, Hs = 0.1, F = 1.2, ϵ = 0.04, γ = 0.5, ϵ1 = 0.4,Ω = 10.
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5 Conclusions

In the present manuscript, weakly nonlinear exploration of combined influence of g-jitter and thermal difference on a Rivlin-Ericksen nanofluid
in Hele-Shaw cell has been examined by performing nonlinear exploration. Outcomes of the present analysis have been depicted graphically
and the following observations (conclusions) are scripted as below:

1. An increment in the amount of HS-number decreases heat-transfer as well as mass-transfer in the system.
2. On increasing the amount of amplitude of g-jitter, heat-transfer increases but mass-transfer decreases in the system.
3. On increasing the amount of modulating-frequency, heat-transfer decreases but mass-transfer increases in the system.
4. An increment in the amount of kinematic-viscoelasticity parameter F, decreases heat as well as mass transportation in the system.
5. Convection sets in earlier for in situation of temperature difference as compared to similar temperature between fluid and nano-particle.
6. In case of temperature difference, heat-transport in particle-phase is more than the heat-transport in fluid-phase.
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Abstract: The evaluation of unknown states for a given quantum system is one of the key problems in quantum information pro-
cessing. The most efficient method of state characterization is quantum state tomography, where the full density matrices are
reconstructed from the experimental measurements or numerical simulations performed on quantum states. The improvement of
the computational performance in quantum state tomography and its related problems is a challenging task for modern theoretical
physics. The general scheme of computing deals with the input information which goes into a quantum reservoir through a recur-
rent evolution. After the evolution, the final output is obtained as the linear combination of the readout elements. In the proposed
approach, the quantum reservoir is modeled with the Lindbladian equation. The control over performance is made by the coherent
coupling parameter between the input quantum state and the reservoir. The control feedback algorithm is represented with the set
of the Kolesnikov target attractor (TA) algorithm to drive certain parameters of quantum state tomography, for instance, the outputs
for the density matrix. TA feedback is formulated in a discrete form and discuss its possible development and applications.

Keywords: Non-linear feedback algorithms, Quantum informatics, Quantum neuromorphic computing, Reservoir computing
networks.

1 Introduction

The concept of reservoir computing (RC) is originated in algorithms based on stable learning at a real-time lower computational cost, such as
echo state networks and liquid state machines [1]. The main part of RC is a so-called ’reservoir’: a high-dimensional dynamical system forms
a neural network with fixed random connections, such architecture allows to avoid the overhead of controlling a large number of connections
[2]. The reservoir gets the temporal input data, adjusts the weights of the readout signal by training, and approximates the target output signal
[3]. Different physical realizations of reservoirs are based on electronic circuits, photonic systems, spintronic systems, mechanical machines
(soft and compliant robots), and even biological networks (in-vitro cultured cells) [4].

Quantum reservoir computing systems have their own features that could not be simulated on conventional classical computers [5]. The
evaluation of unknown states for a given quantum system is one of the key problems of quantum information processing [6]. The information
about the input system enters the quantum reservoir, which goes through a recurrent evolution. After the evolution, the final output is taken as
the linear combination of the readout elements.

The weights in the system are of two types: the weights representing the coupling of the reservoir with the input and output layers, and the
bidirectional recurrent weights connecting the reservoir nodes.

The most efficient method of state characterization is quantum state tomography, where full density matrices are reconstructed from exper-
imental measurements or numerical simulations performed on quantum states [7]. The improvement of the computational performance in
quantum state tomography and its related problems is a challenging task for modern theoretical physics. The general scheme of computing
deals with the input information which goes into a quantum reservoir through a recurrent evolution. After the evolution, the final output is
obtained as the linear combination of the readout elements [6].

In our approach, the quantum reservoir is modeled with the Lindbladian equation. The control over performance is made by the coherent cou-
pling parameter between the input quantum state and the reservoir [8]. Usually, the control during the quantum state tomography is performed
as an open-loop (feedforward) scheme [6, 9], but here we discuss the closed-loop (feedback) algorithm. The control feedback algorithm is
represented with the discrete analog of the Kolesnikov Target Attractor approach [10] to drive certain parameters of quantum state tomography,
for instance, the outputs for the density matrix. We discuss the pros and cons of our proposed control approach and its possible development
and applications.
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2 Quantum State Tomography

Quantum state tomography (QST) is a method to reconstruct the density matrix of a given quantum system. In finite D-dimensional Hilbert
space, the density matrix is described by D2 − 1 independent real-valued parameters [9].

The initial phase of the QST tomography process is the training to recognize the given quantum state. It is based on the set of experimental
or numerically generated data. Then the trained set-up can be used for analyzing the unknown states of the given quantum system.

The training states in the reservoir need to be linearly independent, by the set of D2 randomly generated quantum states can be sufficient
[9].

The reservoir dynamics are described by the equation [6]:

i~dρ
dt

=
[
ĤR, ρ

]
+
iγ

2
L̂(ρ) + T̂int(ρ) , (1)

where ĤR is the reservoir Hamiltonian, L̂(ρ) is a Lindbladian operator describing the dissipation in the system; and T̂int(ρ) is the operator
activating the coupling between the input modes and the reservoir. The process of quantum state tomography can be performed in the following
steps [9]:
1. Initially the reservoir stays in the vacuum state or excited only with the uniform field.
2. A coupling between the input modes and the reservoir is activated through a cascade coupling as a set of the Heaviside delta-functions or
through a coherent coupling, see [6, 9] for details.
3. The vector n consisting of the occupation number nj of each readout mode is measured.
4. The desired output is evaluated:

Yout = Mn + m . (2)

In (2) the matrix M and the constant vector m are determined through the training process.
For the purpose of tomography let’s chose: Yout = ρin (here the density matrix is arranged in a column vector format). Then in the process

of tomography, we expect that: ρin = Mn + m.
In reality, RHS(2) is not exactly equal to the real density matrix, such that the vector representation of the density matrix reconstructed in

the process of tomography is given by:

ρtomo
in = Mn + m , (3)

with some error as a result of the experimental or numerical observation of the density matrix.
To evaluate the error of QST, the fidelity is defined as [9, 11]:

F =

(
Tr

[√√
ρin · ρtomo

in · √ρin
])2

. (4)

For the multiple inputs j = 1, ..., N , the fidelity should be computed for each input separately as Fj , and then the average fidelity is
calculated:

F̄ =
1

N

N∑
j=1

Fj . (5)

In the case of ideal error-free quantum tomography, the fidelity (4)-(5) must be equal to 1: F = 1, otherwise: F < 1 [9].

3 Control over the Performance in Quantum Tomography

To make a control over the quantum tomography performance we use here the concept of creating in the dynamical system an artificial target
attractor locking the trajectories in the neighborhood of the control goal. Such a method has been proposed by Kolesnikov in [10] for continuous
-time systems.

In the continuous formulation of Target Attractor (TA) feedback, we define a function ψ to form an artificial target attractor in the dynamical
system as: ψ(t) = v(t)− vt(t). Here v(t) represents a controlled variable, while vt(t) stays for the target variable function, i.e. we make a
control tracking for the variable v. Then we demand the exponential convergence of the goal function:

T
dψ

dt
= −ψ . (6)

An arbitrary positive constant T corresponds to the typical time scale of the TA control. Eq.(6) has the solution:

ψ(t) = e−t/Tψ(0) . (7)

Thus, by (7) the system dynamics for v(t) come exponentially fast to the target function vt(t) and then stays locked in its neighborhood.
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For the purpose of quantum tomography we develop here a discrete analog of the Kolesnikov algorithm. Let’s define the matrix analog of
the target attractor (5) in the form:

ψk = Yout
k −Yout

t (8)

with the target vector outcome:

Yout
t = Mtn + mt . (9)

The outcome is a sample in the process of training. The target outcome contains the target matrix Mt and target vector mt. We need the
exponential convergence of the control procedure, like in (7), as the discrete step k is increases:

ψk = e−γkψ0 ; γ = const > 0 . (10)

The training procedure for the discrete Kolesnikov algorithm looks at the k-th and (k + 1)-th steps as:

Yout
k = Yout

t + e−γk
(
Yout

0 −Yout
t

)
= Mkn + mk ;

Yout
k+1 = Yout

t + e−γ(k+1)
(
Yout

0 −Yout
t

)
= Mk+1n + mk+1 . (11)

By (10)-(11), we can evaluate the difference for the vector m at the k-th and (k + 1)-th steps as:

mk+1 −mk =
[
e−γ(k+1) − e−γk

]
(Yout

0 −Yout
t ) . (12)

With the first equation in (11), we express the vector n:

n = (Mk+1 −Mk)−1
[
(Yout

k+1 −Yout
k )− (mk+1 −mk)

]
. (13)

Then, after the substitution (12) into (13), we find the vector n explicitly:

n = (Mk+1 −Mk)−1Bk ;

Bk = (Yout
k+1 −Yout

k )−
[
e−γ(k+1) − e−γk

]
(Yout

0 −Yout
t ) . (14)

Now let’s substitute the vector n from (14) back to the second equation (11) and finally get:

Mk+1M
−1
k (Yout

k −mk) = (Yout
k −mk) + Bk . (15)

Eq.(15) is the main result of our discrete analog for the Kolesnikov algorithm (5)-(7). Practically, by (13) we reduced the learning process
for quantum tomography to the problem of finding the eigenvectors and eigenvalues for the matrix M at the (k + 1)-th step.

Asymptotically, we can evaluate:

Yout
k → Yout

t as k →∞ ;

Mk+1n + mk+1 'Mkn + mk , (16)

then Bk 'mk+1 −mk .

This simplification could be useful for the fast numerical evaluation of the auxiliary matrix B.

4 Finalization of the Control Algorithm

In this section we formulate the final form of our novel algorithm with the Kolesnikov-type feedback:
0. At the 0-th step, get the density matrix arranged in a column vector format: Yout

0 = ρin,0 (from experimental data or numerical simulations).
Then perform the algorithmic cycle:
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1. Start from the density matrix arranged in a column vector format for the k-th step:

Yout
k = ρin,k . (17)

2. Compute the auxiliary vector B for the k-th step:

Bk = (Yout
k+1 −Yout

k )−
[
e−γ(k+1) − e−γk

]
(Yout

0 −Yout
t ) . (18)

3. Solve the eigenvector problem (15) for the (k + 1)-th step and compute the vector m and the matrix M:

mk+1 = mk −Bk ;

Mk+1 = bka
−1
k ; where :

ak = M−1
k (Yout

k −mk) ; (19)

bk = (Yout
k −mk) + Bk .

4. Find the vector n, as in (14):

n = (Mk+1 −Mk)−1Bk . (20)

5. Finally, by (11), get Yout for the (k + 1)-th step:

Yout
k+1 = Mk+1n + mk+1 . (21)

6. Repeat all these procedures 1-6 for the next algorithmic cycle up to the necessary level of accuracy. For the evaluation of the error use the
fidelity (4)-(5).

5 Main Result

The training process is the most time-consuming phase to analyze the given system in quantum tomography.
The usage of our novel approach when each vector and matrix variable is computed in the frame of an exponentially converging discrete-step

Kolesnikov-type algorithm drastically increases the speed of training for the reservoir computing system and optimizes the training.

6 Conclusions

The feedback control algorithm over the performance of quantum state tomography proposed here demonstrates a set of advantages:
– The invented algorithm works for the optimization of the computational sources and decreases the computational cost in the real-time
numerical process.
– The algorithm is robust and stable under relatively small external perturbations.
– The algorithm is valid for different types of interaction between the input modes and the reservoir: cascade coupling, and coherent coupling.

The algorithm also can be easily extended to different control goals: preparation, estimation and reconstruction of quantum states, quantum
computing, compressing quantum circuits, and others [11].
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Abstract: In this paper, we prove the existence and uniqueness of solutions for a singular Caputo-Fabrizio fractional differential
equation boundary value problem. The main results of this paper are obtained by constructing the monotone iterative sequences
of upper and lower solutions and applying a fixed point theorem. We also present an example supporting our theoretical results.
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1 Introduction

Recently, there has been a growing interest on the applications of fractional boundary value problems. These applications contain various
scientific areas such as engineering, physics, aviscoelasticity, electrochemistry and electromagnetics; [1, 4] and the references therein. This
paper deals with the positive solutions of the fractional boundary value problems (FBVP) involving the Caputo-Fabrizio fractional derivative.
In the last two decades, there are many works on FBVPs [5, 8].

In [7], the authors consider the following singular fractional differential equation involving the Caputo fractional derivative

cDα0+u(t) + f(t, u(t)) = 0, u(0) = u′(1) = u′′(0) = 0, 0 < t < 1, α ∈ (2, 3],

where limt→0+ f(t, u(t)) =∞. It is shown that the problem has at least one positive solution with the help of nonlinear alternative of
Leray-Schauder and a fixed point theorem in a cone. In [9], the following singular fractional Dirichlet boundary value problem is considered:

RDα0+u(t) + f(t, u(t),RDβ
0+

) = 0, u(0) = u(1) = 0, 0 < t < 1, α ∈ (1, 2], β > 0,

where RDα0+ is the standard Riemann-Liouville fractional derivative, α− β ≥ 1 and f satisfies the CarathÃl’odory conditions on
[0, 1](0,∞)× R,, f is positive and f(x, ·, ·) is singular at the origin.

By the Caratheodory conditions on [0, 1]× (0,∞)× R, we mean that f satisfies the following

(i) f(·, x, y) : [0, 1]→ R is measurable for all (x, y) ∈ (0,∞)× R,
(ii) f (t, ·, ·) : (0,∞)× R→ R is continuous for a.e. t ∈ [0, 1].
(iii) for each compact set K ⊂ (0,∞)× R there is a function mK ∈ Lp[0, 1] such that

|f(t, x, y)| 6 mK(t) for a.e. t ∈ [0, 1] and all (x, y) ∈ K.

Inspired by the above studies, in this paper, we investigate the existence and uniqueness of positive solution for a singular FBVP of the
Caputo-Fabrizio fractional derivative with the Dirichlet boundary conditions

CFDα0+u(t)− f(t, u(t), u
′(t)) = 0, u(0) = u(1) = 0, 0 < t < 1, α ∈ (1, 2], , (1)

where CFDα0+ is the Caputo-Fabrizio fractional derivative, f satisfies the Caratheodory conditions on [0, 1](0,∞)× R,, f is positive and
f(x, ·, ·) is singular at the origin.

We say that the solution u ∈ C[0, 1] is a positive solution of problem (1) provided that u > 0 on (0, 1), CFDα0+u ∈ L
1[0, 1], u satisfies the

boundary conditions.
Most of the works on FBVPs in the literature are devoted to fractional differential equation involving the Riemann-Liouville fractional

derivative or the Caputo fractional derivative. The main drawback of these fractional derivatives is that they have singular kernel at the starting
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point of the domain. This drawback leads to investigate some new definitions for fractional derivatives in the literature. The Caputo-Fabrizio
fractional derivative is a newly defined fractional derivative which has exponential decay in the kernel while the Caputo fractional derivative
has a singular kernel based on a power law.

The organization of this paper is as follows. In Section 2, we recall the definition of the Caputo-Fabrizio fractional derivative and integration
and its properties. In Section 3, the existence and uniqueness of the solutions of the problem are investigated. We give an example to demonstrate
the applicability of the results in the last section.

2 Preliminaries

This section introduces some definitions and preliminaries that will be needed in the following.

Definition 1. [10] Let f ∈ H1(a, b), a < b and α ∈ (0, 1]. The fractional Caputo-Fabrizio derivative is defined as

CFDα0+u(x) =
(2− α)M(α)

2(1− α)

∫x
0
exp

(
−

α

1− α(x− t)
)
u′(t) dt, t ≥ 0, (2)

where M(α) is a normalization function with M(0) =M(1) = 1.

Definition 2. The Caputo-Fabrizio fractional integral of order α ∈ (0, 1) is defined as

CF Iα0 u(x) =
2(1− α)

(2− α)M(α)
u(x) +

2α

(2− α)M(α)

∫x
0
u(s) ds. (3)

Imposing
2(1− α)

(2− α)M(α)
+

2α

(2− α)M(α)
= 1, we can have an explicit expressing for M(α), α ∈ (0, 1] given as

M(α) =
2

2− α.

The high order Caputo-Fabrizio fractional of order σ = α+ n for α ∈ (0, 1) and n ∈ N is defined as

CFDα+n0+ u(x) := CFDα0+(
CFDn0+u(x)).

AC[0, 1] denotes the space of absolutely continuous functions on the interval [0, 1] andACloc(0, 1] be the space consisting of functions that
are absolutely continuous on every interval [a, 1] ⊂ (0, 1]. We always assume p > 1, q(p− 1) = p.

Lemma 1. [11] Assume α > 0, for u ∈ L1(0, 1),

(1) CF Iα0CFD
α
0 u(x) = u(x)−

∑n
k=0

u(k)(0)
k! xk, x ∈ [0, 1], u ∈ Lp[0, 1].

(2) CFD
α
0
CF Iα0 u(x) = u(x), where n = [α] + 1. The Laplace transform of the Caputo-Fabrizio fractional of order σ = α+ n for α ∈

(0, 1) and n ∈ N is given by

L
{
CFD

σ
0u(x)

}
(s) =

sn+1L{f(x)}(s)− snf(0)− sn−1f ′(0) · · · − f (n)(0)
s+ α(1− s) .

We need the following lemma in the sequel.

Lemma 2. Given h ∈ C[0, 1], and 1 < α 6 2, the unique solution of the following FBVP

CFD
α
0 u(x) + g(x) = 0, 0 < t < 1,

u(0) = u(1) = 0,
(4)

is given by u(x) =
∫1
0 G(x, s)g(s)ds where

G(t, x) =

{
(1− α)t(1− x), 0 ≤ t ≤ x ≤ 1,

(1− α)x(1− t), 0 ≤ x ≤ t ≤ 1.
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Proof: Applying the Laplace operator to the equation (4), we get

L
{CF

Dα0 (u)(x)
}
(s) = L

{
g(x)

}
(s).

Appealing Laplace operator on both sides of the above equation, we find that

s2U(s)− su(0)− u′(0)
s+ α(1− s) = −G(s),

where U(s) = L
{
(u)(x)

}
(s) and G(s) = L

{
g(x)

}
(s). The last equation can be rewritten as

U(s) =
1

s
u(0) +

1

s2
u′(0)−

1− α
s

G(s)−
α

s2
G(s).

The inverse Laplace operator is now applied to above equation to arrive at

u(x) = u(0) + xu′(0)− (1− α)
∫x
0
(x− t)g(t) dt. (5)

Taking into account the Dirichlet boundary conditions

u(x) = (1− α)x
∫1
0
(1− t)g(t)dt− (1− α)

∫x
0
(x− t)g(t) dt,

or, equivalently we have

u(x) =

∫x
0
(1− α)t(1− x)g(t)dt+

∫1
x
(1− α)x(1− t)g(t) dt

=

{
(1− α)t(1− x), 0 ≤ t ≤ x ≤ 1,

(1− α)x(1− t), 0 ≤ x ≤ t ≤ 1,

which gives the desired result.
�

Consider the Banach space X =
{
u : u ∈ C[0, 1] ∩ C1(0, 1]

}
with the norm ‖u‖X = max

{
‖u‖∞,

∥∥u′∥∥∞}, where ‖ · ‖∞ is the sup-
norm and we set Z = Lp[0, 1] with the usual norm denoted by ‖ · ‖p. We apply the Leray-Schauder Continuation Principle :

Theorem 1. Let X be a Banach space and T : X → X be a compact map. Suppose that there exists an R > 0 such that if u = λTu for
λ ∈ (0, 1), then ‖u‖X < R. Then T has a fixed point.

Let us define a mapping T : X → X by

Tu(x) =(1− α)x
∫1
0
(1− t)f(t, u(t), u′(t))dt− (1− α)

∫x
0
(x− t)f(t, u(t), u′(t)) dt, x ∈ [0, 1].

Then, for x ∈ (0, 1],

(Tu)′(x) =(1− α)
∫1
0
(1− t)f(t, u(t), u′(t))dt− (1− α)

∫x
0
f(t, u(t), u′(t)) dt.

It is clear that Tu ∈ C[0, 1] ∩ C1(0, 1]. The next result establishes the desired properties of T in the Banach space that will be used for proving
the positive solution of the problem (1).

Lemma 3. Assume that (i)− (iii) and p > 1, q(p− 1) = p hold. Then the mapping T : X → X is compact.

Proof: Let E ⊂ X be bounded subset and put r = sup{‖u‖X : u ∈ E}. Then, by Assumption (iii), there exists a nonnegative function
φr ∈ Lp[0, 1], such that, for all u ∈ E and a.e. t ∈ [0, 1],∣∣f (x, u(x), u′(x))∣∣ ≤ φr(x).
By Holder’s inequality, with the assumption that p > 1, q(p− 1) = p, for all u ∈ E, we obtain

‖Tu‖∞ ≤
2

(q + 1)1/q
‖φr‖p .

Thus, the set T (E) ⊂ X is bounded. Let x1, x2,∈ [0, 1] with x1 < x2 and u ∈ E. In what follows, the generic constant C1 depends only on
the parameters α and q.
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We find that

|(Tu) (x2)− (Tu) (x1)| =(1− α) |
∫x2

0
(x2 − s) f

(
s, u(s), u′(s)

)
ds

−
∫x1

0
(x1 − s) f

(
s, u(s), u′(s)

)
ds

− (x2 − x1)
∫1
0
(1− s)f

(
s, u(s), u′(s)

)
ds |

≤ C(x2 − x1) ‖φr‖1 .

This shows that T is equicontinuous on (0, 1]. It follows, by the Arzela-Ascoli theorem, that T (E) is compact. The proof of the continuity of
T is a routine application of the Lebesgue Dominated Convergence Theorem. �

3 Main result

To obtain our main result, we need the following conditions.
(iv) There exist r, s, k : [0, 1]→ [0,∞) such that r, s, k ∈ Lp[0, 1] and

|f(x, u, v)| ≤ r(x)|u|+ s(x)|v|+ k(x), a.e. x ∈ [0, 1]

Theorem 2. Assume that (i) , (ii) , (iv), and p > 1, q(p− 1) = p hold. Suppose that the functions r, s satisfy

2

(q + 1)1/q
‖r‖p + ‖s‖p < 1. (6)

Then the boundary value problem (1) has at least one solution.

Proof: We consider, for λ ∈ (0, 1), the following FBVP

CFD
α
0 u(t) = λf

(
t, u(t), u′(t)

)
, t ∈ (0, 1),

subject to the Dirichlet boundary conditions. We would like to verify that the set of all possible solutions is a priori bounded in X by a constant
independent of λ ∈ (0, 1). We obtain at once

∥∥∥CFDα0 u∥∥∥
p
= λ

∥∥f (t, u, u′)∥∥
p

<
∥∥f (t, u, u′)∥∥

p

≤ ‖ru‖p +
∥∥su′∥∥

p
+ ‖k‖p

≤ ‖r‖p‖u‖0 + ‖s‖p
∥∥u′∥∥∞ + ‖k‖p

≤ A‖r‖p
∥∥∥CFDα0 u∥∥∥

p
+B ‖s‖p

∥∥∥CFDα0 u∥∥∥
p
+ ‖k‖p.

As a result, we arrive at ∥∥∥CFDα0 u∥∥∥
p
≤ ‖γ‖p

1−A‖α‖p −B ‖tα−2β‖p
.

This means that the solution set is a priori bounded in Lp[0, 1] by a constant independent of λ ∈ (0, 1). It follows, by Lemma 3, that the
solution set is bounded in X by a constant independent of λ ∈ (0, 1) in view of

‖u‖ ≤ max{A,B}
∥∥∥CFDα0 u∥∥∥

p

It readily follows from the results above that the function u ∈ X is a solution of the boundary value problem ((1) if u ∈ X is a fixed point of
the mapping T . The mapping T is compact. Since the a priori estimate condition of Theorem 1 is verified by virtue of the above inequality, the
assertion follows. We complete the proof. �

4 An example

Let us consider the following boundary value problem
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CFD
3
2
0 u(x) = f(x, u(x), u′(x)), 0 < x < 1,

u(0) = 0, u(1) = 0.
(7)

2

(q + 1)1/q
=

(
4

7

)2/3

.

Here, we take

f(x, u, v) =
1

x2/7
u2

1 + |x| +
4

5πx4/5
y arctan v +

1

x1/4
.

We observe that the assumption (iv) is fulfilled with r = 1
x2/7 , s = 1, and k = 1

x1/4 satisfying ‖r‖3 = 71/3

5 . Elementary calculations show
that the inequality (6) is satisfied. Therefore, we conclude that the problem (7) has one positive solution on (0, 1).
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Abstract: In a set of n− 1 identical elements (regular elements) is inserted another element (irregular element) which in all
observable characteristics has the same as those of regular elements but, according to an unobservable feature, it differs from
them. So we obtain a set S with n elements. The irregular element can have positive or negative deviation of a specific feature
compared to the regular elements of the set S. A characteristic of the feature of the irregular element is that its presence in any
subset A of S gives it a deviation compared with any subset B with the same number of elements, but that all its elements are
regular. Of course, this deviation has the direction of the set that contains the irregular element. Suppose that a comparison oper-
ation is available, for each pair of subsets of S with the same number of elements, to indicate whether or not one of them has a
positive deviation from the other, which means that the irregular element belongs to one of these two sets, but without knowing
which of them. Under these conditions, it is clear that with at most n− 2 comparison operations between two subsets with one
element each, it is possible to identify the irregular element. But, the problem we will pose here is that of identifying this element
with as few comparison operations as possible between the subsets of S, where S is a set with n elements.

Keywords: Irregular element, Comparison operation, Positive deviation.

1 Solving the problem for small values of n

• n = 1
Here the solution is evident. The only element of the set is also the irregular element. So, we have zero comparison operations.

• n = 2
In this case the problem has no solution. This numbers of elements makes it impossible to identify the irregular element.

• n = 3
We do the comparison operation for a pair of them and are two possible results:

a) There is no deviation according to specific feature of the irregular element. So, the comparing elements are regular and consequently the
remaining element is the irregular element. In this case, only one comparison operation was used.

b) There is deviation according to specific feature of the irregular element. In this case we do the second comparison operation between an
element from the used pair and the third element. If there is a deviation, then the element comparing twice is the irregular element. Otherwise,
the element of the first pair compared, that is not used in the second comparison will be the irregular element. As can be seen, for n = 3, the
maximum number of comparison operations that guarantees the identification of the irregular element is 2.

• n = 4
Acting as in the case of n = 3, after two comparison operations for subsets with a single element, where one element of the first compared
pair is used again in the second, the identification of the irregular element is achieved. So, the maximum number of comparison operations that
guarantees the identification of the irregular element is 2. Indeed, if we have positive deviation in both two comparison operations, then the
element used twice will be the irregular element. If we have no positive deviation in both two comparison operations, then the fourth element
(not used) is the irregular element.

2 Consideration of the problem for a natural number n

We will distinguish two cases:

(I) The number of elements of the set S is a term of the sequence ap = 4 · 3p, namely

n = 4 · 3p, p = 1, 2, ...
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We denote by P1 the following procedure:

”Divide the set S into three disjoint subsets A,B,C, with the same number of elements 4 · 3p−1. So, S = A ∪B ∪C. After that we do
the comparison operation for A and B”.

We observe that the implementation of the procedure P1 requires only one comparison operation. Consider the possible comparison results as
follows:

(Ia) The sets A and B do not have deviation.

It is clear that the irregular element in this case belongs to subset C. It is the same case as (I), but now, the number of elements is 4 · 3p−1. We
do S := C and repeat the procedure P1

If we obtain the case ( I) after the implementation of the procedure P1, and this result occurs at any repeat of that procedure, then after
p-steps we will obtain the set C with 4 · 30 = 4 elements, to which belongs the irregular element. It is now known that for such sets the
individualization of the irregular element requires only two comparison operations. So, when in any comparison operation we obtain the case
(Ia), the solution of the problem arises with:

N = 2 + p = 2 + log3
4 · 3p

4
= 2 + log3

n

4
(1)

comparison operations.

(Ib) After k(k = 1, 2, 3, ..., p− 1) consecutive executions of the procedure P1, comes out for the first time that, the compared subsets
have a deviation. So the k-th execution of the procedure P1 has shown that one of the subsets A or B, with 4 · 3p−k elements, has positive
deviations from the other. We always mark by A the subset with positive deviation from B. It is clear that all the elements of the third subset
C are regular as the irregular element is located in either of the subsets A or B. In case (Ib) we will execute the procedure P2 as follows:

• Divide each of the subsets A and B, where each of them has 4 · 3p−k elements, in three disjoint subsets with the same number of elements
4 · 3p−k−1 and mark them A1,A2,A3, and B1,B2,B3
• Construct the combined sets B1 ∪A2 and A1 ∪B2 for comparison between them
• Execute the comparison operation between the B1 ∪A2 and A1 ∪B2

It is evident that the procedure P2 has only one comparison operation. It is clear that, when there are positive deviations between the subsets
Ai and Bi, for i = 1, 2, 3, the subest Ai has positive deviation from the set Bi, because according to the agreement that we made above, the
subsets A have positive deviations from the subsets B. Let us consider now the three possible outcomes of the comparison operation:

a) The subset B1 ∪A2 has positive deviation from the subset A1 ∪B2 and we obtain these statements:

- Subsets A3 and B3 contain only regular elements;
- Subset A2 has positive deviations from the subset B2
- The irregular element is located in one of the subsets A2 and B2;
- Subsets A1 and B1 contain only regular elements.

For further investigation we consider the pair of subsets A2 and B2, where one of them contains the irregular element, and we do:

A := A2 and B := B2.

Now, each of the subsets A and B has 4 · 3p−k−1 elements. So, we repeat the procedure P2 for these two sets, where the three subsets Ai and
the three subsets Bi that we obtain again from the division of A and B now will have 4 · 3p−k−2 elements.

b) The subsets B1 ∪A2 and A1 ∪B2 have no deviation. This result shows that the irregular element belong to A3 ∪B3 and we repeat the
procedure P2 doing A := A3;B := B3.

c) The subset A1 ∪B2 has positive deviation from the subset B1 ∪A2 and reasoning as in case a) we will have:

- The irregular element belongs to one of the subsets A1 and B1
- For further investigation we consider the pair of subsets A1 and B1

- Repeat the procedure P2 doing: A := A1;B := B1, where each of these subsets has 4 · 3p−k−1 elements.

We note that in all the above cases, the analysis of the results of the implementation of procedure P2 leads to its repetition (and not to the
implementation of procedure P1) on a pair of subsets with a number of elements three times smaller than their direct predecessors. Therefore
after p− k repetitions of procedure P2, we obtain a pair of subsets each of them with 4 · 30 = 4 elements, that contains the irregular element.

Let now A : = {a1, a2, a3, a4} and B : = {b1, b2, b3, b4} be subsets with the same assumption that A has positive deviation from B. In
this final situation we divide each of them in two subsets with two elements:

A1 = {a1, a2} ,A2 = {a3, a4} ,B1 = {b1, b2}B2 = {b3, b4} .

After that, we consider the subsets B1 ∪A2 and A1 ∪B2. Now execute the comparison operation between them, which has only two outcomes:
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1) B1 ∪A2 has positive deviation from the subset A1 ∪B2.
This outcome shows that the irregular element belongs to A2 ∪B2 = {a3, a4, b3, b4}.

2) A1 ∪B2 has positive deviation from the subset B1 ∪A2.
In this case the irregular element belongs to A1 ∪B1 = {a1, a2, b1, b2}.

As can be seen, in each of the above two cases it remains to individualize the irregular element in a subset of four elements. It is already
known that two comparison operations are sufficient to determine the irregular element. Thus the total number of comparison operations
executed in the three problem-solving phases in case (Ib) is:

N = k + (p− k) + 2 = 2 + p = 2 + log3
n

4
(2)

(II) The number of elements of the set S is a natural number n that does not belong to the sequence {4 · 3p}. In this case, there exists a natural
number p such that:

4 · 3p < n < 4 · 3p+1 (3)

To examine the problem in such sets we will distinguish two cases according to the number n:

(IIa) 2
34 · 3

p+1 < n < 4 · 3p+1

As above, the number n can be written in the form n = 2 · 4 · 3p + q, where 0 < q < 4 · 3p. In this case we divide the set S in three disjoint
subsets A,B,C with number of elements 4 · 3p, 4 · 3p and q respectively. Execute the comparison operation for the subsets A,B and consider
the outcomes:

1) The subsets A and B have no deviation. So, the subsets A and B contain only regular elements and consequently the irregular element
belongs to the subset C. Complete the subset C with elements from A ∪B, until it becomes with 4 · 3p elements and denote this new set by C′.
From the outcomes of the case (I), we will identify the irregular element with 2 + p comparison operations. So, including the first comparison,
the total number of them will be

N = 1 + 2 + p (4)

Now, dividing by 4 all sides of inequality (3) and taking their logarithms with base 3 will have: p < log3
n
4 < p+ 1. So, p+ 1 is the first

natural number greater than log3
n
4 . Now, if we denote in this case

p+ 1 = [log3
n

4
] (5)

then, from (4) and (5) we can express the number of comparison operations N in terms of n as below:

N = 2 + [log3
n

4
] (6)

2) Subsets A and B have deviation and we keep the agreement that A has positive deviation from B. With this result of the comparison
operation between A and B, we are in the same conditions as in case (Ib). So, each of A and B will be divided in three disjoined subsets with
4 · 3p−1 elements. According to the mode of operation used in case (Ib), in our conditions where k = 1, the number of comparison operations
to identify the irregular element in A or B will be 1 + (p− 1) + 2 = 2 + p. Now, adding the first comparison operation, from which, we
found that A and B had deviation between them, the total number of comparison operations to individualize the irregular element will be
2 + p+ 1 . So, for the number N, we obtain again the formula (6).

(IIb) 4 · 3p < n < 2
34 · 3

p+1

As in (IIa), even in this case we will have n = 4 · 3p + q where 0 < q < 4 · 3p. Under these conditions, we divide the set S into three
disjoined subsets A,B,C with a number of elements respectively 2 · 3p, 2 · 3p and q. Execute the comparison operation for the subsets A,B
and consider the following possible cases:

1) The subsets A and B have no deviation. In this case the irregular element belongs to C. We complete the subset C with regular elements
taken from A ∪B until it becomes with 4 · 3p elements. As we have shown in the case (IIa), we identify the irregular element in this subset
by 2 + p comparison operations, and including the first comparison operation between the subsets A and B, the total number of them will be
2 + p+ 1 which is again the same as formula (6).

2) The subset A has positive deviation from the set B. So, the irregular element belongs to the set A ∪B that will have 2 · 3p + 2 · 3p =
4 · 3p elements. For this subset with such a number of elements, as shown in point (I), the identification of the irregular element requires a
number of 2 + p comparison operations. Adding the first comparison operation between subsets A and B, this number becomes again:

N = 2 + (p+ 1) = 2 + [log3
n

4
] (7)

(IIc) n = 2
34 · 3

p+1 = 8 · 3p

In this case we divide the set S into four disjoined subsets A,B,C,D with 2 · 3p elements. Execute the comparison operation between
A and B. If come out a deviation, the irregular element belongs to A ∪B, which has 2 · 3p + 2 · 3p = 4 · 3p elements, otherwise the irregular
element belongs to C ∪D, with the same number of elements 4 · 3p.
So we obtain again the same formula (7) for the number N of comparison operations that is needed to identify the irregular element in terms
of the number n of elements of S, in which is this irregular element.
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3 Conclusion

The way of searching for the irregular element in a set with n elements, presented above, guarantees its identification with N = 2 + [log3
n
4 ]

comparison operations, where the symbol [log3
n
4 ] means log3

n
4 , if it is an integer, or the first integer greater than log3

n
4 , if it is not an integer.

There are indications that lead us to believe that this number is the minimum possible of the appropriate operations to solve the problem
of the irregular element.
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3 T.H. OâĂŹBeirne’, ”Puzzles and Paradoxes”, Paperback âĂŞ September 13, 20-32, 2015.
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1 Introduction

Conformal geometry has deep importance in pure mathematics, such as complex analysis, Riemann surface theory, differential geometry and
algebraic topology, [1]-[3]. Computational conformal geometry is important in digital geometry processing. Discrete conformal geometry has
been presented to compute conformal mapping which has been broadly applied in numerous practical fields, including computer vision and
graphics, visualization, medical imaging, etc. In medical imaging, conformal geometry has been applied to surface parametrization and extract
intrinsic features for natural objects like the brain, colon, spleen and other human organs.

Historically, conformal mappings have been considered in many monographs, surveys and papers. Also, the theory of conformal mappings
has very important applications in general relativity.

Let (M, g) and (M̄, ḡ) be two n-dimensional Riemannian manifolds with metric tensors gij and ḡij , respectively. Both metrics are defined
by a common coordinate system (xi). The correspondence between (M, g) and (M̄, ḡ) is conformal, if the fundamental tensors gij and ḡij of
two manifolds M and M̄ are related by the relation

ḡij(x) = e2σ(X)gij(x) (1)

where σ(x) is a scalar function of x’s.
By the transformation (1), it also follows that the relation between the Christoffel symbols Γhij and Γ̄hij compatible with the metrics gij and

ḡij , respectively, is given by

Γ̄hij = Γhij + δhi σj + δhj σi − σ
hgij (2)

where σi = ∂σ
∂xi , σh = ghiσi, gij are the components of the inverse matrix to gij , and δhi is the Kronecker delta.

A conformal mapping is called homothetic if the function σ is constant, that is, ḡij(x) = cgij(x). The condition is equivalent to σi = 0,
hence, the mapping is also an affine one.

Denoting Rhijk and R̄hijk are the Riemann tensors of the manifolds M and M̄ , respectively, then we have ([4, 5])

R̄hijk = Rhijk + δhkσij − δ
h
j σik + ghl(σlkgij − σligjk) + (δhkgij − δ

h
j gik)∆1σ

S̄ij = Sij + (n− 2)σij + (∆2σ + (n− 2)∆1σ)gij

r̄ = e−2σ(r + 2(n− 1)∆2σ + (n− 1)(n− 2)∆1σ) (3)

where σi = ∂iσ, ∆1σ = gijσiσj , ∆2σ = gijσi,j , σij = σi,j − σiσj . We denote that Sij = Rhijh and S̄ij = R̄hijh are the Ricci tensors and
r = Sijg

ij and r̄ = S̄ij ḡ
ij are the scalar curvatures with respect to M and M̄ , respectively.
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It is known that a harmonic function is defined as a function whose Laplacian vanishes. In general, a harmonic function is not invariant
under the conformal transformation. In [6], Ishii obtained the conditions at which a harmonic function remains invariant and he introduced the
conharmonic transformation as a subgroup of the conformal transformation (1) satisfying the condition [6]

σh,h + σh,hσ
h
, = 0 (4)

where comma denotes the covariant differentiation with respect to the metric g.
Thus, we can say that the conharmonic transformation which is a special type of conformal transformation preserves the harmonicity of

smooth functions. It is well known that such transformations have invariant tensors, so-called the conharmonic curvature tensor. It is easy to
verify that this tensor is an algebraic curvature tensor, that is, it possesses the classical symmetry properties of the Riemannian curvature tensor.

A rank-four tensor L that remains invariant under the conharmonic transformation of a Riemannian manifold (M, g) is given by

L(X,Y, Z, U) = R(X,Y, Z, U)− 1

n− 2
[g(Y,Z)S(X,U)− g(X,Z)S(Y,U) + g(X,U)S(Y,Z)− g(Y,U)S(X,Z)] (5)

where R and S denote the Riemannian curvature tensor of type (0,4) defined by R(X,Y, Z, U) = g(R(X,Y )Z,U) and the Ricci tensor of
type (0,2), respectively. The curvature tensor defined by (5) is known as the conharmonic curvature tensor. A manifold whose conharmonic
curvature tensor vanishes at every point of the manifold is called a conharmonically flat. Thus, this tensor represents the deviation of the
manifold from the conharmonic flatness.
Q denotes the symmetric endomorphism of the tangent space at each point of the manifold corresponding to the Ricci tensor S of type (0,2),

that is

g(QX,Y ) = S(X,Y ). (6)

Let
{
ei, i = 1, 2, ..., n

}
be an orthonormal basis of the tangent space at each point of the manifold. From (5), we have

L(X,Y ) =

n∑
i=1

L(X, ei, ei, Y ) =

n∑
i=1

L(ei, X, Y, ei)

= − r

n− 2
g(X,Y ) (7)

and

n∑
i=1

L(ei, ei, X, Y ) =

n∑
i=1

L(X,Y, ei, ei)

= 0 (8)

where r is the scalar curvature of the manifold. Also, from (5) it follows that [7]

L(X,Y, Z, U) = −L(Y,X,Z, U)

L(X,Y, Z, U) = −L(X,Y, U, Z)

L(X,Y, Z, U) = L(Z,U,X, Y )

L(X,Y, Z, U) + L(X,Z,U, Y ) + L(X,U, Y, Z) = 0. (9)

In [7], Shaikh and Hui showed that the conharmonic curvature tensor satisfies the symmetries and skew-symmetric properties of the Riemannian
curvature tensor as well as cyclic ones. This tensor has valuable applications in general relativity. In [8], Abdussatter investigated its physical
significance in the theory of general relativity. The conharmonic transformation has also been studied by Siddique and Ahsan [9], Ghosh, De
and Taleshian [10], and many others.

A non-flat Riemannian manifold which is called a recurrent manifold [11] if the curvature tensor of this manifold satisfies the relation

(∇WR)(X,Y, Z, U) = A(W )R(X,Y, Z, U) (10)

where A is a non-zero 1-form. A non-flat Riemannian manifold which is called a Ricci-recurrent manifold if the Ricci tensor of this manifold
satisfies the relation([12]-[14])

(∇XS)(Y,Z) = A(X)S(Y,Z) (11)

where A is a non-zero 1-form.
A Riemannian manifold has a Ricci tensor of Codazzi type if the Ricci tensor S of type (0,2) is non-zero and satisfies the following condition,

[15]

(∇XS)(Y,W ) = (∇Y S)(X,W ). (12)
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2 Z-Tensor on a Riemannian Manifold

In 2012, Mantica and Molinari defined a generalized symmetric tensor of type (0, 2) which is called Z-tensor and given by, [16]

Zkl = Skl + φgkl, (13)

where φ is an arbitrary scalar function. The scalar Z̄ is the trace of the Z-tensor and from (13), it can be written as

Z̄ = gklZkl = r + nφ. (14)

The classical Z tensor is defined with the choice φ = − 1
nr. Shortly, the generalized Z-tensor is called as the Z-tensor. In some cases, the

Z-tensor gives the several well known structures on Riemannian manifolds. For example, i) If Zkl = 0 (i.e, Z-flat) then this manifold reduces to
an Einstein manifold, [17]; ii) If∇jZkl = λjZkl (Z-recurrent) then this manifold reduces to a generalized Ricci recurrent manifold [18]; iii) If
∇jZkl = ∇kZjl, (Codazzi tensor) then we find ∇jSkl −∇kSjl = 1

2(n−1)
(gkl∇j − gjl∇k)r, [19]. This result gives us that this manifold

is a nearly conformal symmetric manifold ((NCS)n), [20]; iv) The relation between the Z-tensor and the energy-stress tensor of Einstein’ s
equation, [21], with the cosmological constant Λ is Zjl = kTjl where φ = − 1

2r + Λ and k is the gravitational constant. In this case, the Z-
tensor may be considered as a generalized Einstein gravitational tensor with arbitrary scalar function φ. The vacuum solution (Z=0) determines

an Einstein space Λ =

(
n−2
2n

)
r; the conservation of total energy-momentum (∇lTkl = 0) gives ∇jZkl = 0 then this spacetime gives the

conserved enery-momentum density.
This manifold has received a great deal of attention, and is studied in considerable details by many authors ([16], [22]-[28]), etc. Motivated

by the above studies, in the present, we examine the properties of the Z-symmetric manifold with the conharmonic curvature tensor.
The present paper is organized as follows: We give some definitions in section 1 and section 2. In section 3, we study the Z-symmetric

manifold with the conharmonic curvature tensor. In this section, we prove some theorems related by the properties of these manifolds. In
section 4, we give an example for the existence of these manifolds.

3 Z-Symmetric Manifold with the Conharmonic Curvature Tensor

In this section, we consider Z-symmetric manifold with the conharmonic curvature tensor. In local coordinates, from (5) and (13), the relation
between the Z-tensor and the conharmonic curvature tensor is found as

Lhijk = Rhijk −
1

n− 2
[gijZhk − gikZhj + ghkZij − ghjZik] +

2φ

n− 2
[gijghk − gikghj ] (15)

By taking the covariant derivative of (15), we can find

Lhijk,l = Rhijk,l −
1

n− 2
[gijZhk,l − gikZhj,l + ghkZij,l − ghjZik,l] +

2φl
n− 2

[gijghk − gikghj ]. (16)

Now, suppose that our manifold is Z-recurrent. Considering the equation (11) for the Z-tensor, we can write Zij,l = λlZij . Hence, we see
from (16) that

Lhijk,l = Rhijk,l −
λl

n− 2
[gijZhk − gikZhj + ghkZij − ghjZik] +

2φl
n− 2

[gijghk − gikghj ]. (17)

It is obtained by the equations (15) and (16)

1

n− 2
[gijZhk − gikZhj + ghkZij − ghjZik] = Rhijk − Lhijk +

2φ

n− 2
[gijghk − gikghj ]. (18)

By the aid of (18), the expression (17) can be written as

Lhijk,l − λlLhijk = Rhijk,l − λlRhijk +
2

n− 2
(gijghk − gikghj)(φl − λlφ). (19)

Theorem 1. Let (M,g) be a Z-recurrent Riemannian manifold. If the conharmonic curvature tensor of (M,g) is recurrent with the recurrence
vector field λl then the scalar function φ satisfies the relation φl = λlφ.
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Proof: Assume that (M,g) a is Z-recurrent manifold admitting the recurrence vector field λl. If (M,g) is also conharmonically recurrent manifold
admitting the recurrence vector field λl, we have from (17) and (19),

Rhijk,l = λlRhijk +
2

n− 2
(φl − λlφ)(gijghk − gikghj). (20)

Multiplying (20) by gijghk, we get

r,l = λlr +
2n(n− 1)

n− 2
(φl − λlφ). (21)

On the other hand, if we assume that (M,g) is also conharmonically recurrent then we have from (10) for the conharmonic curvature tensor

Lhijk,l = λlLhijk. (22)

Multiplying (22) by gijghk and using the relation (7), we can easily see that

r,l = λlr. (23)

Finally, we see from (23) that φl = λlφ. This completes the proof. �

Theorem 2. If the Z-tensor of (M,g) is covariantly constant, then the trace of the conharmonic curvature tensor is also constant.

Proof: Assume that the Z-tensor of (M,g) is covariantly constant, i.e., we have

Zij,k = 0. (24)

If we use (24) in (16), we find

Lhijk,l = Rhijk,l +
2φl
n− 2

[gijghk − gikghj ]. (25)

Multiplying (25) by gijghk, we get

L̄,l = r,l +
2n(n− 1)

n− 2
φl. (26)

Now, taking the covariant derivative of (13), we obtain

Zij,l = Sij,l + φlgij . (27)

Because M is of the covariantly constant Z-tensor, the equation (27) reduces to following form

Sij,l = −φlgij . (28)

Thus, multiplying (28) by gij , the equation (28) reduces to

r,l = −nφl. (29)

Changing the indices j and l in the equation (28) and then substracting these two equations, we obtain

Sij,l − Sil,j = −φlgij + φjgil. (30)

Multiplying the equation (30) by gij , we get

r,l − S
j
l,j = (1− n)φl. (31)

Now, using the expression Sjl,j = 1
2r,l, known as the Ricci Identity, in (31), we find

r,l = 2(1− n)φl. (32)

Thus, comparing the equations (29) and (32), one can obtain φl = 0 and r,l = 0, i.e., the scalar function φ and the scalar curvature r must be
constants.

Finally, considering the equation (26), we obtain

L̄,l = 0. (33)

In this case, the equation (33) shows that the trace of the conharmonic curvature tensor is constant. Thus, the proof is completed. �
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Theorem 3. Let the conharmonic curvature tensor of (M,g) be covariantly constant. The trace of the Z-tensor is harmonic function if and only
if the 1-from φl generated by the scalar function φ is divergence-free.

Proof: Assume that the conharmonic curvature tensor of (M,g) is covariantly constant. In this case, we have

Rhijk,l =
1

n− 2
[gijShk,l − gikShj,l + ghkSij,l − ghjSik,l]. (34)

Multiplying (34) by ghk, we get

r,l = 0. (35)

Thus, the scalar curvature r of our manifold must be constant. Now, taking the covariant derivative of (14), we find

Z̄,l = r,l + nφl. (36)

And, putting the equation (35) in (36), we obtain

Z̄,l = nφl. (37)

If we take the covariant derivative of (37), we have

Z̄,lm = nφl,m. (38)

Multiplying (38) by glm, we find

∆Z̄ = glmZ̄,lm = nφl,l. (39)

In this case, if the trace of the Z-tensor is harmonic, the vector field φl is divergence-free. The converse is also true. Thus, the proof is completed.
�

Theorem 4. In a conharmonically recurrent manifold, if the Z-tensor of (M,g) is Codazzi type then the relation between the vector fields φl
and λl is obtained as

φl =
r

2(1− n)
λl.

Proof: Let (M,g) be given as a Riemannian manifold with the recurrent conharmonic curvature tensor admitting the recurrence vector field λl.
By the aid of the equations (10) and (16), we get

λlLhijk = Rhijk,l −
1

n− 2
[gijZhk,l − gikZhj,l + ghkZij,l − ghjZik,l] +

2φl
n− 2

[gijghk − gikghj ]. (40)

Thus, multiplying (40) by ghk, it can be found that

λlLij = Sij,l −
1

n− 2
[gijZ̄,l + (n− 2)Zij,l] +

2(n− 1)

(n− 2)
φlgij . (41)

Again, multiplying (41) by gij , we find

λlL̄ = r,l −
2(n− 1)

(n− 2)
Z̄,l +

2n(n− 1)

(n− 2)
φl. (42)

From (7) and (14), the equation (42) reduces to

r,l = λlr. (43)

Now, we assume that the Z-symmetric tensor is Codazzi type. In this case, considering the Z-tensor for the equation (12), it can be written

Zij,l − Zil,j = 0. (44)

Thus, from (13) and (44), we conclude

Sij,l − Sil,j = φjgil − φlgij . (45)

Multiplying (45) by gij , we get

r,l − S
j
l,j = (1− n)φl. (46)
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By the Ricci identity, (46) takes the form

r,l = 2(1− n)φl. (47)

So, comparing the equations (43) and (47), it can be seen that

φl =
r

2(1− n)
λl. (48)

Thus, the proof is completed. �

In the following theorems, our manifold (M,g) that admits recurrent conharmonic curvature tensor and Codazzi type Z-tensor is shown by
(M̄, g).

Theorem 5. A necessary and sufficient condition the recurrent vector field λl of (M̄, g) to be divergence-free is that the divergence of the
generated vector field φl to be

φl,l =
2(1− n)

r
||φ||2.

Proof: Differentiating covariantly of the equation (48), we obtain

φl,m =
r,m

2(1− n)
λl +

r

2(1− n)
λl,m. (49)

If we put the relation (47) in (49) instead of r,m then we get

φl,m = φmλl +
r

2(1− n)
λl,m. (50)

Again from (48), (50) takes the form

φl,m =
2(1− n)

r
φmφl +

r

2(1− n)
λl,m. (51)

Now, multiplying (51) by glm, we get

φl,l =
2(1− n)

r
||φ||2 +

r

2(1− n)
λl,l. (52)

It is clear from (52) that if we assume λl is divergence-free then φl,l =
2(1−n)

r ||φ||2. The converse is also true. This completes the proof. �

Theorem 6. A necessary and sufficient condition the generated vector field φl of (M̄, g) to be divergence-free is that the recurrent vector field
λl be of negative value and

λl,l = −||λ||2

where ||λ|| is the length of the vector field λl.

Proof: By putting (48) in (50), we find

φl,m =
r

2(1− n)
(λlλm + λl,m). (53)

Thus, multiplying (53) by glm then we get

φl,l =
r

2(1− n)
(||λ||2 + λl,l). (54)

If we assume that φl,l = 0 then we can see that the divergence of λl is of negative value and it satisfies the relation

λl,l = −||λ||2.

The converse is also true. Thus, the proof is completed. �
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4 An Example for the Existence of These Manifolds

We define a Riemannian metric on 4-dimensional real number space R4 by the formula

ds2 = gijdx
idxj = ex

1

(dx1)2 + ex
2

(dx2)2 + (dx3)2 + (sinx3)2(dx4)2 (55)

Then the only non-vanishing components of the Christoffel symbols, the curvature tensor and the Ricci tensor are found as, respectively,

Γ1
11 = Γ2

22 =
1

2
, Γ3

44 = − sin 2x3

2
, Γ4

34 = cotx3,

R3434 = (sinx3)2,

S33 = −1, S44 = −(sinx3)2. (56)

and the components obtained by the symmetry properties. In this case, from (56), the scalar curvature is r=-2. Then the only non-zero
components of the Z-symmetric tensor are found as from (13) and (56)

Z11 = φex
1

, Z22 = φex
2

, Z33 = −1 + φ, Z44 = −(sinx3)2 + φ(sinx3)2. (57)

In view of the above relations, the only non-zero components of the covariant derivatives of the Z-symmetric tensor are obtained as follows:

Z11,j = ex
1

φj = 0 j = 1, 2, 3, 4

Z22,j = ex
2

φj = 0 j = 1, 2, 3, 4

Z33,j = φj = 0 j = 1, 2, 3, 4

Z44,j = −(sinx3)2φj = 0 j = 1, 2, 3, 4 (58)

It can be seen that the scalar function φ is independent of x1, x2, x3, x4 coordinates. Thus, the scalar function φ must be constant.
Hence, from the equation (14), we can say that the trace of the conharmonic curvature tensor must be constant. Thus, this is an example

satisfying Theorem2.
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Abstract: The purpose of this paper is to present an effective a numerical method to solve the linear Lane-Emden equation using
finite difference method. This numerical method base on the Lagrange polynomial interpolation to obtain finite difference equation.
Firstly, we obtain the finite difference formulas of y′(x) and y′′(x), then we transform the linear Lane-Emden equation into the
finite difference equation. Using boundary conditions, we get the desired numerical results. Finally, some illustrative examples are
included to show the validity and applicability of the given method.

Keywords: Error analysis, Finite difference equation, Lagrange interpolation, Lane-Emden equation, Numerical method.

1 Introduction

The Lane-Emden type equations are singular boundary value problems relating to ordinary differential equations, which is second order. These
equations used in mathematical physics, astrophysics to model several phenomena, such as, stellar structure [1], thermal behavior of gas spheres
and thermionic currents [2]-[4]. Lane-Emden equations have the following form:

y
′′
(x) +

α

x
y
′
(x) + q(x)y(x) = r(x), 0 < x < 1, α ≥ 0 (1)

with the following conditions,
y(0) = 0, y(1) = β (2)

where q(x) is a real value function and r(x) is an analytical function. Nowadays, Lane-Emden equations have been drawn interest by many
more researchers, especially, to find numerical solution values. For this propose, many more researchers have presented some papers to find
numerical solutions of Eq.(1). We give some examples Legendre wavelet [5], Taylor wavelet method [6], Chebyshev operational matrix method
[7], B-spline method [8], Hermite polynomials [9], modified decomposition method [10], Bernstein operational matrix method [11], Pade series
[12], homotopy perturbation method [13], variational iteration method [14], Adomian decomposition method [15], Haar wavelet collocation
method [16], continuous polynomial wavelet [17], a variational iteration method [18], Chebyshev spectral methods [19], modified Mickens-type
NSFD schemes [20]. In this paper, we investigate a finite difference method with Lagrange polynomials for solving a special type of singular
value problem, Lane-Emden equation. Firstly, Algorithm of finite difference is devised by using Taylor’s Theorem a means of constructing
approximations [21]. Leonhard Euler have applied this method to initial value problems in 1768-1769. Thus, Euler made a breakthrough
in applied mathematics and constructed numerical mathematics. Recently, some researchers extended this idea for more problems, partial
differential equations and more [22]-[25]. In this paper, we shall apply the second order Lagrange polynomial approaches were made instead
of first and second order derivatives in the Eq.(1). Thus, it gives us a difference equation which includes approximate solutions of the exact
solution at some points. If the equation is rearranged and the matrix form is obtained and solved, the approximate solutions at each point were
found. In section 2 we describe the method that is formed by combining finite differences and interpolation. In section 3, we examined under
what conditions the method is stable. In the last section, we applied this method to the Lane-Emden equation and evaluated the results.

2 Method of Solution

In this section, we try to find formulas for approximating the derivatives using polynomials interpolation. For this purpose, we use the second
order interpolation polynomials. Let take the Lagrange interpolating polynomial form

y(x) ≈ p2(x) = y(x0)L
(2)
0 (x) + y(x1)L

(2)
1 (x) + y(x2)L

(2)
2 (x) (3)

Then the approximate derivatives are

y
′
(x0) ≈ p

′

2(x0) = y(x0)(L
(2)
0 )

′
(x0) + y(x1)(L

(2)
1 )

′
(x0) + y(x2)(L

(2)
2 )

′
(x0) (4)

c© CPOST 2022 135



y
′′
(x0) ≈ p

′′

2 (x0) = y(x0)(L
(2)
0 )

′′
(x0) + y(x1)(L

(2)
1 )

′′
(x0) + y(x2)(L

(2)
2 )

′′
(x0) (5)

where (L
(2)
j )(x) is a polynomial of degree 2 which is called Lagrange interpolation polynomials of degree 2 and and x1 = x0 + h and

x2 = x0 + 2h. We evaluate the values of (L(2)
j )

′
(x0) and (L

(2)
j )

′′
(x0) in Eqs.4. and 5. If we compute these values, we obtain,

(L
(2)
0 )

′
(x0) = −

3

2h
, (L

(2)
1 )

′
(x0) =

2

h
, (L

(2)
2 )

′
(x0) = −

1

2h
, (6)

(L
(2)
0 )

′′
(x0) =

1

h2
, (L

(2)
1 )

′′
(x0) = −

2

h2
, (L

(2)
2 )

′′
(x0) =

1

h2
, (7)

Thus, we have the approximate of the first and second derivatives

y
′
(x) =

1

2h
(−y(x+ 2h) + 4y(x+ h)− 3y(x)) (8)

y
′′
(x) =

1

h2
(y(x+ 2h)− 2y(x+ h) + y(x)) (9)

If we show y(xk) = yk, y(xk + h) = yk+1 and y(xk + 2h) = yk+2 the above relations can be written as

y
′
(x) =

1

2h
(−yk+2 + 4yk+1 − 3yk) (10)

y
′′
(x) =

1

h2
(yk+2 − 2yk+1 + yk) (11)

where 1 ≤ k ≤ n− 1. Now, we want to write the Eq.(1) as a finite difference equation. Firstly, we convert the Eq.(1) into the following form:

xy
′′
(x) = αy

′
(x) + xq(x)y(x) = xr(x), 0 < x < 1, α ≥ 0 (12)

If Eq.(10) and Eq.(11) are put into Eq.(12), we have the difference equation

xk
h2

(yk+2 − 2yk+1 + yk) +
α

2h
(−yk+2 + 4yk+1 − 3yk) + xkq(xk)yk = xkr(xk) (13)

Simply, Eq.(13) can be written

(
xk
h2
− α

2h
)yk+2 + (−2xk

h2
)yk+1 + (

xk
h
− 3α

2h
+ xkqk)yk = f(xk)

where q = q(xk). And we have the final difference equation

(xk −
hα

2
)yk+2 + (2αh− 2xk)yk+1 + (xk −

3αh

2
+ xkqk)yk = h2f(xk) (14)

where k = 0, 1, ..., N − 2. The matrix-vector form of Eq.(14) is
2αh− 2x0 x0 − αh/2 0 . . . 0

x1 − 3αh/2 + x1q1 2αh− 2x1 0 . . . 0
0 x2 − 3αh/2 + x2q2 2αh− 2x2 . . . 0
...

...
...

. . .
...

0 0 0 . . . 2αh− 2xN−2




y1
y2
...

yN−2



=


h2f(x0)− (x0 − 3αh/2 + x0q0)y0

h2f(x1)
...

h2f(xN−2)− (xN−2 − αh/2)

 (15)

where yk ≈ y(xk) and xk = kh. Thus, the desired numerical results yk ≈ y(xk) can be properly obtained above finite difference scheme
Eq.(15).

2.1 Existence and uniqueness of the solution

It is well known that a tridiagonal nxn matrix W is called diagonally dominant if | di |>| li | + | ui |, 1 ≤ i ≤ n. If a tridiagonal matrix W
is diagonally dominant, det(W ) 6= 0 which is implied that a linear system with the augmented matrix W has unique solution (For details see
[21], page 78). From Eq.(15), it must be satisfied

| 2αh− 2xk |>| xk − αh/2 | + | xk − 3αh/2 + xkqk | (16)

Case I:Let assume xk < αh, we have;
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• If xk − 3αh/2 + xkqk > 0, h > 4k+2kqk
5α

• xk − 3αh/2 + xkqk < 0, qk < 0.

Case II:Let assume xk > αh, we have;

• If xk − 3αh/2 + xkqk > 0, qk < 0,

• If xk − 3αh/2 + xkqk < 0,
k(1+qk)

3α > 1.

2.2 Error Analysis

Now, we shall investigate the error analysis and convergence of the mention method. It is well known that y(x) is a sufficiently smooth function
on [0, 1] and IN (x) is the interpolating polynomial to y at xi, then we have [20],[21],

y(x)− IN (x) =
y(N+1)(ξx)

(n+ 1)!
wn(x), ξx ∈ [0, 1]

which is called the interpolation error theorem, where

wn(x) =

N∏
i=0

(x− xi)

Since our interpolation polynomial is the second order polynomial, we have the following equation

y(x)− p2(x) =
1

6
w2(x)y

′′′(ξx) (17)

Carefully, If we take the derivative of the Eq.(17) and compute for x = x0, we have

y′(x)− p2(x0) =
1

6
w′2(x0)y

′′′(ξ0) (18)

and so

y′(x0)− p′2(x0) =
1

3
h2y′′′(ξ0) (19)

Similarly, we have the error term for the second derivatives

y′′(x0)− p′′2 (x0) = −hy′′′(ξ0) +
2

3
h2

d

dx
y′′′(ξ0) (20)

If we combine the Eqs.(8-9) and (19-20), we can write the errors

y′(x)− [
1

2h
(−y(x+ 2h) + 4y(x+ h)− 3y(x))] = O(h2) (21)

y′′(x)− [
1

h2
(y(x+ 2h)− 2y(x+ h) + y(x))] = O(h) (22)

If Eqs.(21)-(22) are put into Eq.(1), we get

xk
h2

(yk+2 − 2yk+1 + yk) +
α

2h
(−yk+2 + 4yk+1 − 3yk) + xkq(xk)yk − xkr(xk) = O(h) (23)

which is stated that the estimation error is O(h) accurate.

3 Numerical Examples

In this section, some numerical examples are presented to illustrate the accuracy and effectiveness properties of the method. To study the
behavior of the present method, we applied the following law: Absolute error is defined by the | yk − y(xk) | where y(xk) are the exact
solutions and yk denote the approximate solution obtained by the present method.

Example 1. Consider the following singular boundary value problem

y′′(x)− 2

x
y′ + (1 + x2)y = x4 − 2x2 + 7 (24)

The exact solution is y = 1− x2. If we write approximations (10) and (11) in place of y′′,y′ in Eq.(23), we obtain the following difference
equation.

yk[−
xk
h2

+
3

h
+ xk − x3k] + yk+1[

2xk
h2
− 4

h
] + yk+2[−

xk
h2

+
1

h
] = x5k − 2x3k + 7xk (25)

where h = 1
N . We obtain (N − 1) difference equations for k = 0, ..., N − 2.Numerical results are shown in Table 1 and Table 2. If we choose

h = 1/20 , our errors is so small for some values of k.
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k Exact
Solution

Numerical
Solution

Error

1 0.9975000000 0.9975000000 0
2 0.9900000001 0.9900000000 0.1e-11
3 0.9775000852 0.9775000000 0.852e-10
4 0.9600000000 0.9600000000 0
5 0.9375000002 0.9375000000 0.2e-11
6 0.9100000002 0.9100000000 0.2e-11
7 0.8775000001 0.8775000000 0.1e-11
8 0.8400000001 0.8400000000 0.1e-11
9 0.7975000000 0.7975000000 0

Table 1 Exact and numerical solutions for h = 1
20 .

k Exact
Solution

Numerical
Solution

Error

0.1 0.9900000000 0.9900000000 0
0.2 0.9600000001 0.9600000000 0
0.3 0.9100000000 0.9100000073 0.73e-8
0.4 0.8400000000 0.8400000000 0
0.5 0.7500000000 0.7500000001 0.1e-9
0.6 0.6400000000 0.6400000001 0.1e-9
0.7 0.5100000000 0.5100000000 0
0.8 0.3600000000 0.3600000000 0
0.9 0.1900000000 0.1900000000 0

Table 2 Exact and numerical solutions for h = 1
10 .

h 1/2 1/4 1/8 1/16 1/32 1/64
Emax 0.037036213 0.046968636 0.023127895 0.0003764443 0.011674832 0.019164548

Table 3 Maximum errors for different h .

Example 2. Consider the following singular boundary value problem

y′′(x)− 1

x
y′ + 4x2y = 0 (26)

with the boundary conditions y(0) = 0, y(1) = sin(1). The exact solution is y(x) = sin(x2). If we reorder and write approximations (10)
and (11) in place of y′′,y′ in Eq.(26), we obtain the following difference equation.

yk[
xk
h2

+
3

2h
+ 4x2k] + yk+1[

−2xk
h2

− 2

h
] + yk+2[

xk
h2

+
1

2h
] = 0 (27)

where h = 1/N. We obtain (N − 1) difference equations for k = 0, , N − 2. Maximum errors for different h are shown in Table 3.

4 Conclusion

In this study, numerical solutions were tried to be obtained by taking Lane-Emden equation in singular value problems. Lagrange polynomials
are used in addition to finite differences to obtain numerical solutions. Equation was made discrete and its values were examined as points.
Approximate solution, exact solution and error values at each point were calculated and the obtained results were given in tables. It was seen
that the more points were examined, the closer the exact values were approached, in other words, the larger the N value, the smaller the error
values. This result is supported by table 4. One of the advantages of this method, which is obtained by combining finite differences with
Lagrange polynomials interpolations, is the short runtime of the program Maple 13.
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Abstract: In this study, under some assumptions, an operator is constructed with the help of certain polynomials whose generat-
ing function is known. Firstly, the moments are obtained to prove the uniform convergence of this operator. Secondly, the central
moments of the operator are given to be used in the error estimation, and then the rate of convergence is investigated with the help
of various tools such as the first modulus of continuity, the Lipschitz class, Peetre’s K-functional, the second modulus of continuity.
In addition, a numerical example is given by using the first modulus of continuity with the help of the Maple software.

Keywords: Apostol-Genocchi polynomials, modulus of smoothness, moments.

1 Introduction

In [1], Luo defined an extension of higher-order Genocchi polynomials based on the idea of Apostol, known as Apostol-Genocchi polynomials.
Apostol-Genocchi polynomials G(α)

k (x;λ) with α th order (α ∈ N ∪ {0}) G(α)
k (x;λ) are given by the generating functions(

2t

λet + 1

)α
ext =

∞∑
k=0

G
(α)
k (x;λ)

tk

k!
(t ∈ C, |t|+ |log (−λ)| < π) (1)

where λ = |λ| eiϕ,−π ≤ ϕ < π and log (λ) = log (|λ|) + iϕ. It is clear thatG(α)
k (x;λ) polynomials are an extension of the classical Genoc-

chi polynomial, i.e., when α = 1 and λ = 1, G
(α)
k (x;λ) is the classical Genocchi polynomial Gk(x). For x = 0, the resulting form is the

Genocchi number Gk, i.e., Gk := Gk(0). When λ 6= −1, G(α)
k (x;λ) must be implicitly limited to non-negative integer values [3].

For the various types of the operators defined according to Apostol-Genocchi polynomials and their typical approximation properties, see
[2], [3], and [4]. In the above-mentioned studies, the typical convergence properties of these operators were investigated. In this study, motivated
by [5] and [2], we investigate some properties of convergence of generalization of Szasz-Kantorovich type operator based on Apostol-Genocchi
polynomials are as follows:

Tβn,γnn,α (f ;x) = γn

(
2

λe+ 1

)−α
e−βnx

∞∑
k=0

G
(α)
k (βnx;λ)

k!

k+1
γn∫
k
γn

f (t) dt, (2)

where {βn} and {γn} are strictly increasing sequences of positive numbers such that

lim
n→∞

1

γn
= 0,

βn
γn

= 1 +O

(
1

γn

)
. (3)

Throughout the paper, we consider the following:
Let C[0,∞) be the set of all real-valued continuous functions on [0,∞), E := {f : ∀x ∈ [0,∞) , |f (x)| ≤ aebx, a ∈ R, b ∈ R+} and also
CE [0,∞) := C [0,∞) ∩ E.

2 Main Results

To investigate the convergence of the sequence Tβn,γnn,α to the uniform continuous and bounded function f ; we give some results.

Lemma 1. For operators in (2), we have the following equalities:
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Tβn,γnn,α (1;x) = 1

Tβn,γnn,α (t;x) = βn
γn
x+ 1

γn
λe+2α+1
2(λe+1)

,

Tβn,γnn,α (t2;x) =
β2
n

γ2
n
x2 + βn

γ2
n

2λe+2α+2
λe+1 x+ 1

γ2
n

(−3α+2)λe+(−3α+1)λ2e2+3α2+3α+1
3(λe+1)2

.

Proof: Taking the derivative of both sides of the equation eq. (1) with respect to t, i.e., using the generating functions of the Apostol-Genocchi
polynomials, we obtain the following equality:

∑∞
k=0 kpk(x)t

k−1 =
−exttα−12α(((α−x)t−α)λet−xt−α)

(λet+1)α+1 .

For t = 1 and x = βnx in above equality, we get the following terms:

∑∞
k=0 kpk(βnx) =

2αeβnx

(λe+1)α+1 (eλβnx+ βnx+ α),

∑∞
k=0 k

2pk(βnx) =
2α+1

(λe+1)2
(β2nx

2 + βnx(α+ 1)− α)λe+ αβnx)

+ 2αeβnx

(λe+1)α+2

(
(β2nx

2 + βnx− α)λ2e2 + β2nx
2 + βnx+ α2)

)
.

By using above equalities and the definition of the operator Tβn,γnn , we obtain the desired result. �

Lemma 2. For operators in (2), the central moments are obtained as follows:

i. Tβn,γnn,α (t− x;x) = (βnγn − 1)x+ 1
γn

λe+2α+1
2(λe+1)

,

ii. Tβn,γnn,α ((t− x)2;x) = (
β2
n

γ2
n
− 2βn

γn
+ 1)x2 +

(
βn
γ2
n

2λe+2α+2
λe+1 − 1

γn
λe+2α+1
λe+1

)
x

+ 1
γ2
n

(−3α+1)λ2e2+(−3α+2)λe+3α2+3α+1
3(λe+1)2

Proof: It is enough to apply Lemma 1 to obtain desired results. �

Theorem 1. Let f ∈ CE [0,∞). Then the sequence
{
Tβn,γnn,α

}
n≥1

converges uniformly to the function f on every closed subset of [0,∞).

Proof: Under the assumptions of (3) and by using the Lemma 1, we have

lim
n→∞

Tβn,γnn,α

(
ti;x

)
= xi, i = 0, 1, 2

which converge uniformly in each closed subset of [0,∞). On account of Korovkin’s theorem,
(
Tβn,γnn,α

)
, converges uniformly with respect

to each closed subset of [0,∞). �

Theorem 2. Let f ∈ CE [0,∞). Then ∣∣∣Tβn,γnn,α (f ;x)− f (x)
∣∣∣ ≤ 2ω (f ; δn) ,

where δn :=

√
Tβn,γnn,α

(
(t− x)2 ;x

)
is in Lemma 2 and ω is the modulus of continuity of f defined by

ω (f ; δ) := sup{|(f(t)− f (x)| : |t− x| ≤ δ, t, x ∈ [0,∞)}.
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Proof: It is clear that the operator Tβn,γnn,α is linear and has the property Tβn,γnn (1;x) = 1, and also for the modulus of the continuity, we know
the following relation:

|f(x)− f (y)| ≤ ω (f ; δ)

(
|x− y|
δ

+ 1

)
.

If all these three facts mentioned above are used, the following inequality is obtained:

∣∣∣Tβn,γnn,α (f ;x)− f(x)
∣∣∣ ≤ ω (f ; δ)

1 +
γn
δ

(
2

λe+ 1

)−α
e−βnx

∞∑
k=0

G
(α)
k (βnx;λ)

k!

k+1
γn∫
k
γn

|t− x| dt

 . (4)

When we use the Cauchy-Schwarz inequality for integration, we get the following inequality

k+1
γn∫
k
γn

|t− x| dt ≤ 1
√
γn


k+1
γn∫
k
γn

|t− x|2 dt


1
2

,

which gives the following:

∞∑
k=0

G
(α)
k (βnx;λ)

k!

k+1
γn∫
k
γn

|t− x| dt ≤ 1
√
γn

∞∑
k=0

G
(α)
k (βnx;λ)

k!


k+1
γn∫
k
γn

|t− x|2 dt


1
2

. (5)

After a simple operation on equation (5), we get the following inequality:

∞∑
k=0

G
(α)
k (βnx;λ)

k!

k+1
γn∫
k
γn

|t− x| dt ≤

√(
2

λe+ 1

)α
eβnx

γn

[(
2

λe+ 1

)α
eβnx

γn
Tβn,γnn

(
(t− x)2 ;x

)] 1
2

≤
(

2

λe+ 1

)α
eβnx

γn

√
Tβn,γnn,α

(
(t− x)2 ;x

)
.

Now, if we take into account the (4), then we get the below:

∣∣∣Tβn,γnn,α (f ;x)− f (x)
∣∣∣ ≤ {1 + 1

δ

√
Tβn,γnn,α

(
(t− x)2 ;x

)}
ω (f ; δ) .

By taking δ := δn(x) =

√
Tβn,γnn,α

(
(t− x)2 ;x

)
, we obtain the desired result. �

For 0 < α ≤ 1 and K > 0, the Lipschitz class of order α is defined as:

Lipα (K) =
{
f ∈ CE [0,∞) : |f (t)− f (x)| ≤ K |t− x|α , t, x ∈ [0,∞)

}
with the property ω (f, δ) ≤ Kδαn for all δ > 0.

Theorem 3. Let f ∈ Lipα (K). Then we have
∣∣∣Tβn,γnn,α (f ;x)− f (x)

∣∣∣ ≤ Kδαn (x) , where δ := δn (x) =

√
Tβn,γnn,α

(
(t− x)2 ;x

)
.

Proof: Since f ∈ Lipα (K),∣∣∣Tβn,γnn,α (f ;x)− f (x)
∣∣∣ ≤ Tβn,γnn,α (|f (s)− f (x)| ;x) ≤ KTβn,γnn,α

(
|t− x|α ;x

)
(6)

After applying the Hölder inequality to (6) with p = 2
α , q =

2
2−α , we obtain the following:

∣∣∣Tβn,γnn,α (f ;x)− f (x)
∣∣∣ ≤ KTβn,γnn,α

(
|t− x|2 1;x

)
≤ K

(
Tβn,γnn,α

(
|t− x|2 ;x

))α
2
(
Tβn,γnn,α (1;x)

) 2−α
α

= K
(
Tβn,γnn,α

(
|t− x|2 ;x

))α
2
= K (δn (x))α

with this result, the proof is complete. �
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n α = 0 α = 1 α = 2

2.102 0.0176465752 0.0176476362 0.0176487292
2.103 0.0017672196 0.0017672206 0.0017672222
2.104 0.0001767710 0.0001767710 0.0001767710
2.105 0.0000176782 0.0000176782 0.0000176782
2.106 0.0000017684 0.0000017684 0.0000017684
2.107 0.0000001772 0.0000001772 0.0000001772

Table 1 The error estimation of function f(x) = x3√
1+x2

by using modulus of continuity.

Example 1. When we choose γn = n2 + 10, βn = n2 for the operator Tβn,γnn,α (f ;x) with α order, the approximation of Tβn,γnn,α (f ;x) to
f(x) = x3

√
1+x2

on the interval [0,∞) is given in Table 1. The error gets smaller as n increases.

Now, we shall use the second order modulus of continuity and Peetre’s K- functional for the estimation of the rate of convergence of the
operator Tβn,γnn,α . For this purpose, recall that the second order modulus of continuity of f ∈ CB [0,∞) is defined by

ω2 (f ; δ) := sup
0<t≤δ

‖f (.+ 2t)− 2f (.+ t) + f (.)‖CB ,

where CB [0,∞) is the set of real-valued functions on [0,∞) which are uniformly continuous and bounded with the norm ‖f‖CB =
sup

x∈[0,∞)
|f (x)| . For δ > 0, the Peetre’s K-functional is defined as

K (f ; δ) := inf
g∈C2[0,∞)

{
‖f − g‖CB + δ ‖g‖C2

B

}
,

where C2
B [0,∞) :=

{
g ∈ CB [0,∞) : g′, g′′ ∈ CB [0,∞)

}
, with the norm

‖g‖C2
B
:= ‖g‖CB +

∥∥g′∥∥
CB

+
∥∥g′′∥∥

CB
.

Theorem 4. Let f ∈ CB [0,∞) and x ∈ [0,∞) . Then∣∣∣Tβn,γnn,α (f ;x)− f(x)
∣∣∣ ≤ 2K (f ; δ) ,

where δ := ξn (x) = 1
2

[
Tβn,γnn,α (t− x;x) + Tβn,γnn,α

(
(t− x)2 ;x

)]
.

Proof: Using the Taylor expansion of g and the linearity of the operators Tβn,γnn,α , we can write the following equality. Let c ∈ (x, t) ,

Tβn,γnn,α (g;x)− g (x) = g′ (x)Tβn,γnn,α (t− x;x) + 1

2
g′′ (c)Tβn,γnn,α

(
(t− x)2 ;x

)
. (7)

For t ≥ x, we get ∣∣∣Tβn,γnn,α (g;x)− g (x)
∣∣∣ ≤ [∣∣∣Tβn,γnn,α (t− x;x)

∣∣∣+ ∣∣∣Tβn,γnn,α

(
(t− x)2 ;x

)∣∣∣] ‖g‖C2
B [0,∞) . (8)

Using Lemma 1 and (8), we can write the following:∣∣∣Tβn,γnn,α (f ;x)− f (x)
∣∣∣ ≤ ∣∣∣Tβn,γnn,α (f − g;x)

∣∣∣+ ∣∣∣Tβn,γnn,α (g;x)− g (x)
∣∣∣+ |f (x)− g (x)|

≤ 2 ‖f − g‖CB [0,∞) +
∣∣∣Tβn,γnn,α (g;x)− g (x)

∣∣∣
≤ 2

[
‖f − g‖CB [0,∞) + ξn (x) ‖g‖C2

B [0,∞)

]
If we take the infimum over all g ∈ C2

B [0,∞) , then we get the concept of Peetre’s K-functional verifies the following∣∣∣Tβn,γnn,α (f ;x)− f (x)
∣∣∣ ≤ 2K (f ; ξn (x)) .

�

In the next theorem, we use the concepts of the second order Steklov function and the second modulus of continuity to obtain an estimation
for Tβn,γnn,α . See [5] and [7] for similar theorems established using different operators. Also, for details about Steklov function, see [6] and [9].
But first, let’s give a lemma to use in the aforementioned theorem:
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Lemma 3. [8] Let f ∈ C2 [0,∞) and (Ln) be a sequence of positive linear operators with Ln (1;x) = 1. Then we have

|Ln(f ;x)− f(x)| ≤
√
Ln((t− x)2;x)

∥∥f ′∥∥+ 1

2
Ln((t− x)2;x)

∥∥∥f ′′∥∥∥ .
Theorem 5. Let f ∈ C[0, a] and h := hn (x) =

4

√
Tβn,γnn,α ((t− x)2;x). Then we have the following inequality:

∣∣∣Tβn,γnn,α (f ;x)− f(x)
∣∣∣ ≤ 2

a
‖f‖h2n +

3

4
(h2n + a+ 2)ω2 (f ;hn) ,

where ‖f‖ = sup
x∈[0,∞)

|f (x)| .

Proof: Assume that fh is the second-order Steklov function corresponding to f and f ∈ C[0, a] and h ∈ (0, a2 ). By using the identity
Tβn,γnn,α (1;x) = 1, we get∣∣∣Tβn,γnn,α (f ;x)− f(x)

∣∣∣ ≤ ∣∣∣Tβn,γnn,α (f − fh;x)
∣∣∣+ ∣∣∣Tβn,γnn,α (fh;x)− fh (x)

∣∣∣+ |fh (x)− f (x)|
≤ 2 ‖fh − f‖+

∣∣∣Tβn,γnn,α (fh;x)− fh (x)
∣∣∣ . (9)

We have the following facts from [9] and [6]:

‖fh − f‖ ≤
3

4
ω2 (f ;h) , (10)

∥∥f ′′h∥∥ =
3

2h2
ω2 (f ;h) , (11)

∥∥f ′h∥∥ ≤ 2

a
‖fh‖+

a

2

∥∥f ′′h∥∥ . (12)

By using Lemma 3, (11), (9) and (12), we get the following:∣∣∣Tβn,γnn,α (fh;x)− fh (x)
∣∣∣ ≤ √

Tβn,γnn,α ((t− x)2;x)
∥∥f ′h∥∥+ 1

2
Tβn,γnn,α ((t− x)2;x)

∥∥∥f ′′h ∥∥∥
≤

(
2

a
‖fh‖+

3a

4h2
ω2 (f ;h)

)√
Tβn,γnn,α ((t− x)2;x)

+
3

4h2
ω2 (f ;h)T

βn,γn
n,α ((t− x)2;x).

Taking h = hn =
4

√
Tβn,γnn,α ((t− x)2;x), we get

∣∣∣Tβn,γnn,α (fh;x)− fh (x)
∣∣∣ ≤ 2

a
‖f‖h2 +

3
(
a+ h2

)
4

ω2 (f ;h) . (13)

The proof is completed by writing (10) and (13) in (9). �

3 Conclusion

In analytic number theory, Apostol-Genochi polynomials are widely studied polynomial sequences, but using this polynomial is new in approx-
imation theory. Therefore, in this study, we have chosen to show its uniform continuity by defining an operator containing this polynomial
sequence. Next, we determined the rate of approximation of this operator with the help of the modulus of continuity, the Lipschitz class,
Peetre’s K-functional, and the Steklov function.
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Abstract: In this work, we performed the convergence and stability results of the PMP iterative algorithm with errors for the accre-
tive Lipschitzian operator in Banach spaces. We also showed through a numerical example that the PMP algorithm with errors
has a better convergence speed than some iterative algorithms with errors in the literature. Moreover, we investigated the iterative
approximation of the solution for the variational inclusion problem in Banach spaces by using the PMP algorithm with errors.
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1 Introduction

A number of researchers studied some basic fixed point theorems for different mapping classes, taking into account the margins of error arising
from the operation of some fixed point algorithms. In 1995, Liu [1] worked on the Ishikawa and Mann iterative algorithms with errors for
nonlinear strongly accretive mappings in Banach spaces. In 1998, Xu [2] revised definitions of Ishikawa and Mann iterative algorithms with
errors. In 2001 Kim and Kim [3] worked on these iteration methods with errors for non-Lipschitzian mappings in Banach Spaces. In 2004, Cho
[4] obtained several weak and strong convergence theorems for the three-step iterative algorithm with errors for asymptotically nonexpansive
mappings. In 2016, Hussain et al. [5] obtained strong convergence and stability result of a three-step random iterative algorithm with errors for
strongly pseudo-contractive Lipschitzian mappings on real Banach spaces. In 2020, Kumar et al. [6] analyzed the results of strong convergence
and stability of the SP iterative algorithm with errors using the strongly accretive Lipschitzian operator on a Banach space. In 2020, Kumar and
Hussain [7] also studied on the strong convergence and stability results of the SP iterative algorithm mixed errors for accretive Lipschitzian
operators in a Banach space.
Variational inclusions are the generalization of variational inequalities and they have been widely studied by researchers (see [8–11]). One of the
most interesting and important problems in the theory of variational inclusions in the development of an efficient and implementable iterative
algorithm. Various kinds of iterative methods have been studied to find the approximate solutions for variational inclusions (see [6, 7, 12]).

Now, we give the PMP iteration method which introduced by Karakaya et al [13] as follows: xn+1 = Tyn
yn = (1− αn) zn + αnTzn

zn = Txn (n ∈ N)
(1)

in which (αn)
∞
n=1 ∈ [0,1] and T is a self-map a nonempty set of X .

In the light of the information given above, we can rewrite the PMP iterative algorithm with errors as under: xn+1 = Tyn + un
yn = (1− αn) zn + αnTzn + vn

zn = Txn + wn (n ∈ N)
(2)

in which 0 ≤ αn ≤ 1 and un, vn, wn are sequences in X .
Let us now give some definitions and lemmas that are useful for obtaining our main results.

Definition 1. Let C be a closed and convex subset of Banach space X . A mapping T : C ⊂ X → X is called:

(i) µ−Lipschitzian if for all x, y ∈ C, there exists a constant µ > 0 such that

‖Tx− Ty‖ ≤ µ ‖x− y‖ , (3)

(ii) accretive if for all r > 0 and x, y ∈ C, we have
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‖x− y‖ ≤ ‖x− y + r [Tx− Ty] ‖. (4)

[7]

Definition 2. Let T : C → C be a mapping. Define an iterative algorithm by

xn+1 = f (T, yn) (5)

such that {xn} converges to a fixed point p of T . Let {yn} be an arbitrary sequence in C. Set εn = ‖yn+1 − f (T, yn)‖ for n ≥ 1. The
iterative algorithm (5) is said to be T -stable or stable w.r.t. T if the following condition is satisfied:

lim
n→∞

εn = 0 if and only if lim
n→∞

yn = p.

[14, 15].

Lemma 1. Let {an}∞n=0 be nonnegative real sequence satisfying the following inequality:

an+1 ≤ σan + bn

n ≥ 1 where bn ≥ 0, limn→∞ bn = 0 and 0 ≤ σ < 1. Then an → 0 [16].

Let T , A : X → X , g : X → X∗ be three mappings on a real reflexive Banach space X and ϕ : X∗ → R ∪ {∞} be a function with con-
tinuous subdifferential ∂ϕ : X∗ → 2X

∗
defined by (∂ϕ)x = {x∗ ∈ X∗ : ϕ(y)− ϕ(x) ≥ 〈Tx−Ax− y, f − g(x)〉 ≥ ϕ(g(x)− ϕ(x))}.

If for any given y ∈ X , there exists a x ∈ X such that

g(x) ∈ D(∂ϕ), 〈Tx−Ax− y, f − g(x)〉 ≥ ϕ(g(x)− ϕ(x)), ∀f ∈ X∗ (6)

holds, then, x is solution of a variational inclusion problem (6).

Lemma 2. Let ∂ϕ ◦ g : X → 2X be a mapping on a real reflexive Banach space X . Then the followings are equivalent:

i. p ∈ X is a solution of variational inclusion problem (6);
ii. p ∈ X is a fixed point of the mapping R : X → 2X such that Rx = y − (Tx−Ax+ ∂ϕ(g(x))) + x;
iii. p ∈ X is a solution of the equation y = Tx−Ax+ ∂ϕ(g(x)).

[7]

In this work, we performed the convergence and stability results of the PMP iterative algorithm with errors for the accretive Lipschitzian
operator in Banach spaces. We also investigated the iterative approximation of the solution for the variational inclusion problem in Banach
spaces by using the PMP algorithm with errors.

2 Main Results

Theorem 1. Let T be an accretive Lipschitzian self operator with a Lipschitz constant L on a real Banach space X . Let {xn}∞n=0 be iterative
sequence generated by the iterative algorithm (2) with the following restrictions:

i. 0 < L2 − L2(αn − αnL− α2
nL

2) < 1− α < 1

ii.
∞∑
i=1
‖un‖ <∞,

∞∑
i=1
‖vn‖ <∞, and

∞∑
i=1
‖wn‖ <∞

Then, for x0 ∈ X the iterative algorithm (2) converges strongly to a unique fixed point p of T .

Proof: T is Lipschitzian operator with Lipschitz constant L, such that T is an accretive and hence using (4), we obtain

‖xn+1 − p‖ = ‖xn+1 − p+ αn(Txn+1 − Tp)‖
≤ ‖xn+1 − p‖+ αn ‖Txn+1 − Tp‖
≤ ‖Tyn − p‖+ αnL ‖xn+1 − p‖+ ‖un‖
≤ L ‖yn − p‖+ αnL ‖xn+1 − p‖+ ‖un‖
≤ L ‖yn − p‖+ αnL ‖Tyn − p‖+ αnL ‖un‖+ ‖un‖
≤ L(1 + αnL) ‖yn − p‖+ (1 + αnL) ‖un‖

(7)

and
‖zn − p‖ = ‖Txn + wn − p‖

≤ ‖Txn − p‖+ ‖wn‖
≤ L ‖xn − p‖+ ‖wn‖

(8)
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and
‖yn − p‖ = ‖(1− αn)zn + αnTzn + vn‖

≤ (1− αn) ‖zn − p‖+ αn ‖Tzn − Tp‖+ ‖vn‖
≤ (1− αn) ‖zn − p‖+ αnL ‖zn − p‖+ ‖vn‖
≤ (1 + αn(L− 1)) ‖zn − p‖+ ‖vn‖

(9)

Substituting (8) and (9) in (7), we have

‖xn+1 − p‖ ≤ L2[1− {αn − αnL− α2
nL

2}] ‖xn − p‖
+ L(1 + αnL)(1 + αn(L− 1)) ‖wn‖
+ L(1 + αnL) ‖vn‖+ (1 + αnL) ‖un‖
≤ (1− α) ‖xn − p‖+ L(1 + αnL)(1 + αn(L− 1)) ‖wn‖
+ L(1 + αnL) ‖vn‖+ (1 + αnL) ‖un‖

(10)

Denote that
an = ‖xn − p‖
σ =α

bn =L2(1 + αnL) ‖wn‖+ L(1 + αnL) ‖vn‖+ (1 + αnL) ‖un‖

It is now easy to check that (10) satisfies all the requirements of Lemma 1. Hence it follows by its conclusion that

lim
n→∞

‖xn − p‖ = 0.

To prove uniqueness of fixed point p, let q be an another fixed point of T . Since −T is accretive, we get

‖p− q‖ = ‖p− q − αn(Tq − Tp)‖
≤ (1− αn) ‖p− q‖

which is possible only when p = q. �

Example 1. [7] Let X = [0, 3] ⊂ R. Let T : X → X be a mapping defined by T (x) = 3− x for all x ∈ X with fixed point p = 1.5. It
is easy to see that −T is a Lipschitz accretive operator with the Lipschitz constant L = 1. Choose α = 0.008, αn = 1

8 , βn = γn = 1
64

and ‖un‖ = 1
8(n+1)

, ‖vn‖ = 1
(n+2)2

, ‖wn‖ = 1
8(n+32)

. Then all the conditions in Theorem 1 are satisfied. Then, the sequence {xn}∞n=0
generated by the iterative algorithm (2) converges strongly to p = 1.5. By taking the initial value as x0 = 0.99, convergence comparison of
different iterative algorithm with errors can be seen in Table 1:

Iteration

Steps

Mann Iteration

with errors

Ishikawa Iteration

with errors

SP

with errors

PMP iteration

with errors

1 0,9900 0,9900 0.9900 0.9900

2 1.4300 1.4141 1.5823 2.0251

3 1.6303 1.5802 1.7866 1.1788
...

...
...

1441 1.5003 1.5004 1.5003 1.5001

1442 1.5003 1.5004 1.5003 1.5000
...

...
...

Table 1 Convergence comparison of different iterative algorithm with errors with initial value x0 = 0.99.

Theorem 2. Let T and X be the same as in the Theorem 1. Suppose that {an}∞n=1 be an iterative sequence generated by the following
algorithm: 

an+1 = Tbn + un,

bn = (1− αn)cn + αnTcn + vn,

cn = Tan + wn,

(11)

Then, the iterative algorithm (2) with mixed errors is T -stable.

c© CPOST 2022 147



Proof: Suppose that {an}∞n=1 is an arbitrary sequence in X and lim
n→∞

εn = 0. Then

‖an+1 − p‖ ≤ ‖an+1 − Tbn − un‖+ ‖Tbn + un − p‖
≤ ‖an+1 − Tbn − un‖+ ‖Tbn − p‖+ ‖un‖
≤ εn + (1− α) ‖an − p‖
+ L(1 + αnL)(1 + αn(L− 1)) ‖wn‖
+ L(1 + αnL) ‖vn‖+ (1 + αnL) ‖un‖

(12)

Denote that
an = ‖an − p‖
σ =α

bn =εn + L2(1 + αnL) ‖wn‖+ L(1 + αnL) ‖vn‖+ (1 + αnL) ‖un‖

It is now easy to check that (13) satisfies all the requirements of Lemma 1. Hence it follows by its conclusion that

lim
n→∞

‖an − p‖ = 0.

Conversely, let limn→∞ ‖an − p‖ = 0, then

εn = ‖an+1 − Tbn − un‖ = ‖an+1 − Tbn − un − p+ p‖
≤ ‖an+1 − p‖+ ‖Tbn − p‖+ ‖un‖
≤ ‖an+1 − p‖+ (1− α) ‖an − p‖
+ L(1 + αnL)(1 + αn(L− 1)) ‖wn‖
+ L(1 + αnL) ‖vn‖+ (1 + αnL) ‖un‖

(13)

which implies that limn→∞ ‖εn − p‖ = 0. Therefore, the algorithm (2) is T -stable. �

Theorem 3. Suppose that X is a real reflexive Banach space, T,A : X → X , g : X → X∗ are three nonexpansive mappings and ϕ : X∗ →
R ∪ {∞} is a function with non-expansive sub differential ∂ϕ. Define an operator R : X → X by Rx = f − (Tx−Ax+ ∂ϕ(g(x))) + x,
in which f ∈ X is any given point. Suppose that {xn}∞n=1 be iterative sequence generated by the following algorithm:

xn+1 = Ryn + un,

yn = Rzn + vn,

zn = (1− αn)xn + αnRxn + wn,

(14)

in which 0 ≤ αn < 1 and {un}, {vn} {wn} are sequences in E with following restrictions:

i. 0 < L2 − L2(αn − αnL− α2
nL

2) < 1− α < 1.

ii.
∞∑
i=1
‖un‖ <∞,

∞∑
i=1
‖vn‖ <∞, and

∞∑
i=1
‖wn‖ <∞

Then the iterative algorithm (2) converges to p ∈ X and p is the unique solution of nonlinear variational inclusion problem (6)

Proof: As T , A, g, and ∂ϕ are nonexpansive operators, so (−A) and ∂ϕ ◦ g are nonexpansive operators. Hence, we get

‖x− y‖ = ‖x− y + r[(T −A+ ∂ϕg − I)x− (T −A+ ∂ϕg − I)y]‖. (15)

Therefore, T −A+ ∂ϕg − I : E → E is an Lipschitzian accretive operator with a Lipschitz constant L ≥ 1. Since T −A+ ∂ϕ ◦ g − I is
Lipschitzian accretive operator, so T −A+ ∂ϕ ◦ g − I ism-accretive operator. Hence, for any f ∈ X , the equation f = (T −A+ ∂ϕ ◦ g −
I)x+ x has a unique solution p∗ ∈ X . Using Lemma 2, it is easy to see that p∗ ∈ X is a solution of nonlinear variational inclusion problem (6)
and it is the fixed point of operator R . Again, since T −A+ ∂ϕ ◦ g − I : X → X Lipschitzian accretive operator with a Lipschitz constant
L ≥ 1, so R : X → X is Lipschitzian operator with Lipschitz constant L∗ = L+ 1, such that R is an accretive. Replacing T by R in the
iterative algotrithm (2), L by L∗ in condition (i) of Theorem 1 and following the procedure of the proof of Theorem 1, it is easy to see that the
iterative algotrithm (2) converges to the unique solution p∗ ∈ X of nonlinear variational inclusion problem (6). �

3 Conclusion

In this work, we investigate some fixed point theorems such as convergence and stability by using PMP iterative algorithm with errors for
the accretive Lipschitzian operator. We have given a numerical example to demonstrate the effectiveness of the PMP algorithm with errors in
terms of convergence speed. Finally, we have shown that the solution to the variational inclusion problem can be reached using this iteration
algorithm. The results obtained in this study can be interpreted as an improvement of the corresponding results in the literature.
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1 Introduction

Fixed point theory is one of the main tools in studying the solution of various equations such as the differential, integral, functional differential,
and functional integral. (see: [1–4]). One of them is the existence, uniqueness, and convergence of successive approximations results for a
functional integral equation by Ilea et al. [1]. Throughout this work, we consider the space of continuous functions with maximum norm, and
we study in the following integral equation:

Definition 1 ([1]). Let (B, ‖ · ‖) be a Banach space

x (t) =

c∫
a

H (t, s, Ax(s)) ds+

t∫
a

K (t, s, Bx(s)) ds+ f (t) , t ∈ [a, b] , (1)

in which a, b, c are real numbers with c ∈ (a, b), H ∈ C ([a, b]× [a, c]× B,B), K ∈ C
(
[a, b]2 × B,B

)
, f ∈ C [a, b], A : C ([a, c] ,B)→

C ([a, c] ,B) and B : C ([a, b] ,B)→ C ([a, b] ,B).

Define the integral operator T : C ([a, b] ,B)→ C ([a, b] ,B) by

Tx (t) =

c∫
a

H (t, s, Ax(s)) ds+

t∫
a

K (t, s, Bx(s)) ds+ f (t) , t ∈ [a, b] , (2)

Ilea et al. [1] obtained the following conditions for finding a solution to the integral equation (1).

Theorem 1 ([1]). Let H ∈ C ([a, b]× [a, c]× B,B), K ∈ C
(
[a, b]2 × B,B

)
, f ∈ C [a, b], A : C ([a, c] ,B)→ C ([a, c] ,B) and B :

C ([a, b] ,B)→ C ([a, b] ,B) Suppose that:

(i) there exist LH > 0 such that
|H(t, s, u)−H(t, s, v)| ≤ LH |u− v|

for all t ∈ [a, b], s ∈ [a, c] and all u, v ∈ B.
(ii) there exist LK > 0 such that

|K(t, s, u)−K(t, s, v)| ≤ LK |u− v|

for all t ∈ [a, b], s ∈ [a, c] and all u, v ∈ B.
(iii) there exist LA > 0 such that

|Ax(t)−Ay(t)| ≤ LAmax[a,c] |x(t)− y(t)|

for all x, y ∈ C ([a, c] ,B).
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(iv) there exist LB > 0 such that

|Bx(t)−By(t)| ≤ LBmax[a,t] |x(t)− y(t)|

for all t ∈ [a, b].
(v) LHLA(c− a) + LKLB(b− a) < 1.

Then equation (2) has a unique solution and the following sequence

xn+1 = Txn, n = 0, 1, 2...

in which T is a Picard operator, converges to the solution p ∈ C ([a, c] ,B) for any initial point x0 ∈ C ([a, c] ,B).
Now, the sequence obtained from the following iteration method defined by Sahu [5] is discussed with the idea that it can converge faster to

the solution of the integral equation (1). Because the iterative sequence [5] has a better rate of convergence than all Picard [6], Mann [7], and
Ishikawa [8] iterative sequences for the class of contraction mappings in the sense of the definition of Berinde [9].

Definition 2. [5] Let X be a Banach space and let T be a selfmap of X . A normal S-iterative method is defined by


x0 ∈ X

xn+1 = Tyn,

yn = (1− αn)xn + αnTxn

(3)

in which 0 ≤ αn < 1.

Lemma 1. [10] Let {βn}∞n=0 be a sequence of non negative numbers for which one assumes there exists n0 ∈ N (set of natural numbers),
such that for all n ≥ n0

βn+1 ≤ (1− µn)βn + µnγn,

where µn ∈ (0, 1) , for all n ∈ N,
∞∑
n=0

µn =∞ and γn ≥ 0, ∀n ∈ N. Then the following inequality holds:

0 ≤ lim sup
n→∞

βn ≤ lim sup
n→∞

γn.

2 Main Results

If the Definition 2 is rewritten using the integral equation given in the Definition 1, we get:

Definition 3. Let B be a Banach space and let T be a selfmap of B. The iterative method is defined by



x0 ∈ X

xn+1 =

c∫
a

H (t, s, Ayn (s)) ds+

t∫
a

K (t, s, Byn (s)) ds+ f(t),

yn = (1− αn)xn + αn

 c∫
a

H (t, s, Axn (s)) ds+

t∫
a

K (t, s, Bxn (s)) ds+ f(t)


(4)

in which 0 ≤ αn < 1, a, b, c are real numbers with c ∈ (a, b), H ∈ C ([a, b]× [a, c]× B,B), K ∈ C
(
[a, b]2 × B,B

)
, f ∈ C [a, b], A :

C ([a, c] ,B)→ C ([a, c] ,B) and B : C ([a, b] ,B)→ C ([a, b] ,B).

Theorem 2. Suppose that all the conditions in Theorem 1 are satisfied. Let {αn}∞n=0 be a real sequence in [0, 1] satisfying
∞∑
n=0

αn =∞.

Then equation (2) has a unique solution p ∈ C ([a, c] ,B) and the iterative algorithm (1) converges to p.
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Proof: Let {xn}∞n=0 be iterative sequence generated by iteration method (3) for the operator T : C ([a, b] ,B)→ C ([a, b] ,B) defined by (2).
We will show that xn → p as n→∞. Using all the conditions in Theorem 1, we get

|Txn (t)− Tp (t)| =

∣∣∣∣∣∣
 c∫
a

H (t, s, Axn (s)) ds+

t∫
a

K (t, s, Bxn (s)) ds+ f(t)


−

 c∫
a

H (t, s, Ap (s)) ds+

t∫
a

K (t, s, Bp (s)) ds+ f(t)

∣∣∣∣∣∣
≤

c∫
a

|H (t, s, Axn (s))−H (t, s, Ap (s))| ds

+

t∫
a

|K (t, s, Bxn (s))−K (t, s, Bp (s))| ds

≤
c∫
a

LH |Axn (s)−Ap (s)| ds+
t∫
a

LK |Bxn (s)−Bp (s)| ds

≤
c∫
a

LHLAmax[a,c] |xn (s)− p (s)| ds+
t∫
a

LKLBmax[a,t] |xn (s)− p (s)| ds

≤ (LHLA(c− a) + LKLB(b− a)) ‖xn (s)− p (s)‖

(5)

and
‖yn − p‖ = ‖(1− αn)xn + αnTxn − p‖

≤ (1− αn) ‖xn − p‖+ αn ‖Txn − Tp‖
≤ (1− αn) ‖xn − p‖+ αn (LHLA(c− a) + LKLB(b− a)) ‖xn − p‖
≤ (1− αn(1− (LHLA(c− a) + LKLB(b− a)))) ‖xn − p‖

(6)

Similar to inequatlity (5)
|Tyn (t)− Tp (t)| ≤ (LHLA(c− a) + LKLB(b− a)) ‖yn (s)− p (s)‖ (7)

Combining (6) and (7), we have
‖xn+1 − p‖ ≤ θ ‖yn (s)− p (s)‖

≤ θ(1− αn(1− θ)) ‖xn − p‖
(8)

in which θ = (LHLA(c− a) + LKLB(b− a)), by repeating this process n-times, we get

‖xn − p‖ ≤ θ [1− αn−1 (1− θ)] ‖xn−1 − p‖
‖xn−1 − p‖ ≤ θ [1− αn−2 (1− θ)] ‖xn−2 − p‖

...

‖x1 − p‖ ≤ θ [1− α0 (1− θ)] ‖x0 − p‖ .

(9)

Then

‖xn+1 − p‖ ≤ θ(n+1)
n∑
i=0

[1− αi (1− θ)] ‖x0 − p‖ (10)

Hence by using this fact with (10), we obtain

‖xn+1 − p‖ ≤
∥∥x0 − x∗∥∥ θ(n+1)e

−(1−θ)
n∑

i=0
αi

,

Hence it follows by its conclusion that
lim
n→∞

‖xn − p‖ = 0.

�

In order to examine the data dependence result of integral equation (2), we consider the following equation:

S (u (t)) =

c∫
a

H1 (t, s, Aun (s)) ds+

t∫
a

K1 (t, s, Bun (s)) ds+ f1(t) (11)

in which a, b, c are real numbers with c ∈ (a, b), H1 ∈ C ([a, b]× [a, c]× B,B), K1 ∈ C
(
[a, b]2 × B,B

)
, f1 ∈ C [a, b], A :

C ([a, c] ,B)→ C ([a, c] ,B) and B : C ([a, b] ,B)→ C ([a, b] ,B).
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Now, we define the following iterative algorithms associated with S in (11),

un+1 =

c∫
a

H1 (t, s, Avn (s)) ds+

t∫
a

K1 (t, s, Bvn (s)) ds+ f1(t)

vn = (1− αn)un + αn

 c∫
a

H1 (t, s, Aun (s)) ds+

t∫
a

K1 (t, s, Bun (s)) ds+ f1(t)


(12)

in which 0 ≤ αn < 1, a, b, c are real numbers with c ∈ (a, b), H1 ∈ C ([a, b]× [a, c]× B,B), K1 ∈ C
(
[a, b]2 × B,B

)
, f1 ∈ C [a, b], A :

C ([a, c] ,B)→ C ([a, c] ,B) and B : C ([a, b] ,B)→ C ([a, b] ,B).

Theorem 3. Consider the sequences {xn}n=0 and {un}∞n=0 generated by (4) and (12), respectively, with the real sequence {αn}∞n=0in
[0, 1] satisfying 1

2 ≤ αn for all n ∈ N. Assume that all the conditions of Theorem 1 hold and p and q are solutions of equations (2) and (11),
respectively and there exist non negative constants ε1, ε2, and ε3 such that
|H (t, s, u)−H1 (t, s, u)| ≤ ε1, |K (t, s, u)−K1 (t, s, u)| ≤ ε2 and |f (t)− f1 (t)| ≤ ε3 for all t, s ∈ [a, b] ,.

If the sequence {un}∞n=0 converge to q as n→∞, then we have

‖p− q‖ ≤ (2 + θ) [ε3 + (c− a)ε1 + (b− a)ε2]
1− θ . (13)

Proof: Using (2), (4), (11), (12) and assumptions (i)-(v) in Theorem 1, we obtain

|xn+1 (t)− un+1 (t)| = |T (yn) (t)− S (vn) (t)|

=

∣∣∣∣∣∣
 c∫
a

H (t, s, Ayn (s)) ds+

t∫
a

K (t, s, Byn (s)) ds+ f(t)


−

 c∫
a

H1 (t, s, Avn (s)) ds+

t∫
a

K1 (t, s, Bvn (s)) ds+ f1(t)

∣∣∣∣∣∣
≤

c∫
a

|H (t, s, Ayn (s))−H (t, s, Avn (s))| ds+ |f(t)− f1(t)|

+

t∫
a

|K (t, s, Byn (s))−K (t, s, Bvn (s))| ds

+

c∫
a

|H (t, s, Avn (s))−H1 (t, s, Avn (s))| ds

+

t∫
a

|K (t, s, Bvn (s))−K1 (t, s, Bvn (s))| ds

≤ (LHLA(c− a) + LKLB(b− a)) ‖yn (t)− vn (t)‖+ ε3

+ (c− a)ε1 + (b− a)ε2

(14)

and
‖yn − vn‖ ≤ (1− αn) ‖xn − un‖+ αn ‖Txn − Tun‖

≤ (1− αn) ‖xn − un‖+ αn (LHLA(c− a) + LKLB(b− a)) ‖xn − un‖
+ αnε3 + αn(c− a)ε1 + αn(b− a)ε2
≤ (1− αn(1− (LHLA(c− a) + LKLB(b− a)))) ‖xn − un‖
+ αnε3 + αn(c− a)ε1 + αn(b− a)ε2

(15)

and we have

‖xn+1 (t)− un+1 (t)‖ ≤ θ ‖yn (t)− vn (t)‖+ ε3 + (c− a)ε1 + (b− a)ε2
≤ θ (1− αn(1− θ)) ‖xn (t)− un (t)‖+ (1 + θαn) [ε3 + (c− a)ε1 + (b− a)ε2]
≤ θ (1− αn(1− θ)) ‖xn (t)− un (t)‖+ αn(2 + θ) [ε3 + (c− a)ε1 + (b− a)ε2]

≤ θ (1− αn(1− θ)) ‖xn (t)− un (t)‖+ αn(1− θ)
(2 + θ) [ε3 + (c− a)ε1 + (b− a)ε2]

1− θ

(16)
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Denote by

βn = ‖xn − un‖ ,
µn = αn(1− δ) ∈ (0, 1) ,

γn =
(2 + θ) [ε3 + (c− a)ε1 + (b− a)ε2]

1− θ ≥ 0.

The assumption 1
2 ≤ αn for all n ∈ N implies

∞∑
n=0

αn =∞. Now it can be easily seen that (16) satisfies all the conditions of Lemma 1. Hence

it follows by its conclusion that

0 ≤ lim sup
n→∞

‖xn − un‖ ≤ lim sup
n→∞

(2 + θ) [ε3 + (c− a)ε1 + (b− a)ε2]
1− θ .

By (i), we have that limn→∞ xn = p. Using this fact and the assumption un → q as n→∞, we get

‖p− q‖ ≤ (2 + θ) [ε3 + (c− a)ε1 + (b− a)ε2]
1− θ .

�

Example 1. Consider the following integral equation

x (t) =

1
4∫
0

[
t2 + t+ sinx(s)

4
+

3s

8

]
ds+

1
2∫
0

[
t3 − t+ cosx(s)

3
+

2s

5

]
ds+

5sint+ 1

50
,

in which t ∈ [0, 1],H ∈ C ([a, b]× [a, c]× B,B),H(t, s, x(t)) =
t2+t+sinx(t)

4 + 3t
8 ,K ∈ C

(
[a, b]2 × B,B

)
,K(t, s, x(t)) =

t3−t+cosx(t)
3 +

2t
5 , f ∈ C [a, b], f(t) = 5sint+1

50 ,A : C ([a, c] ,B)→ C ([a, c] ,B),Ax(t) = 3x(t)
8 andB : C ([a, b] ,B)→ C ([a, b] ,B),B =

2x(t)
5 and its

perturbed integral equation

x̃ (t) =

1
4∫
0

[
t2 + t+ sinx(s)

4
+

5s

8
− 1

10

]
ds+

1
2∫
0

[
t3 − t+ cosx(s)

3
− 3s

5
+

1

5

]
ds+

sint

10
,

in which t ∈ [0, 1], H1(t, s, x(t)) =
t2+t+sinx(t)

4 + 5t
8 −

1
10 , K1 ∈ C

(
[a, b]2 × B,B

)
, K1(t, s, x(t)) =

t3−t+cosx(t)
3 − 3t

5 + 1
5 , f1 ∈

C [a, b], f1(t) = sint
10 , A : C ([a, c] ,B)→ C ([a, c] ,B), Ax(t) = 3x(t)

8 and B : C ([a, b] ,B)→ C ([a, b] ,B), B =
2x(t)
5 . Define the

operator T : C [0, 1]→ C [0, 1] by

Tx (t) =

1
4∫
0

[
t2 + t+ sinx(s)

4
+

3s

8

]
ds+

1
2∫
0

[
t3 − t+ cosx(s)

3
+

2s

5

]
ds+

5sint+ 1

50
, t ∈ [0, 1] ,

One can easily show on the same lines as above that the mapping T̃ : C [0, 1]→ C [0, 1] defined by

T̃ x̃ (t) =

1
4∫
0

[
t2 + t+ sinx̃(s)

4
+

5s

8
− 1

10

]
ds+

1
2∫
0

[
t3 − t+ cosx̃(s)

3
− 3s

5
+

1

5

]
ds+

sint

10
.

Since all the conditions of Theorem 1 are satisfied by the integral equations (1) and (11) so by its conclusion, normal S-iterative method (1)
converges to unique solution p and q, respectively in C [0, 1].
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Now we have the following estimates:

|H(t, s, u)−H(t, s, v)| ≤ LH |u− v|

≤ 1

4
|u− v|

|K(t, s, u)−K(t, s, v)| ≤ LK |u− v|

≤ 1

3
|u− v|

|Ax(t)−Ay(t)| ≤ LAmax[a,c] |x(t)− y(t)|

≤ 3

8
max[a,c] |x(t)− y(t)|

|Bx(t)−By(t)| ≤ LBmax[a,t] |x(t)− y(t)|

≤ 2

5
max[a,t] |x(t)− y(t)|

and

θ = (LHLA(c− a) + LKLB(b− a)) =
(

3

64
+

2

15

)
= 0.180208

in which a = 0, b = 1, c = 1
2 .

|H (t, s, u)−H1 (t, s, u)| ≤ 0.4 = ε1, for all t ∈ [0, 1] ,

|K (t, s, u)−K1 (t, s, u)| ≤ 0.8 = ε2, for all t ∈ [0, 1] .

and

|f (t)− f1 (t)| =
∣∣∣∣5sint+ 1

50
− sint

10

∣∣∣∣ ≤ 1

50
= 0.02 = ε3, for all t ∈ [0, 1] .

In view of the above estimates, all the conditions of Theorem 3 are satisfied and hence from (13), we have

‖p− q‖ ≤ (2 + θ) [ε3 + (c− a)ε1 + (b− a)ε2]
1− θ =

(2 + 0.180208) [0.02 + 0.5 · 0.4 + 0.8]

1− 0.180208
.

3 Conclusion

In this study, we have shown that the iteration method (3) converges to the solution of the functional integral equation. Finally, we have proven
a data dependence result can be obtained for the solution of the integral equation. We have also provided a nontrivial numerical example to
support the Data Dependence Theorem.
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Abstract: Motions play a significant part in differential geometry, as is well known. In the study of space kinematics or spatial
mechanism, it is crucial to look into the geometry of the motion of a line or a point. This type of motion’s geometry has numerous
uses in geometric modeling, the creation of mechanical products, and the design of robotic motions. The motions of the points
and curves are used to model many non-linear situations seen in both nature and science. For instance, the dynamics of vortices,
interface motions, robotic movements, flame front propagation, image processing, supercoil DNAs, magnetic fluxes, membrane
deformation, and protein dynamics. The differential equations describing the motion of curves as a family must be used in these
nonlinear applications to describe the evolution of the curves.
In this study we search for the surfaces with constant Gauss curvatures, which are the orbit of a space curve in Lorentz 3-space
and give some results.
Keywords: Gauss curvature, motions, Lorentz space, Galilean space

1 Introduction

Motions are important subjects of differential geometry. Many researchers have studied motions in different spaces and found interesting results.
Beneki et al solved the problem of finding the helicoidal surfaces via helicoidal motions, with prescribed Gaussian or mean curvature given
by smooth functions in three dimensional Minkowski space [3]. Lopez studied surfaces with constant Gauss curvature in Lorentz 3-space [4].
Jafari investigated some properties of homothetic motions in Euclidean 3-space [5]. Aksoyak and Yayl? defined a surface by means of homo-
thetic motions in E4

1 and gave some special subgroups of the Lie group P [1]. Mosa and Elzawy constructed helicoidal surfaces in Galilean
3-space and obtained the mean and gaussian curvature of these surfaces [6]. In this paper we study the homothetic motions in Lorentz 3-space
and search for the surfaces with constant Gauss curvature.
Consider the Lorentz 3-Space E3

1 , that is, three dimensional real vector space R3 endowed with the metric 〈,〉 given by,

〈,〉 : E3xE3 −→ E

(u,v)−→ 〈u,v〉= u1v1 +u2v2−u3v3

where u = (u1,u2,u3) and v = (v1,v2,v3) ∈ E3.

Definition 1. In three dimensional Lorentz space, one parameter homothetic motion of a body is generated by the transformation(
Y
1

)
=

(
λA C
0 1

)(
X
1

)
where A ∈ O1(3), At = εA−1ε and the signature matrix ε is the diagonal matrix (δi jε j) whose diagonal entries are ε1 = ε2 = 1, ε3 = −1. X
and Y are real matrices of 3x1 type and λ is the homothetic scale, A, λ and C are differentiable functions of C∞ class of parameter t.
To avoid the case of affine transformation we assume that λ = λ (t) 6=constant. Also to avoid the cases of pure translation and pure rotation we

assume that
d
dt

(λA) 6= 0 and
d
dt

(C) 6= 0 [8].

Definition 2. One parameter homothetic motion in E3
1 can also be determined with an axis L and pitch h ∈ R. Depending on the causal

character of the axis there are three types of homothetic motions in E3
1 .
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1. If L is timelike, then L = 〈(0,0,1)〉 and the homothetic motion around this axis is

φt(a,b,c) = λ (t)

cos t −sin t 0
sin t cos t 0

0 0 1

a
b
c

+h

0
0
t


2. If L is spacelike, then L = 〈(1,0,0)〉 and the homothetic motion around this axis is

φt(a,b,c) = λ (t)

1 0 0
0 cosh t sinh t
0 sinh t cosh t

a
b
c

+h

t
0
0


3. If L is lightlike, then L = 〈(1,0,1)〉 and the homothetic motion around this axis is

φt(a,b,c) = λ (t)


1− t2

2
t

t2

2
−t 1 t

− t2

2
t 1+

t2

2


a

b
c

+h


t3

3
− t

t2

t3

3
+ t


Here λ is a differentiable function of parameter t and h is a real scalar. In particular, if we take λ (t) = 1 then we get helicoidal motion groups

in Lorentz 3-space. Also if we take λ (t) = 1 and h = 0 then the new motion is a rotation in E3
1 .

2 Curvatures of a non degenerate surface in Lorentz 3-space

An immersion x : M −→ E3
1 of a surface M is called spacelike if the tangent plane TpM is spacelike, M is called timelike if the tangent plane

TpM is timelike for all p∈M. This is also equal to say that M is spacelike or timelike, respectively. In both cases the surface M is non-degenerate.

Let χ(M), be the class of tangent vector fields of M and ∇0 be the Levi-Civita connection of E3
1 . Denote by ∇ the induced connection on

M by immersion x, that is, ∇XY = (∇0
XY )>, where > denotes the tangent part of the vector field ∇0

XY. Then we have

∇
0
XY = ∇XY +σ(X ,Y ) (2.1)

called the Gauss formula. Here σ(X ,Y ) is the normal part of the vector field ∇0
XY, that is σ : χ(M)xχ(M) −→ (χ(M))⊥. Let Z be a normal

vector field to x and −∇0
X Z. AZ(X) =−(∇0

X Z)> is the tangent component. From (2.1)

〈AZ(X),Y 〉= 〈σ(X ,Y ),Z〉 (2.2)

The map AZ : χ(M)−→ χ(M) is called Weingarten endomorphism of Z. Because σ is symmetric, from (2.2) we have

〈AZ(X),Y 〉= 〈X ,AZ(Y )〉 (2.3)

This means that AZ is self-adjoint with respect to the metric 〈,〉 of M. Because our results are local, we only need local orientability, which is
trivially satisfied. However a spacelike surface is globally orientable. Denote by N the gauss map on M. Define ε by 〈N,N〉= ε, where ε =−1
or 1, if the immersion is spacelike or timelike respectively. If we take Z = N then

〈
∇0

X N,N
〉
= 0 hence the normal part (∇X N)⊥ = 0 and we

have the Weingarten formula
−∇

0
X N = AN(X) (2.4)

[7].

Definition 3. The Weingarten endomorphism at p ∈M is defined by
Ap : TpM −→ TpM, Ap = AN(p). If v ∈ TpM and X ∈ χ(M) is a tangent vector field, that is X(P) = v, then Ap(v) = (AN(X))p. Also from (2.4)

Ap(v) =−(dN)p(v), v ∈ TpM

Here (dN)p, is the differentiation of N at point p in E3
1 .

Also X ,Y ∈ χ(M) and from (2.1) and (2.2) we have

σ(X ,Y ) = ε 〈σ(X ,Y ),N〉N = ε 〈A(X),Y 〉N

and the equation (2.1) can be written as
∇

0
XY = ∇XY + ε 〈A(X),Y 〉N

[7].
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Definition 4. Let A be the Weingarten endomorphism of M in E3
1 . Then the Gauss curvature of M is defined as follows

K = εdet(A)

Let X : U ⊂ R2 −→ E3
1 be a parametrization of M with X = X(u,v) and

Xu =
∂X(u,v)

∂u
, Xv =

∂X(u,v)
∂v

Denote by {E,F,G} and {e, f ,g} the coefficients of first and second fundamental form respectively. Then

E = 〈Xu,Xu〉 , F = 〈Xu,Xv〉 , G = 〈Xv,Xv〉

e =−〈Nu,Xu〉 , f =−〈Nu,Xv〉 , g =−〈Nv,Xv〉

Also

K = ε
eg− f 2

EG−F2

Here

N =
XuxXv√

ε(EG−F2)

W = EG−F2 is positive if the immersion is spacelike and negative if the immersion is timelike [7].

Theorem 1. Consider a non-degenerate surface which is generated by a graph of a polynomial under homothetic motion groups in E3
1 . If the

surface have constant Gauss curvature then the degree of the polynomial is 1 or 0. That is the generating curve is a straight line and the surface
is a ruled surface. Moreover

(i) If the axis is timelike L = 〈(0,0,1)〉 the generating curve is γ(s) = (s,0, f (s)), f (s) =
m
∑

n=0
ansn, an ∈ R then the parameterization of the

surface generated by γ under homothetic motion group around this axis is

X(s, t) = (sλ (t)cos t,sλ (t)sin t,ht +λ (t) f (s)) (3.1)

For this surface

a) If K = 0 then f (s) = a0 +a1s and λ (t) = b0−
h
a0

t.

b) If K is a non-zero constant then f (s) = a0± s, λ (t) = b0 +b1t and we have K =
1

(h+a0λ ′)2

ii) If the axis is spacelike L = 〈(1,0,0)〉 the generating curve is γ(s) = ( f (s),s,0), f (s) =
m
∑

n=0
ansn,an ∈ R and

X(s, t) = (ht +λ (t) f (s),sλ (t)cosh t,sλ (t)sinh t) (3.2)

is the parameterization of the surface generated by γ under homothetic motion around spacelike axis.

a) If K = 0 then f (s) = a0 or f (s) = a0 +a1s and λ (t) = b0−
h
a0

t.

b) If f (s) =
m
∑

n=0
ansn and λ (t) =

l
∑

k=0
bktk, bk ∈ R then K can not be a non-zero constant.

iii) If the axis is lightlike L = 〈(1,0,1)〉 the generating curve is γ(s) = ( f (s),s, f (s)), f (s) =
m
∑

n=0
ansn, an ∈ R then the parameterization of

the surface generated by γ under homothetic motion group around this axis is

X(s, t) = (λ (t)(ts+ f (s))+h(
t3

3
− t),sλ (t)+ht2,λ (t)(ts+ f (s))+h(

t3

3
+ t)) (3.3)

For this surface

a) If f (s) =
m
∑

n=0
ansn and λ (t) =

l
∑

k=0
bktk, bk ∈ R then K can not be zero.

b) If f (s) =
m
∑

n=0
ansn and λ (t) =

l
∑

k=0
bktk, bk ∈ R then K can not be a non-zero constant.

158 c© CPOST 2022



Fig. 1

Example 1. The surface generated by γ(s) = (s,0, f (s)) around timelike axis with homothetic motion where f (s) = 1+2s and λ (t) = 1−ht,
has zero Gauss curvature.

3 Curvatures of a non degenerate surface in Galilean 3-space

For 3-dimensional Galilean space G3, the Galilean scalar product between two vectors ξ = (ξ1,ξ2,ξ3) and ζ = (ζ1,ζ2,ζ3) is defined by

〈ξ ,ζ 〉G3
=

{
ξ1ζ1, if ξ1 or ζ1 is not zero,

ξ2ζ2 +ξ3ζ3, if ξ1 and ζ1 are zero

and the Galilean cross product is given as

(ξ ×ζ )G3 =



∣∣∣∣∣∣
0 e2 e3
ξ1 ξ2 ξ3
ζ1 ζ2 ζ3

∣∣∣∣∣∣ , if ξ1 or ζ1 is not zero,

∣∣∣∣∣∣
e1 e2 e3
ξ1 ξ2 ξ3
ζ1 ζ2 ζ3

∣∣∣∣∣∣ , if ξ1 and ζ1 are zero.

where e1,e2,e3 are Euclidean standard basis [2].

Definition 5. Let α(u1) = (u1,0, f (u1)) be a regular planar curve in Galilean 3-space. Then the surface parametrized by

φ(u1,u2) = (u1 cosu2,u1 sinu2, f (u1)+bu2)

is the helicoidal surface with the oz−axis, the pitch b and the generating curve α. Here f is a differentiable function [6].

Definition 6. The mean curvature and the Gauss curvature of the helicoidal surface φ(u1,u2) is given by

H =
1

2w3 (−u3
1 f ′′(u1)sin2 u2 +2bu1 sinu2 cosu2−u2

1 f ′(u1)cos2 u2)

and

K =
1

w4 (−u3
1 f ′(u1) f ′′(u1)−b2)

respectively.
Here w =

√
bcosu2 +u1 f ′(u1)sin2 u2 +u2

1
The mean curvature of the surface is obtain from

H =
g2

2L11−2g1g2L12 +g2
1L22

2w2

where gi = φui ,L11 =
−u1

w
f ′′(u1), L22 =

−u2
1

w
f ′(u1) and L12 =

b
w
. Then we have

H =
1

2w3 (−u3
1 f ′′(u1)sin2 u2 +2bu1 sinu2 cosu2−u2

1 f ′(u1)cos2 u2)

Similar to the mean curvature, the Gauss curvature of the surface is obtain from

K =
L11L22−L2

12
w2
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With the necessary computations we have the Gauss curvature as

K =
1

w4 (−u3
1 f ′(u1) f ′′(u1)−b2)

[6].

4 Conclusion

It is commonly known that motions play a crucial role in differential geometry. In this study, we deal with a variety of motion groups in non-
Euclidean spaces. In addition, we define surfaces with constant Gauss curvature in Lorentz 3-space and provide an illustration for these surfaces.
We only briefly touch on certain fundamental ideas in the Galilean 3-space section, including definitions of helicoidal motions and helicoidal
surface’s curvatures. In additional research, we are looking for the criteria that must exist for surfaces to have constant Gauss curvature and
mean curvature in Galilean 3-space.
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function. Moreover, the concept of a new kernel definition is introduce via local closure operator. The basic properties and char-
acterizations of this new type of ideal topological spaces is obtained. The case that σ-topology obtained with the help of the local
closure function is R0-space is examined .
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1 Introduction and Preliminaries

Kuratowski defined the ideal and local function concepts ([6],[7]). He gave the basic properties of the local function. Later, Vaidyanathaswamy
obtained new results on ideal topological spaces [11]. The concept of ideal was used not only in general topology but also in different branches
of mathematics. Freud [4] generalized the Cantor-Bendixson Theorem. In [5], many results are given on the concepts of ideal and local function.

Shanin defined [10] the concept of R0-space . Davis shown [2] every T1-space is a R0-space and gave the necessary inverse example. Dube
introduced the concept of the kernel of a set in topological spaces [3]. He gave new characterizations of R0-space using the kernel concept.

In recent years, new types of local functions have been defined ([1],[13],[14]). One of them is the local closure function. The basic properties
of the local closure function were given by Al-Omari and Noiri [1]. They obtained two new topologies with the help of local closure function.
Pavlovic gave theorems and examples showing the relationship between local function and local closure function [9]. In [8] also examined the
case of the local closure function being idempotent.

In this study, we introduce the concept of σ-R0-space and σKerΓ by using the σ-topology produced with the help of the ideal and local
closure function.

Definition 1. [7] Let X 6= ∅ and I ⊆ P(X). If the family I satifies the following conditions, it is called an ideal on X :

1. ∅ ∈ I.
2. If A ∈ I and B ⊆ A, then B ∈ I.
3. If A,B ∈ I, then A ∪B ∈ I.

If (X, τ) is a topological space with the ideal I, then the triplet (X, τ, I) is called an ideal topological space. We will denote the family of
open neighborhoods of x with τx throughout this work.

Definition 2. [1] Let (X, τ, I) be an ideal topological space and A ⊆ X . An operator Γ : P(X)→ P(X) is defined by

Γ(A)(I, τ) = {x ∈ X : Cl(U) ∩A /∈ I for every U ∈ τx}

and is called the local closure function of A with respect to I and τ .

Theorem 3. [1] Let (X, τ, I) be an ideal topological spaces.

a) If A ⊆ B, then Γ(A) ⊆ Γ(B).
b) If A ∈ I, then Γ(A) = ∅.

Definition 4. [1] Let (X, τ, I) be an ideal topological space and A ⊆ X . An operator ΨΓ(A) : P(X)→ P(X) is defined as:

ΨΓ(A) = {x ∈ X : there exists U ∈ τx such that (Cl(U) \A) ∈ I}

It is clear that ΨΓ(A) = X \ Γ(X \A).
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Theorem 5. [1] Let (X, τ, I) be an ideal topological space and A ⊆ X .

σ = {A ⊆ X : A ⊆ ΨΓ(A)}

is a topology on X . Its elements is called σ-open.

Throughout this work, we will denote the family of closed sets according to this topology by Cσ, and we will denote the closure according
to this topology by Clσ .

Definition 6. [12] Let (X, τ) be a topological space. A subset A of X is called θ-open if each point of A has an open neighborhood U such
that Cl(U) ⊆ A.

The following diagram is given in [1].

θ-open → open
↓

σ-open

Definition 7. [10] Let (X, τ) be topological space. If Cl({x}) ⊆ U for every U ∈ τ and for each x ∈ U , then this space is said to be
R0-space.

Theorem 8. [2] If (X, τ) is T1-space, then it is R0-space.

2 σ-R0 Ideal Topological Spaces

Lemma 9. Let (X, τ, I) be an ideal topological space. Then, for all x ∈ X ,

Γ({x}) ⊆ Clσ({x}).

Proof: Let y /∈ Clσ({x}). There existsU ∈ σy such thatU ∩ {x} = ∅. Therefore x /∈ U . SinceU ∈ σ,U ⊆ [X \ Γ(X \ U)] ⊆ X \ Γ({x}).
Hence Γ({x}) ⊆ Γ(X \ U) ⊆ X \ U . Since y /∈ X \ U , y /∈ Γ({x}). Consequently, we obtain to the desired result. �

Definition 10. Let (X, τ, I) be an ideal topological space. If Clσ({x}) \ Γ(I, τ)({x}) ⊆ U for every U ∈ σ and for each x ∈ U , then this
space is called σ-R0-space.

Theorem 11. Let (X, τ, I) be an ideal topological space. If the topology (X,σ) obtained from this ideal space is R0 topological space, then
(X, τ, I) is σ-R0-space.

Proof: Let x ∈ U ∈ σ. Since (X,σ) is R0-space, then Clσ({x}) ⊆ U . Therefore [Clσ({x}) \ Γ({x})] ⊆ U . �

Remark 1. The converse of implication in Theorem 11 is not true in generally as shown in the next example.

Example 12. For (R, τ = {R, ∅}, I = {∅, {1}}), we obtain the topology σ = {R, ∅,R \ {1}}. For 2 ∈ R \ {1} ∈ σ, Clσ({2}) = R.
Therefore (R, σ) is notR0-space. But (R, τ, I) is σ-R0-space. Because, for everyU ∈ σ and for every x ∈ U ,Clσ({x}) \ Γ(I, τ)({x}) ⊆ U .

One must focus on topologies on X . Related to this attention, we give the following examples.

Example 13. In the previous example, although (R, τ) is R0-space, (R, σ) is not R0-space.

Example 14. Consider the left topology τL = {(−∞, r) ⊆ R : r ∈ R} ∪ {∅,R} on real numbers R with the ideal I = P(R). It is obvious
that is the topology σ = P(R). Therefore (R, σ) is R0-space but (R, τL) is not R0-space.

From Example 13 and Example 14, we obtain the following corollary.

Corollary 1. Let (X, τ, I) be an ideal topological space. The fact that (X, τ) is R0-space and (X,σ) is R0-space are independent of each
other.

Theorem 15. Let (X, τ, I) be an ideal topological space and {x} ∈ I for every x ∈ X .

(X, τ, I) is σ-R0-space⇔ (X,σ) is R0-space

Proof: Let (X, τ, I) be σ-R0-space. For any U ∈ σ and for any x ∈ U , Clσ({x}) \ Γ({x}) ⊆ U . Since {x} ∈ I, [Clσ({x}) \ Γ({x})] =
Clσ({x}) \ ∅ = Clσ({x}) ⊆ U . Namely, (X,σ) is R0. Conversely it is obtained by Theorem 11. �

From Theorem 15, we obtain the following corollary.

Corollary 2. a) (X, τ, If ) is σ-R0-space⇔ (X,σ) is R0-space (If is the ideal of finite subsets of X).
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b) (X, τ, Ic) is σ-R0-space⇔ (X,σ) is R0-space (Ic is the ideal of countable subsets of X).

Theorem 16. The following statements are equivalent:

a) The ideal topological space (X, τ, I) is σ-R0-space.
b) For each F ∈ Cσ and x /∈ F , there exists U ∈ σ such that x /∈ U , F ⊆ U ∪ Γ({x}) and U ∩ Γ({x}) = ∅.
c) For each F ∈ Cσ and x /∈ F , F ∩ Γ({x}) = F ∩ Clσ({x}) ⊆ Γ({x}).
d) For each x, y ∈ X , Clσ({x}) = Clσ({y}) or [Clσ({x}) ∩ Clσ({y})] = [Clσ({y}) ∩ Γ({x})] ⊆ Γ({x}).

Proof:
a)⇒b) Let F ∈ Cσ and x /∈ F . Since (X, τ, I) is σ-R0-space and x ∈ X \ F ∈ σ, [Clσ({x}) \ Γ({x})] ⊆ X \ F . We have F ⊆ [X \
Clσ({x}) \ Γ({x})] = [(X \ Clσ({x})) ∪ Γ({x})]. Then x /∈ U = [X \ Clσ({x})] ∈ σ and F ⊆ [(X \ Clσ({x})) ∪ Γ({x})] = [U ∪
Γ({x})]. Moreover [U ∩ Γ({x})] ⊆ [U ∩ Clσ({x})] = ([X \ Clσ({x})] ∩ Clσ({x})) = ∅.
b)⇒c) Let F ∈ Cσ and x /∈ F . From b), there exists U ∈ σ such that x /∈ U , F ⊆ U ∪ Γ({x}) and U ∩ Γ({x}) = ∅. Since x /∈ U ,
U ∩ {x} = ∅. Therefore [U ∩ Clσ({x})] = ∅. Using Lemma 9,

Γ({x}) = Γ({x}) ∪ (Clσ({x}) ∩ U)

= [Γ({x}) ∪ Clσ({x})] ∩ [Γ({x}) ∪ U ]

⊇ [Clσ({x}) ∩ F ]

Moreover, from Lemma 9, Γ({x}) ⊆ Clσ({x}). Therefore [Γ({x}) ∩ F ] = [Clσ({x}) ∩ F ] ⊆ Γ({x}).
c)⇒d) Let Clσ({x}) 6= Clσ({y}). There exists z ∈ Clσ({x}) such that z /∈ Clσ({y}). Since z ∈ Clσ({x}), U ∩ {x} 6= ∅ for every
U ∈ σz . That is, x ∈ U for every U ∈ σz . Therefore, there exists U ∈ σx such that U ∩ {y} = ∅. That is, x /∈ Clσ({y}) ∈ Cσ. From c),
Clσ({y}) ∩ Γ({x}) = Γ({y}) ∩ Γ({x}) ⊆ Γ({x}).
d)⇒a) Let U ∈ σ and x ∈ U . For any y ∈ X \ U ∈ Cσ, Clσ({y}) ⊆ X \ U and

⋃
y∈X\U Clσ({y}) = X \ U . Since [U ∩ {y}] ⊆ [U ∩

(X \ U)] = ∅, x /∈ Clσ({y}). Therefore Clσ({y}) 6= Clσ({x}), for every y ∈ X \ U . From d), [Clσ({x}) ∩ Clσ({y})] = [Clσ({y}) ∩
Γ({x})] ⊆ Γ({x}) for every y ∈ X \ U . Therefore

⋃
y∈X\U [(Clσ({y}) ∩ Clσ({x})] = [

⋃
y∈X\U (Clσ({y}))] ∩ Clσ({x}) = [(X \

U) ∩ Clσ({x})] ⊆ Γ({x}). We have (X \ U) ∩ [(Clσ({x}) ∩ (X \ Γ({x}))] ⊆ [Γ({x}) ∩ (X \ Γ({x})] = ∅. Therefore [Clσ({x}) ∩
(X \ Γ({x}))] ⊆ U . Consequently, we have [Clσ({x}) \ Γ({x})] ⊆ U . �

Corollary 3. (X, τ, I) is σ-R0-space if and only if Clσ({x}) 6= Clσ({y}) implies [Clσ({x}) ∩ Clσ({y})] = [Clσ({y}) ∩ Γ({x})] ⊆
Γ({x}).

Theorem 17. The following statements are equivalent:

a) (X, τ, I) is σ-R0-space.
b) For any nonempty subset A and G ∈ σ such that A ∩G 6= ∅ , there exists F ∈ Cσ such that A ∩ F 6= ∅ and F \ Γ({x}) ⊆ G, for every
x ∈ (A ∩G).

Proof: a)⇒b) Let A be nonempty subset of X and G ∈ σ such that (A ∩G) 6= ∅. Since (X, τ, I) is σ-R0-space, [Clσ({x}) \ Γ({x})] ⊆ G
for any x ∈ (A ∩G). Let F = Clσ({x}) ∈ Cσ. Then x ∈ (A ∩ F ) and (F \ Γ({x})) ⊆ G.
b)⇒a) LetG ∈ σx andA = {x}. Then x ∈ (G ∩A) 6= ∅. From b), there exists F ∈ Cσ such that (A ∩ F ) 6= ∅ and [F \ Γ({x})] ⊆ G. Since
x ∈ F and F ∈ Cσ, Clσ({x}) ⊆ F . Therefore [Clσ({x}) \ Γ({x})] ⊆ [F \ Γ({x})] ⊆ G. �

Definition 18 ([3]). Let (X, τ) be a topological space. The kernel of the subset A is defined as

Ker(A) =
⋂
{U ∈ τ : A ⊆ U}

.

To avoid any confusion, we will denote the kernel of a subset A with σKer(A) according to the topology (X,σ). We now give a new
definition.

Definition 19. Let (X, τ, I) be an ideal topological space and the topology (X,σ) obtained from this ideal space. Then σ-kernel of the subset
A is defined as

σKerΓ(A) =
⋂
{U ∪ Γ(A) : A ⊆ U and U ∈ σ}

.

Lemma 20. Let (X, τ, I) be an ideal topological space and A ⊆ X . Then, σKerΓ(A) = σKer(A) ∪ Γ(A).

Proof: From the definition of σKerΓ(A), it is obtained. That is,

σKerΓ(A) =
⋂
{U ⊆ X : A ⊆ U and U ∈ σ} ∪ Γ(A)

= σKer(A) ∪ Γ(A)

�
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Lemma 21. Let (X, τ, I) be an ideal topological space. Then,

y ∈ σKerΓ({x})⇔ x ∈ Clσ({y}) or y ∈ Γ({x}).

Proof: Let y ∈ σKerΓ({x}). From Lemma 20, y ∈ σKer({x}) or y ∈ Γ({x}). Therefore x ∈ Clσ({y}) or y ∈ Γ({x}).
Conversely, let x ∈ Clσ({y}) or y ∈ Γ({x}). Therefore y ∈ σKerΓ({x}) or y ∈ Γ({x}). Consequently, y ∈ σKerΓ({x}). �

Lemma 22. [3] Let (X, τ) be any topological space and x, y ∈ X . Ker({x}) 6= Ker({y}) if and only if Cl({x}) 6= Cl({y}).

Lemma 23. If σKerΓ({x}) 6= σKerΓ({y}), then at least one of the following is provided.

a) Clσ({x}) 6= Clσ({y}) and σKer({x}) 6= Γ({y}).
b) Γ({x}) 6= Γ({y}) and Γ({x}) 6= σKer({y}).

Proof: Let z ∈ σKerΓ({x}) and z /∈ σKerΓ({y}). Then z ∈ σKer({x}) or z ∈ Γ({x}). Moreover, z /∈ σKer({y}) and z /∈ Γ({y}). From
Lemma 22,

a) If z ∈ σKer({x}), then Clσ({x}) 6= Clσ({y}) and σKer({x}) 6= Γ({y}).
b) If z ∈ Γ({x}) , then Γ({x}) 6= σKer({y}) and Γ({x}) 6= Γ({y}).

�

Theorem 24. The following statements are equivalent:

a) (X, τ, I) is σ-R0-space.
b) For each x ∈ X , [Clσ({x}) \ Γ({x})] ⊆ σKerΓ({x})

Proof: b)⇒ a) Let x ∈ G ∈ σ.

y ∈ σKerΓ({x})⇔ [y ∈ σKer({x})] or [y ∈ Γ({x})]
⇔ x ∈ Clσ({y}) or y ∈ Γ({x})
⇒ y ∈ G or y ∈ Γ({x})
⇔ y ∈ [G ∪ Γ({x})].

This shows that σKerΓ({x}) ⊆ G ∪ Γ({x}). From b), [Clσ({x}) \ Γ({x})] ⊆ [G ∪ Γ({x})] if and only if [Clσ({x}) \ Γ({x})] ⊆ G.

a) ⇒ b) Let any x ∈ X and y ∈ Clσ({x}) \ Γ({x}). Since (X, τ, I) is σ-R0-space, y ∈ Clσ({x}) \ Γ({x}) ⊆ G for every G ∈ σx.
Namely, y ∈ G for every G ∈ σx. Therefore y ∈ Clσ({y}). From Lemma 21, y ∈ σKerΓ({x}). Consequently, we obtain Clσ({x}) ⊆
σKerΓ({x}). �

3 Conclusion

We have given various characterizations for σ-R0 ideal topological spaces. If we combine these obtained results, the following the corollary is
obtained by Theorem 16, Corollary 3, Theorem 17 and Theorem 24.

Corollary 4. The following statements are equivalent:

a) (X, τ, I) is σ-R0-space.
b) For each F ∈ Cσ and x /∈ F , there exists U ∈ σ such that x /∈ U , F ⊆ [U ∪ Γ({x})] and [U ∩ Γ({x})] = ∅.
c) For each F ∈ Cσ and x /∈ F , [F ∩ Γ({x})] = [F ∩ Clσ({x})] ⊆ Γ({x}).
d) For each x, y ∈ X , Clσ({x}) = Clσ({y}) or [Clσ({x}) ∩ Clσ({y})] = [Clσ({y}) ∩ Γ({x})] ⊆ Γ({x}).
e) Clσ({x}) 6= Clσ({y}) implies Clσ({x}) ∩ Clσ({y}) = [Clσ({y}) ∩ Γ({x})] ⊆ Γ({x}).
f) For any nonempty subset A and G ∈ σ such that A ∩G 6= ∅ , there exists F ∈ Cσ such that A ∩ F 6= ∅ and [F \ Γ({x})] ⊆ G for every
x ∈ (A ∩G).
g) For each x ∈ X , [Clσ({x}) \ Γ({x})] ⊆ σKerΓ({x}).

Moreover, in Theorem 15 and Corollary 2, characterizations of σ-R0 space are obtained by using some special ideals.
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Abstract: In this paper, we investigate λ−Statistical convergence in G−metric spaces. The G−metric function is based on the
concept of distance between three points. Considering this new concept of distance, we examined the relationships between GS,
GSλ, GC1 and GNλ sequence spaces.
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1 Introduction and Backround

Let E be a subset of natural numbers N and

d(E) := lim
n

1

n

n∑
j=1

χE(j).

d(E) is said to be natural density of E where χE is the characteristic function of E. With the help of this definition we can give the definition
of statistical convergence.

Definition 1: ([6]) A number sequence (xn) is statistically convergent to L provided that for every ε > 0, d ({k ≤ n : |xk − L| ≥ ε}) = 0.
In this case we write st− limxk = L and usually the set of statistically convergent sequences is denoted by S.

Considering the definition of natural density, this definition can also be expressed as for every ε > 0,

lim
n→∞

1

n
|k ≤ n : |xk − L| ≥ ε| = 0.

Zygmund first mentioned the concept of statistical convergence in her monograph in 1935 in Warsaw ([25]) and it was formally introduced
by Fast ([6]) and Steinhaus ([24]), independently. Later on, Schoenberg gave some basic properties of statistical convergence and studied as
a summability method ([23]). After the 1950s, studies on the concept of statistical convergence made rapid progress and many studies were
conducted on this subject. The most well-known of these areas are number theory by Erdös and Tenenbaum ([5]), measure theory by Miller
([18]), trigonometric series by Zygmund ([25]), summability theory by Freedman and Sember ([7]). Fridy has an important study in which he
studied the properties of statistical convergence ([8]) and Maio studied statistical convergence in topological spaces ([17]). This concept was
also studied with ideals, weak convergence, modulus functions and p−Cesáro convergence ([3], [13], [14], [22]).

The idea to redefine statistical convergence with λ = (λn) sequences where λ = (λn) is a non-decreasing sequence of positive numbers
tending to∞ such that λn+1 ≤ λn + 1 and λ1 = 1 was thought by Mursaleen in 2000 ([19]). He named this new method by λ−statistical
convergence and he denoted the set of all λ−statistical convergent sequences by Sλ. At the same time, he investigated the relation theorems
between [C, 1]−summability and [V, λ]−summability where

[C, 1] =

{
x = (xn) : ∃L ∈ R, lim

n→∞
1

n

n∑
k=1
|xk − L| = 0

}
and

[V, λ] =

{
x = (xn) : ∃L ∈ R, lim

n→∞
1

λn

∑
k∈In

|xk − L| = 0

}
.

Throughout the paper, we use Λ for the set of all non-decreasing λ = (λn) sequences satisfying the above conditions and In =
[n− λn + 1, n] .

Definition 2: ([19]) Let λ ∈ Λ. The number sequence x = (xn) is λ−statistically convergent (or Sλ−convergent) to L if for every ε > 0,

lim
n→∞

1

λn
|k ∈ In : |xk − L| ≥ ε| = 0

In this case we write Sλ − limxn = L and usually the set of λ−statistically convergent sequences is denoted by Sλ.
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Now let’s talk about G−metric spaces briefly. Today, due to very large and complex data sets, the definition of the distance function needs
to be generalized. For this purpose, An ([2]), Dhage ([4]), Gahler ([12]), Ha ([15]), Khamsi ([16]) and Gaba ([9]) have already studied. They
defined 2−metric spaces, D−metric spaces and G−metric spaces. Among them, we will be particularly interested in G−metric spaces, which
allows us to establish many topological properties.

Gahler claimed that a 2−metric is a generalization of the usual notion of a metric, but different authors proved that there is no relation
between these two functions. Further, there is no easy relationship between results obtained in the two metrics.

Definition 3: ([12]) Let X be a nonempty set. A function d : X ×X ×X → R+ satisfying the following axioms:

d1) For every distinct points x, y ∈ X there exists a point z ∈ X such that d(x, y, z) 6= 0.

d2) If at least two of three points x, y, z are the same then d(x, y, z) = 0.

d3) d(x, y, z) = d(x, z, y) = d(y, z, x) = ... (symmetry)

d4) d(x, y, z) ≤ d(x, y, t) + d(y, z, t) + d(z, x, t) for all x, y, z, t ∈ X
(rectangle inequality)

is called a 2−metric on X and (X, d) is called a 2−metric space.

After Gahler’s studies, Dhage definedD−metric spaces. Subsequently, these works have been the basis for over fourty papers by Dhage and
other authors. However, several errors for fundamental topological properties in a D−metric space were found ([20], [21]).

Definition 4: ([4]) Let X be a nonempty set. A function D : X ×X ×X → R+ satisfying the following axioms:

D1) D(x, y, z) ≥ 0 for all x, y, z ∈ X .

D2) D(x, y, z) ≥ 0 if and only if x = y = z.

D3) D(x, y, z) = D(x, z, y) = D(y, z, x) = ... (symmetry in all three variables)

D4) D(x, y, z) ≤ D(x, y, t) +D(x, t, z) +D(t, y, z) for all x, y, z, t ∈ X (rectangle inequality)

is called a D−metric on X and (X,D) is called a D−metric space.

All these developments led Mustafa and Sims to the idea of defining a more appropriate generalized metric space and they definedG−metric
spaces. These properties are satisfied when G(x, y, z) is the perimeter of a triangle with vertices at x, y and z in R2, further taking a in the
interior of the triangle shows that (G5) is best possible. G−metric function is a distance function that generalizes the concept of distance
between 3 points. ([20])

Definition 5: ([20]) Let X be a nonempty set. The G : X ×X ×X → R+ function that provides the following properties is called
generalized metric or briefly G−metric on X .

G1) G(x, y, z) = 0 if x = y = z for all x, y, z ∈ X

G2) 0 < G(x, x, y) for all x, y ∈ X with x 6= y

G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z 6= y

G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = ... (symmetry in all three variables)

G5) G(x, y, z) ≤ G(x, a, a)+ G(a, y, z) for all x, y, z, a ∈ X (rectangle inequality)

The pair (X,G) is called by a G−metric space.

Example 1: Let d(x, y, z) be the perimeter of the triangle with vertices at x, y, z ∈ R2. Then (R2, d) is a G−metric space.

Example 2: Let X = {x, y} and let G(x, x, x) = G(y, y, y) = 0, G(x, x, y) = 1, G(x, y, y) = 2 and extend G to all of X ×X ×X by
symmetry in the variables. Then G is a G−metric which is not symmetric.

Example 3: Let (X, d) be a metric space. The function

ψ(x, y, z) = max {d(x, y), d(y, z), d(x, z)}

is a G−metric where ψ : X ×X ×X → R+.
Of course, after these definitions, it became inevitable to study convergence types for sequences in these spaces. Abazari defined statistical

convergence in g−metric spaces and studied some basic properties (In a g−metric space, the distance function defined between n+ 1 points)
([1]) . In this section, we redefine some important definitions that Abazari studied in g−metric spaces for G−metric spaces.
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Definition 6: Let A ∈ N2 and A(n) = {i1, i2 ≤ n : (i1, i2) ∈ A} then, ρ1(A) := lim
n→∞

2
n2 |A(n)| is called 2-dimensional asymptotic (or

natural) density of the set A.

Definition 7: Let (xi) be a sequence in a G−metric space (X,G). For every ε > 0, if

lim
n→∞

2

n2
|{(i1, i2) ∈ N : i1, i2 ≤ n, G(x, xi1 , xi2) ≥ ε}| = 0

then, (xi) statistically converges to x in G. This situation is denoted by GS − limxi = x or xi
GS→ x. The set of all statistically convergent

sequences in a G−metric space is denoted by GS.
The following theorems were proved by abazari in g−metric spaces. Since our theorems are special cases of these theorems in G−metric

spaces, we do not give proofs here.

Theorem 1. In G−metric spaces, every convergent sequence is statistically convergent.

Theorem 2. Statistical limit in a G−metric space is unique.

Theorem 3. In G−metric spaces, every statistically convergent sequence has a convergent subsequence.

2 Main Results

In this section the main definitions and results are introduced and discussed. First of all, we consider the definition of λ− statistical convergence
in G−metric spaces.

Definition 8: Let (X,G) be a G−metric space, (xi) be a sequence in this space and λ ∈ Λ. The sequence (xi) is said to be λ−statistically
convergent to x in X provided that for all ε > 0,

lim
n

2

λ2n
|{i1, i2 ∈ In : G(x, xi1 , xi2) ≥ ε}| = 0.

We write for this situation GSλ − limxi = x or xi
GSλ→ x. The set of all this kind of sequences in X is denoted by GSλ.

Definition 9: Let (X,G) be a G−metric space and (xi) be a sequence in this space. The sequence (xi) is said to be GC1−statistically
convergent to x provided that

lim
n

2

n2

n∑
i1,i2=1

G(x, xi1 , xi2) = 0.

We write for this situation GC1 − limxi = x or xi
GC1→ x. The set of all this kind of sequences in X is denoted by GC1.

Definition 10: Let (X,G) be a G−metric space, (xi) be a sequence in this space and λ ∈ Λ. The sequence (xi) is said to be
GNλ−statistically convergent to x provided that

lim
n

2

λ2n

∑
i1,i2∈In

G(x, xi1 , xi2) = 0.

We write for this situation GNλ − limxi = x or xi
GNλ→ x. The set of all this kind of sequences in X is denoted by GNλ.

After all these definitions, we can give the following theorems that prove the relationship betweenGNλ andGSλ and the role of boundedness
in this relationship.

Theorem 4. Let (X,G) be a G−metric space and (xi) be a sequence in this space.

If xi
GNλ→ x then xi

GSλ→ x.

Proof: Suppose that xi
GNλ→ x and ε > 0 be given. Then,

2
λ2
n

∑
i1,i2∈In

G(x, xi1 , xi2) ≥ 2
λ2
n

∑
i1,i2∈In

G(x,xi1 ,xi2 )≥ε

G(x, xi1 , xi2)

≥ ε 2
λ2
n
|{i1, i2 ∈ In : G(x, xi1 , xi2) ≥ ε}|

and if we take the limit of both sides,

1

ε
lim
n→∞

2

λ2n

∑
i1,i2∈In

G(x, xi1 , xi2) ≥ lim
n→∞

2

λ2n
|{i1, i2 ∈ In : G(x, xi1 , xi2) ≥ ε}|

and we have xi
GSλ→ x. �
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Theorem 5. Let (X,G) be a G−metric space and G be bounded function in X.

If xi
GSλ→ x then xi

GNλ→ x.

Proof: This time suppose that xi
GSλ→ x and ε > 0 be given. From the boundedness of G there is a positive M such that G(x, xi1 , xi2) ≤M

for all x, xi1,xi2 ∈ X. Then,

2
λ2
n

∑
i1,i2∈In

G(x, xi1 , xi2) = 2
λ2
n

∑
i1,i2∈In

G(x,xi1 ,xi2 )≥ε

G(x, xi1 , xi2) + 2
λ2
n

∑
i1,i2∈In

G(x,xi1 ,xi2 )<ε

G(x, xi1 , xi2)

≤ 2
λ2
n
M |{i1, i2 ≤ n : G(x, xi1 , xi2) ≥ ε}|+ ε.

Similarly, considering the limits of both side we have xi
GNλ→ x. �

In the following theorem, we explain the relationship between GS and GSλ.

Theorem 6. Let (X,G) be a G−metric space, (xi) be a sequence in this space and λ ∈ Λ.

If lim infn
λ2n
n2

> 0 then GS ⊆ GSλ.

Proof: Suppose that xi
GS→ x and lim infn

λ2
n

n2 > 0. Then there exists η > 0 such that λ
2
n

n2 ≥ η for sufficiently large n. On the other hand, for
given ε > 0 we know that in any case

{i1, i2 ≤ n : G(x, xi1 , xi2) ≥ ε} ⊃ {i1, i2 ∈ In : G(x, xi1 , xi2) ≥ ε} .

Therefore,
2
n2 |{i1, i2 ≤ n : G(x, xi1 , xi2) ≥ ε}| ≥ 2

n2 |{i1, i2 ∈ In : G(x, xi1 , xi2) ≥ ε}|

≥ λ2
n

n2
2
λ2
n
|{i1, i2 ∈ In : G(x, xi1 , xi2) ≥ ε}| .

≥ η 2
λ2
n
|{i1, i2 ∈ In : G(x, xi1 , xi2) ≥ ε}|

We know that the limit of the left side is zero. So, the limit of the right side should be zero and this gives the proof. �

Now, let’s prove if xi
GC1→ x then xi

GS→ x and also if G is bounded then the inverse of the theorem satisfies.

Theorem 7. Let (X,G) be a G−metric space, (xi) be a sequence in this space.

If xi
GC1→ x then xi

GS→ x.

Proof: Let ε > 0 and xi
GC1→ x. Hence,

2
n2

n∑
i1,i2=1

G(x, xi1 , xi2) ≥ 2
n2

n∑
i1,i2=1

G(x,xi1 ,xi2 )≥ε

G(x, xi1 , xi2)

≥ ε 2
n2 |{i1, i2 ≤ n : G(x, xi1 , xi2) ≥ ε}|

1
M limn→∞ 2

n2

n∑
i1,i2=1

G(x, xi1 , xi2) ≥ limn→∞ 2
n2 |{i1, i2 ≤ n : G(x, xi1 , xi2) ≥ ε}|

Considering that xi
GC1→ x we have the result. �

Theorem 8. Let (X,G) be a G−metric space, (xi) be a sequence in this space and G is a bounded function.

If xi
GS→ x then xi

GC1→ x.

Proof: This time suppose that xi
GS→ x and ε > 0 is given. From the boundedness of G there is a positive M such that �
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G(x, xi1 , xi2) ≤M for all x, xi1 , xi2 ∈ X. Then,

2
n2

n∑
i1,i2=1

G(x, xi1 , xi2) = 2
n2

n∑
i1,i2=1

G(x,xi1 ,xi2 )≥ε

G(x, xi1 , xi2)

+ 2
n2

n∑
i1,i2=1

G(x,xi1 ,xi2 )<ε

G(x, xi1 , xi2)

≤ M 2
n2 |{i1, i2 ≤ n : G(x, xi1 , xi2) ≥ ε}|+ ε

Considering the limits of both side we have xi
GC1→ x.

3 Conclusion

Defining the λ−statistical convergence with the help of the G-metric, which defines the concept of distance between three points and handles
it from different aspects, will bring an interesting study to the literature.
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Abstract: In this study, the Spectral Deferred Correction (SDC) method developed to solve the initial value problems consisting of
ordinary differential equations (ODEs) or the systems of ordinary differential equations with arbitrary order of accuracy has been
examined. The essence of the spectral deferred correction method is based on an iterative correction procedure that increases
the order of accuracy of a primitive time integration method such as forward or backward Euler methods. The stability properties of
the method were examined through test problems that contain non-stiff cases. The stability regions of the method were compared
with the same order Runge-Kutta (RK) methods. Our numerical finding indicates better stability behaviour of the SDC method
versus the RK methods. In other words, we obtained fairly larger stability regions with the SDC method that is consistent with
the literature [1, 2]. We have solved several test problems ranging from scalar to system of differential equations. We performed
numerical studies to verify the order of convergence of the numerical scheme for explicit integrations. We managed to verify up
to 11th order of accuracy in explicit cases. We also compared our code with MATLAB’s built in ODE45 solver that is fifth order
accurate. We found that the fifth order explicit SDC method stably runs with relatively larger time steps versus the ODE45 routine.
Our numerical results also show that fifth order SDC method possesses smaller errors if we run both codes with the same size of
time steps.

Keywords: Deferred correction methods, Explicit and Implicit time integrations, Spectral deferred correction methods, Stiff and
non-stiff ODEs.

1 Introduction

Lots of real-life problems are modeled with differential equations. Differential equations form the basis of many physical theories. For this
reason, the solution of differential equations or systems of differential equations is very important in terms of understanding and interpreting
physical phenomenas. In most cases, it may not be possible to obtain the exact solution of the equations or systems modeling physical problems
since these equations or systems are usually non-linear. In such cases, rather than an exact solution, a numerical solution is searched. Many
numerical methods have been developed in the literature to obtain these solutions. Runge - Kutta (RK) and Euler methods are the most popular
numerical methods [3]. In this study, another numerical approach that is referred to as the Spectral Deferred Correction (SDC) method is
investigated. In general, the SDC methods are built on top of a primitive time integration method such as forward or backward Euler methods.
The aim is to increase the order of accuracy of the Euler methods with an iterative correction procedure. The essence of SDC methods is based
on finding the numerical solution of a new initial value problem created with the equation based on the error function. The first step of the SDC
method is called the provisional step in which a set of the numerical solution is obtained by forward or backward Euler methods. The second
step of the SDC method is based on an iterative correction procedure that improves the accuracy of the primitive Euler methods. To present the
SDC methods consider the following general form of the ODE:

ϕ′ (t) = F (t, ϕ (t)) , t ∈ [a, b] (1)

ϕ (a) = ϕa. (2)

The SDC method utilizes the so-called Picard integral equation that corresponds to the equations (1)-(2). Then, the residual function is defined
by applying Picard iteration to this integral equation and the error function is defined by the difference between the exact solution and the
approximate solution [1, 2]. More mathematical details of the derivation will be presented in Section 2.

In Section 3, stability region analysis of RK methods and SDC methods, are performed. The stability regions of the SDC methods were
compared with the same order RK methods. Both RK and SDC methods were built on top of the first order convergent forward Euler methods
depending on explicit discretization meaning that both numerical approaches are identical when the order of accuracy is equal to one. In addition
to this, a meaningful comparison is obtained whenever the order of accuracy is two or higher. A head-on comparison between from second to
fourth order RK and SDC methods was performed. In all cases, the stability properties of the SDC methods are better than the RK methods.
In Section 4, several test problems are solved ranging from scalar to system of ordinary differential equations only for non-stiff cases. Using
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the obtained results, the theoretical order of the method and the numerical order are compared. Also, our code is compared with MATLAB’s
built-in ODE45 subroutine which is fifth order accurate. In our comparison, we have found that SDC method can easily compete MATLAB’s
ODE45 solver. We have also observed that the 5th order explicit SDC code can run with relatively larger time steps.

In summary, in this study, the stability, accuracy, and efficiency performance of spectral deferred correction methods for solving initial value
problems were examined.

2 Spectral Deferred Correction Methods

The SDC procedure is described here but for details, we refer the reader to [1, 2, 4, 5, 6, 7, 8]. The SDC method is based on the Picard
integral form of the equations (1)-(2). To obtain the Picard integral form, we integrate equations (1) and (2) from a to t with respect to t.

ϕ (t) = ϕa +

∫ t
a
F (τ, ϕ (τ)) dτ. (3)

For approximate solution ϕ̃, the aim of the SDC strategy is to create a new initial value problem for the error function δ (t) = ϕ (t)− ϕ̃ (t).
Also, a residual function based on the integral equation can be written as:

E
(
t, ϕ̃ (t)

)
= ϕa +

∫ t
a
F (τ, ϕ̃(τ))dτ − ϕ̃ (t) . (4)

Using ϕ (t) = δ (t) + ϕ̃ (t), equation (3) becomes

δ (t) + ϕ̃ (t) = ϕa +

∫ t
a
F
(
τ, ϕ̃ (τ) + δ (τ)

)
dτ. (5)

Then, equation (5) can be combined with (4) to give

δ (t) =

∫ t
a

[
F
(
τ, ϕ̃ (τ) + δ (τ)

)
− F

(
τ, ϕ̃ (τ)

)]
dτ + E

(
t, ϕ̃ (t)

)
. (6)

which is called the correction equation. Now, suppose that the interval [tn, tn+1] is a sub-interval on the interval [a, b]. The SDC methods
proceed by dividing the interval [tn, tn+1] into p sub-intervals with points tm for m = 0, . . . , p such that

tn = t0 < t1 < . . . < tp = tn+1. (7)

Then an approximate solution ϕ0 (tm) is computed for m = 0, . . . , p with the forward Euler method for non-stiff equations. Also, correc-
tion solutions δk (tm) are computed with respect to equation (6). Then, to provide an increasingly accurate approximation ϕk+1 = ϕk + δk

solutions will be calculated. Here, the function E
(
t, ϕ̃ (t)

)
is calculated with Gaussian quadrature. Our choice of quadrature nodes is the

Gauss–Lobatto nodes. Because the Gauss–Lobatto nodes include the endpoints, so that we do not have to do extrapolations of the final solution
[4]-[6]. Using ϕk (tm) = ϕk

m, δk (tm) = δkm and E(ϕk
m, tm) = Em

(
ϕk

)
, a discretization for equation (6) can be written as

δkm+1 = δkm +∆tm
[
F (tm, ϕk

m + δkm)− F (tm, ϕk
m)

]
+ Em+1

(
ϕk

)
− Em

(
ϕk

)
. (8)

for non-stiff cases. Assuming,

Im+1
m

(
ϕk

)
=

∫ tm+1

tm

F
(
τ, ϕk (τ)

)
dτ. (9)

for residual function the following equation can be obtained

Em+1

(
ϕk

)
− Em

(
ϕk

)
= Im+1

m

(
ϕk

)
− ϕk

m+1 + ϕk
m. (10)

Using equation (10), ϕk+1
m = ϕk

m + δkm and ϕk+1
m+1 = ϕk

m+1 + δkm+1, the equation (8) is rewritten as

ϕk+1
m+1 = ϕk+1

m +∆tm
[
F
(
tm, ϕk+1

m

)
− F

(
tm, ϕk

m

)]
+ Im+1

m

(
ϕk

)
. (11)

This equation is a direct update to the correction solutions for the explicit cases. Each iteration of correction equations raises the order of
accuracy by one [1, 2, 4, 5, 6, 7, 8].

3 The Stability Region Analysis of Runge - Kutta Methods and Spectral Deferred Correction Methods

In this section, the stability analysis of both RK methods and SDC methods will be performed. The stability region of a numerical method is
defined by the following test problem [2]:

ϕ′(t) = λϕ, ϕ(0) = 1, λ < 0 (12)
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3.1 The Stability Region Analysis of Runge - Kutta Methods

The stability region for the RK methods will be examined with the test problem and second-order RK method. One of the second-order RK
methods [9] is described by the following equations:

k1 = F (tm, ϕ(tm )), (13)

k2 = F (tm +∆tm, ϕ(tm) + ∆tmk1), (14)

ϕm+1 = ϕm +∆tm
(k1 + k2)

2
. (15)

If the equalities ϕ′ (tm, ϕm) = λϕm and ∆tλ = z are substituted for the k values, the following equation can be obtained:

ϕm+1 =

[
1 + z +

z2

2

]
ϕm (16)

The equation R(z) = 1 + z + z2

2 is called the stability function of the second order RK method. The stability region of the method is
investigated by plotting the inequality |1 + z + z2

2 | ≤ 1 on the complex plane [10].

3.2 The Stability Region Analysis of Spectral Deferred Correction Methods

To determine the stability regions of the SDC methods, provisional solutions and correction solutions will be calculated for each order.
For the purpose of the meaningful comparison between RK and SDC methods, the stability behavior of the SDC methods is investigated
by the second-order method. For explicit schemes, provisional solutions and correction solutions are calculated by the following equations
respectively.

ϕ
[k]
m+1 = ϕ

[k]
m + λ∆tmϕ

[k]
m , (17)

ϕ
[k+1]
m+1 = ϕ

[k+1]
m + λ∆tm

[
ϕ
[k+1]
m − ϕ

[k]
m

]
+ Im+1

m

(
ϕ[k]

)
. (18)

For a second-order method, one iteration of the correction equation is needed [4]-[8]. By using the second-order SDC method for solving the
test problem the following equation can be obtained:

ϕ
[1]
2 =

(
1 + z +

1

2
z2 +

1

8
z3

)
ϕ
[0]
0 . (19)

The stability function is defined as R(z) = 1 + z + 1
2z

2 + 1
8z

3 and the stability region of the method will be obtained by plotting the
inequality |1 + z + 1

2z
2 + 1

8z
3| ≤ 1 on the complex plane. The comparison between RK methods and SDC methods can be observed in the

following figure.
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Fig. 1: The Stability Regions of RK and SDC Methods

According to the figure, the first-order stability regions in both methods are equal to each other and the same as the stability region obtained
by the explicit Euler method. However, at least the stability regions of the second, third, and fourth-order SDC methods are larger than the RK
methods. That means the SDC methods are more stable for the test problem according to the RK methods, that is consistent with the literature.

In the following part of this section, the stability regions of several explicit SDC methods will be given. The stability region analysis was
performed using the MATLAB programming language.
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5.order SDC
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15.order SDC
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Fig. 2: The Stability Regions of SDC Methods

3.2.1 Stability properties of explicit schemes:

1. It is observed in Fig. 2 that the explicit schemes are stable for Re(z) < 0.
2. In all cases, the stability regions are getting larger as the order increases.

4 Numerical Results

In this section, several test problems are solved ranging from scalar to system of ordinary differential equations only for non-stiff cases.
Numerical experiments are performed to verify the order of convergence of the proposed scheme for explicit integrations. Using the obtained
results, the theoretical order of the method and the numerical order are compared. The code is set to quad precision to achieve meaningful error
analysis. As a result, up to 11th order of accuracy is verified. Also, the code is compared with MATLAB’s built-in ODE45 subroutine which is
fifth order accurate. The solutions obtained with both ODE45 and 5th order SDC methods are superimposed on the same figures.

4.1 Problem 1

The first initial value problem is

ϕ′ (t) = −λϕ (t) , ϕ (0) = 1, t ∈ [0, 1] . (20)

Assuming λ = 1,

ϕ′ (t) = −ϕ (t) , ϕ (0) = 1, t ∈ [0, 1] , (21)

the obtained result is investigated with the following table:
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Table 1 The Numerical Results of Problem 1.
Theoretical Order Absolute Error Numerical Order

1 1.92010E − 0002 1.03145
2 1.52825E − 0004 1.99671
3 2.35702E − 0006 3.00460
4 1.70700E − 0008 3.98961
5 9.70200E − 0011 4.96877
6 4.57009E − 0013 5.95163
7 1.84064E − 0015 6.93544
8 6.47903E − 0018 7.92010
9 2.02648E − 0020 8.90562
10 5.70431E − 0023 9.89181

4.2 Problem 2

To make the analysis more comprehensive, the SDC methods will be used to solve another initial value problem:

ϕ′ (t) = −2π sin (2πt)− 1

ϵ
(ϕ− cos(2πt)) , ϕ (0) = 1, t ∈ [0, 1] (22)

Assuming ϵ = 1, the problem will become

ϕ′ (t) = −2π sin (2πt)− (ϕ− cos(2πt)) , ϕ (0) = 1, t ∈ [0, 1] (23)

The obtaining results are investigated in Table 2:

Table 2 The Numerical Results of Problem 2.
Theoretical Order Absolute Error Numerical Order

1 1.18726E − 0002 0.10719
2 5.46855E − 0003 2.00255
3 1.64664E − 0006 2.24394
4 1.18673E − 0008 3.22779
5 6.93893E − 0011 4.24305
6 3.38679E − 0013 5.26596
7 1.40279E − 0015 6.28124
8 5.05402E − 0018 7.29196
9 1.61306E − 0020 8.30005
10 4.62082E − 0023 9.30801

Remark 2. As can be seen from the results in Table 1 and Table 2, the numerical order of the SDC methods are capture the theoretical
order. But, for Problem 2 the numerical order doesn’t capture the theoretical order so well since each error term contains derivatives from the
truncation error. When the derivatives of trigonometric functions are considered, the truncation error will begin to become more dominant after
a while, since the derivatives will constantly repeat.

Table 3 The 5th Order Results of Problem 2.
Mesh Refinement Absolute Error Numerical Order

∆t 6.93983E − 0011
∆t/2 3.66437E − 0012 4.24305
∆t/4 1.39442E − 0013 4.71452
∆t/8 4.75979E − 0015 4.87260
∆t/16 1.55129E − 0016 4.93933

Table 3 shows the fifth order solutions to Problem 2. The numerical order approaches the theoretical order as the time step gets smaller. That
means the SDC methods give good results for this problem.

4.3 Problem 3

Now, a system of ordinary differential equations that is called the Van Der Pol problem will be solved by the explicit SDC method.

ϕ′′
1 − µ(1− ϕ2

1 )ϕ′
1 + ϕ1 = 0, µ > 0, ϕ1(0) = 2, ϕ2(0) = 0. (24)

Assuming µ = 1, this system is non-stiff. By making the substitution ϕ′
1 = ϕ2, the equation can be rewritten as a system of ODEs:

ϕ′
1 = ϕ2, (25)

ϕ′
2 = µ

(
1− ϕ2

1

)
ϕ2 − ϕ1, µ > 0, ϕ1(0) = 2, ϕ2(0) = 0. (26)

Table 4 shows the fifth order results for Problem 3.
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Table 4 The 5th Order Results of Problem 3.
Mesh Refinement Error Numerical Order
|ϕ2,∆t − ϕ2,∆t/2| 3.90512E − 0009
|ϕ2,∆t/2 − ϕ2,∆t/4| 1.31071E − 0010 4.89695
|ϕ2,∆t/4 − ϕ2,∆t/8| 4.20592E − 0012 4.96178
|ϕ2,∆t/8 − ϕ2,∆t/16| 1.32921E − 0013 4.98378
|ϕ2,∆t/16 − ϕ2,∆t/32| 4.17522E − 0015 4.99257

Remark 3. As can be seen from the last column of Table 4, the numerical order successfully captures the theoretical order. In addition, as
the time step gets smaller, the numerical order becomes very close to the theoretical order. That means, the method also successfully solve the
system of equations of ODEs.

Remark 4. Since the analytical solution of the Van Der Pol problem is unknown, numerical solutions are calculated for different ∆t,
and obtaining results are compared. Here, to obtain the numerical order ϕ2 solutions are used.

4.4 Problem 4

Now, we solve the Euler equations for a rigid body without external forces. The rigid body problem is defined by the following equations
and initial values:

ϕ′
1 = ϕ2ϕ3, (27)

ϕ′
2 = −ϕ1ϕ3, (28)

ϕ′
3 = −0.51ϕ1ϕ2, ϕ1 (0) = 0, ϕ2 (0) = 1, ϕ3 (0) = 1. (29)

Table 5 The 5th Order Results of Problem 4.
Mesh Refinement Error Numerical Order
|ϕ1,∆t − ϕ1,∆t/2| 3.97359E − 0010
|ϕ1,∆t/2 − ϕ1,∆t/4| 1.24977E − 0011 4.99071
|ϕ1,∆t/4 − ϕ1,∆t/8| 3.92095E − 0013 4.99431
|ϕ1,∆t/8 − ϕ1,∆t/16| 1.22794E − 0014 4.99689
|ϕ1,∆t/16 − ϕ1,∆t/32| 3.84163E − 0016 4.99838

Remark 5. When the results given in Table 5 are investigated, the numerical order again captures the theoretical order. In other words, the
method is also successful in solving this system.

4.5 Graphs for The Problems

Now, the solutions to the Van Der Pol and the rigid body problem will be examined on graphs. The solutions will be performed with
MATLAB ODE45 subroutine and the 5th order SDC method. Considering the information in the literature, ODE45 is fourth or fifth order
accurate [11]. In order to be consistent, comparisons will be performed with the 5th order SDC method.
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Fig. 3: The Solution of Van Der Pol Problem with ODE45 and SDC5
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Fig. 4: The Solution of Rigid Body Problem with ODE45 and SDC5
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Fig. 5: Zoom of ϕ1 Solutions to the Problems

Remark 6. Fig 3 and Fig 4 show that there is no visible difference between the solutions for both methods. This is because the 5th order
error is very small. If the graphs are zoomed in at the inflection points the difference between the results can be seen in Fig 5. However, we
can not decide which method is more successful since the exact solution is not known. Now, to understand which method can provide a better
approximate solution, the solutions to Problem 1 and 2 will be performed.
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Fig. 6: The Solution of Problem 1 with ODE45 and SDC5
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Fig. 7: The Solution of Problem 2 with ODE45 and SDC5

As can be seen from Fig 6 and Fig 7, both the ODE45 and 5th order SDC methods give good results. In addition, the solutions of both
methods are very close to each other. However, the SDC method gives better approximate solutions.

5 Conclusion

In this study, the SDC methods for the solution of initial value problems coming from ordinary differential equations or systems are examined.
The linear stability analysis of the method is performed. We have found that the stability regions of the presented numerical scheme are larger
than the well-known RK methods. Several test problems have been solved ranging from non-stiff scalar to system of equations with explicit
SDC methods. Our numerical findings indicate that SDC methods performed very well consistent with literature. In other words, we were able
to to verify the theoretical accuracy of the numerical scheme with relatively larger time step compare to classical RK methods. This finding is
also consistent with the SDC method having larger stability regions versus the RK methods.
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1 Introduction

Special polynomial families have many applications in many branches of mathematics such as analytical number theory, combinatoric, CAGD
and so on. One of the special polynomials is Euler polynomials. Many researchers have introduced useful and important studies on Euler type
polynomials. Ozden and Simsek constructed a new type generating function of (h, q)- Euler numbers and polynomials and derived identities and
relations for these polynomials [1]. Simsek investigated a new generating function for q-Eulerian type polynomials and numbers at nonnegative
real parameters and found some identities and results [2]. Kilar and Simsek derived some new identities and relations for the cosine-Euler and
the sine-Euler polynomials by the aid of generating functions [3].

In approximation theory, many positive linear operators are defined with the help of special polynomials. Varma et al obtained a linear
positive of generalization of SzÃąsz operators including the Brenke type polynomials as follows:

Ln(f, x) =
1

A(1)B(nx)

∞∑
k=0

pk(nx)f

(
k

n

)
,

where A and B are analytic functions which a part of generating function of Brenke type polynomials [4].
YÄślmaz presented a linear positive operator involving the generating function of Apostol-Genocchi polynomials of order alpha and

investigated its approximation properties as follows:

A
(α,β,m)
n (f, x) = e−(n+µ)x

(
2

βe+ 1

)−α ∞∑
k=0

Gαk ((n+ µ)x, β)

k!
f

(
k +m

n+ µ

)
,

where Gαk (x, β) is called as Apostol-Genocchi polynomials [5].
Natalini and Ricci introduced to the adjunction property for Appell polynomials and applied to special Appell type polynomials family such

as Appell-Euler polynomials. The adjoint-Euler polynomials are defined by the aid of generating function at the following equation:

∞∑
k=0

ε̃k(x)
tk

k!
=
et + 1

2
ext. (1)

Our operator is given by using generating function of adjoint-Euler polynomials for t = 1 at the following equation:

A∗n(f, x) = n

(
2

e+ 1

)
e−nx

∞∑
k=0

ε̃k(nx)

k!

∫ k+1
n

k
n

f(t)dt (2)

In this part, firstly, we give moments and central moments functions for constructing the Korovkin’s theorem for A∗n(f, x).And then, we
obtain convergence properties of A∗n(f, x) by the aid of Korovkin’s theorem and modulus of continuity.
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2 Main Results

Lemma1 For all x ∈ [0,∞), Eq.(2) satisfies at the following equalities:

A∗n(1, x) = 1 (3)

A∗n(s, x) = x+
3e+ 1

2n(e+ 1)
(4)

A∗n(s
2, x) = x2 +

(
2e

e+ 1

)
x

n
+

(
7e+ 1

3e+ 3

)
1

n2
. (5)

Proof: Using the generating fuction of Adjoint-Euler polynomials given by (1), we have

∞∑
k=0

ε̃k(x)
tk

k!
=
e+ 1

2
ext.

∞∑
k=0

ε̃k(x)
ktk

k!
=

1

2
ext
[
et + x(et + 1)

]
.

∞∑
k=0

ε̃k(x)
k(k − 1)tk

k!
=

1

2
etx
(
et(x+ 1)2 + x2

)
,

where t = 1 and x→ nx
From definition of A∗n(f, x), it is easy to see
For f = 1,

A∗n(1, x) = n

(
2

e+ 1

)
e−nx

∞∑
k=0

ε̃k(nx)

k!

∫ k+1
n

k
n

dt

= n

(
2

e+ 1

)
e−nx

e+ 1

2
enx

(
k + 1

n
− k

n

)
= 1

For f = t,

A∗n(1, x) = n

(
2

e+ 1

)
e−nx

∞∑
k=0

ε̃k(nx)

k!

∫ k+1
n

k
n

tdt

= n

(
2

e+ 1

)
e−nx

∞∑
k=0

ε̃k(nx)

k!

(
(
k + 1

n
)2 − (

k

n
)2
)

= n

(
2

e+ 1

)
e−nx

( ∞∑
k=0

ε̃k(nx)

k!
(
k + 1

n
)2 −

∞∑
k=0

ε̃k(nx)

k!
(
k

n
)2
)

= x+
3e+ 1

2n(e+ 1)

We complete the proof by using the same method for f = t2. �

Lemma2 For all x ∈ [0,∞), the operator satisfies at the following equalities:

A∗n((s− x), x) =
3e+ 1

2n(e+ 1)
, (6)

A∗n((s− x)2, x) =
5e+ 1

(e+ 1)n
x+

7e+ 1

(3e+ 31)n2
. (7)
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Proof: By applying the linearity property of A∗n, we have

A∗n((s− x), x) = A∗n(s, x)− xA∗n(1, x)

= x+
3e+ 1

2n(e+ 1)
− x

=
3e+ 1

2n(e+ 1)
.

A∗n((s− x)2, x) = A∗n(s
2, x)− 2xA∗n(s, x) + x2A∗n(1, x)

= x2 +

(
2e

e+ 1

)
x

n
+

(
7e+ 1

3e+ 3

)
1

n2
− 2x

(
x+

3e+ 1

2n(e+ 1)

)
+ x2

=
5e+ 1

(e+ 1)n
x+

7e+ 1

(3e+ 31)n2
.

�

Now we define a set of investigating convergence properties for A∗n(f, x). Let the set E is defined as follows:

E = {f | x ∈ [0,∞), lim
x→−∞

f(x)

1 + x2
exist}.

Theorem 1. Let f ∈ [0,∞] = C[0,∞] ∩ E.
lim
n→∞

‖E∗nf − f‖ = 0. (8)

Proof: By applying the well-known KorovkinâĂŹs first theorem and lemma 1, we obtain

lim
n→∞

E∗n(t
i, x) = xi, (9)

for i = 0, 1, 2.
The operatorA∗n(f, x) converges uniformly in each compact subset of [0,∞]. The proof is completed by using the property (vii) of Theorem

4.1.4 in [6] . �

Let f be uniformly continuous function on [0,∞) and δ > 0. The modulus of continuity ω(f, δ) of the function f is defined as follows:

ω(f, δ) := sup|f(x)− f(y)| (10)

where x, y ∈ [0,∞) and |x− y| ≤ δ.
Then, for any δ > 0 and each x ∈ [0,∞) the following relation holds:

|f(x)− f(y)| = ω(f, δn)

(
|x− y|
δ

+ 1;x

)
. (11)

Theorem 2. Let f is uniformly continuous function on [0, 1) and also belongs to set E. Then, we have

∣∣A∗n (f ;x)− f
∣∣ ≤ 2ω

(
f ;

√
A∗n
(
(s− x)2 ;x

))
, (12)

where ω is the modulus of continuity of the function f .

Proof: It follows from Lemma 2 and monotonicity of A∗n (f ;x) that∣∣A∗n (f ;x)− f (x)
∣∣ ≤ A∗n (|f (s)− f (x)| ;x) . (13)

Using the definition of modulus of continuity, we obtain at the following inequality from A∗n((s− x)2, x)∣∣A∗n (f ;x)− f (x)
∣∣ ≤ ω (f, δ)

(
1 +

1

δ
A∗n (|x− y| ;x)

)
. (14)

Applying the Cauchy-Schwarz inequality to the right side of A∗n((s− x)2, x), we get

∣∣A∗n (f ;x)− f (x)
∣∣ ≤ ω (f, δ)

(
1 +

1

δ

√
A∗n
(
(x− y)2 ;x

))
. (15)

By choosing δ := δn (x) =
√

5e+1
(e+1)n

x+ 7e+31
(3e+31)n2 in (11), the proof is completed. �
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3 Conclusion

In this study, the applications of Euler type polynomials, which have many applications in analytical number theory and combinatorics with the
help of operators, are also examined in approximation theory. We gave a Kantorovich type operators by means of generating function of Euler
type polynomials. We obtained moment and central moment functions. And also, we investigated convergence properties of such as uniform
convergence and rate of convergence with the aid of Korovkin theorem and modulus of continuity.
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Abstract: In this study, control strategies to prevent the spread of the COVID-19 virus created with the SEIR model are discussed.
For this, a third control term, meaning mask, social distancing, and hygiene, is adapted to an available optimal control strategy
consisting of the combination of vaccination and plasma transfusion (treatment). The aim is to reduce the number of exposed and
infected individuals. Therefore, optimality systems are firstly introduced for optimal control of the spread of the virus. Afterward,
optimal solutions are numerically obtained by applying the forward-backward fourth-order Runge-Kutta method. The numerical
results drawn by MATLAB demonstrate that the triple control strategy could be even more effective in controlling the pandemic.
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1 Introduction

The World Health Organization announced that a new coronavirus (2019-nCoV), now known as COVID-19, was detected in Wuhan, China at
the end of December 2019. Public health was under global threat over how many people were infected and susceptible to the disease. Therefore,
the spread and dynamics of the coronavirus had to be predicted urgently. Since mathematical modeling is an efficient tool utilized to predict
the dynamics of many infectious diseases in the literature, researchers began immediately to develop a mathematical model of the coronavirus.
The developed model of the dynamics of disease spread have been based on various models (SIR, SEIR, etc.) [1–3].

On top of that, the researchers also suggested methods such as virus immunity, quarantine, smart health care, and vaccination to prevent the
spread of the virus [5–8]. One of these methods is optimal control theory. Optimal control is the procedure of determining a control function
which optimizes an objective functional that provides specific dynamic constraints [9]. In recent years, investigations have shown that optimal
control is an effective way to control diseases such as tuberculosis, malaria, and ebola [10–12]. Couras et al. [13] have lately proposed an
optimal control problem, whose dynamic is modeled with SEIR, to prevent the spread of the coronavirus. As a result, they have shown that
optimal control functions representing vaccination and plasma transfusion can be effective in preventing the spread of the virus.

As is known, some variants of coronavirus were emerged which are more contagious than each other in the process of disease. To cope with
these variants, some preventive measures such as increasing social distance and spending less time indoors have been taken. Until a vaccine or
a treatment are found, one of the effective method to control the disease is the measures taken personally or socially. Therefore, the purpose of
this work is to mathematically examine the impact of the measures on the spread of the coronavirus. To achieve the purpose, we adapt a third
control term, which means wearing masks, social distance, and hygiene, to the optimal control strategy discussed by Couras et al. [13]. Thus,
we aim to ensure that the rate of infected individuals is at the minimum while the preventing coronavirus cost is minimum.

1.1 The model formulation for the Spread of the COVID-19

The dynamic system proposed by Couras et al. is as follows:



dS(t)
dt = −βS (t) I (t)− u1 (t)S (t),

dE(t)
dt = βS (t) I (t)− γE (t),

dI(t)
dt = γE (t)− u2 (t)R (t) I (t)− µI (t),
dR(t)
dt = µI (t) + u2 (t)R (t) I (t) + u1 (t)S (t),

. (1)

in which, β is the rate of exposed individuals, γ is the rate of infected individuals, and µ is the rate of natural recovery of infected individuals.
Control function u1 (t) vaccinates susceptible individuals, and the control function u2 (t) recovers infected individuals by plasma transfusion.
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2 A strategy to prevent the spread of the COVID-19

We improve System (1) by adapting a third control term as follows:



dS(t)
dt = −(1− u3 (t))βS (t) I (t)− u1 (t)S (t),

dE(t)
dt = (1− u3 (t))βS (t) I (t)− γE (t),

dI(t)
dt = γE (t)− u2 (t)R (t) I (t)− µI (t),
dR(t)
dt = µI (t) + u2 (t)R (t) I (t) + u1 (t)S (t) ,

(2)

where u3 (t) is the control term that represents precaution (mask, social distance, and hygiene). Let the control strategy be applied to System
(1) during the time [0, T ], and the set of admissible control functions u1 (t) vaccination, u2 (t) plasma transfusion and u3 (t) precaution is
given as:

Uad = {(u1, u2, u3) | 0 ≤ u1 ≤ 0.5, 0 ≤ u2, u3 ≤ 0.3, 0 ≤ t ≤ T} . (3)

Adapting the control term u3 (t), it is aimed to minimize both the rate of infected individuals and the cost of the precautions required. We
suggest an optimal control strategy by balancing these two factors.

3 Optimal control problem

In this section, we will introduce the optimal control problem. The aim of maximizing the following objective functional

J
(
u1,u2, u3

)
max

=

T∫
0

(
−S (t)− E (t)− I (t)− u21 (t)− u22 (t)− u23 (t)

)
dt (4)

is to find the control functions that will minimize the rate of susceptible, exposed, and infected individuals and the cost of vaccination, plasma
transfusion, and precaution, respectively.

In order to obtain the optimal solution, we first find Lagrangian and Hamiltonian for optimal control problem (2) and (4). The Lagrangian
function of the problem is

L (S,E, I, u1, u2, u3) = −S (t)− E (t)− I (t)− u21 (t)− u22 (t)− u23 (t) (5)

To solve the problem, we need to find the minimum value of Lagrangian. For this purpose, Hamiltonian formulation H∗ at
(t, S, E, I, R, u1, u2, u3, λ1, λ2, λ3, λ4) is defined as:

H = L (S,E, I, u1, u2, u3) + λ1 (t) Ṡ (t) + λ2 (t) Ė (t) + λ3 (t) İ (t) + λ4 (t) Ṙ (t) ,

H = −S (t)− E (t)− I (t)− u21 (t)− u22 (t)− u23 (t)
+λ1 (t) (− (1− u3 (t))βS (t) I (t)− u1 (t)S (t))
+λ2 (t) ((1− u3 (t))βS (t) I (t)− γE (t))
+λ3 (t) (γE (t)− u2 (t)R (t) I (t)− µI (t))
+λ4 (t) (µI (t) + u2 (t)R (t) I (t) + u1 (t)S (t)) .

(6)

Now, the Pontryagin Maximum Principle is used to obtain the necessary optimality conditions.

3.1 Optimality systems

Theorem 1. Let u∗i ∈ Uad, (i = 1, 2, 3) be the optimal controls that maximize the objective functional (4) and (S∗, E∗, I∗, R∗) is the optimal
state solution for System (2). Hence, there are costate variables (λ1, λ2, λ3, λ4) that ensure

λ̇1 (t) = 1 + λ1 (t) ((1− u3 (t))βI (t) + u1 (t)) − λ2 (t) (1− u3 (t))βI (t)− λ4 (t)u1 (t) ,
λ̇2 (t) = 1 + λ2 (t) γ − λ3 (t) γ,
λ̇3 (t) = 1 + λ1 (t) (1− u3 (t))βS (t)− λ2 (t) (1− u3 (t))βS (t) + λ3 (t) (u2 (t)R (t) + µ)

− λ4 (t) (u2 (t)R (t) + µ) ,

λ̇4 (t) = λ3 (t)u2 (t) I (t)− λ4 (t)u2 (t) I (t) ,

with transversality conditions λi (T ) = 0 (i = 1, 2, 3, 4). Besides, the optimal controls u∗i (i = 1, 2, 3) are revealed by means
u1 (t) = max

{
min

{
(−λ1(t)+λ4(t))S(t)

2 , 0.5
}
, 0
}
,

u2 (t) = max
{
min

{
(−λ3(t)+λ4(t))I(t)R(t)

2 , 0.3
}
, 0
}
,

u3 (t) = max
{
min

{
(λ1(t)−λ2(t))βS(t)I(t)

2 , 0.5
}
, 0
}
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Proof: For the existence of optimal control, the Lipschitz condition is satisfied for the state variables S, E, I, and R of System (2). Thus, the
existence of control (u1, u2, u3) is deduced [14, 15]. Then, so as to solve the optimal control problem, the optimality system needs first to be
put forth. For this, by means of Hamiltonian formula given by equation (6), the necessary optimality conditions (the Euler-Lagrange equations)
are 

ẋ (t) = ∂H
∂λ (t, x (t) , u (t) , λ (t)) (state system),

λ̇ (t) = −∂H∂x (t, x (t) , u (t) , λ (t)) (costate system),
∂H
∂u (t, x (t) , u (t) , λ (t)) = 0 (control system).

We obtain the costate and control system by applying the necessary optimality conditions to Hamiltonian formulation as follows:

λ̇1 (t) = 1 + λ1 (t) ((1− u∗3 (t))βI∗ (t) + u∗1 (t)) − λ2 (t) (1− u∗3 (t))βI∗ (t)
− λ4 (t)u∗1 (t) ,

λ̇2 (t) = 1 + λ2 (t) γ − λ3 (t) γ,
λ̇3 (t) = 1 + λ1 (t) (1− u∗3 (t))βS∗ (t)− λ2 (t) (1− u∗3 (t))βS∗ (t)

+ λ3 (t) (u2 (t)R
∗ (t) + µ)− λ4 (t) (u∗2 (t)R∗ (t) + µ) ,

λ̇4 (t) = λ3 (t)u
∗
2 (t) I

∗ (t)− λ4 (t)u∗2 (t) I∗ (t) ,

with transversality conditions λi (T ) = 0 (i = 1, 2, 3, 4),
∂H
∂u1
|
u1=u∗

1(t)
= −2u∗1 (t) + (−λ1 (t) + λ4 (t))S

∗ (t) = 0,
∂H
∂u2
|
u2=u∗

2(t)
= −2u∗2 (t) + (−λ3 (t) + λ4 (t)) I

∗ (t)R∗ (t) = 0,

∂H
∂u3
|
u3=u∗

3(t)
= −2u∗3 (t) + (−λ1 (t)− λ2 (t))βS∗ (t) I∗ (t) = 0,

Using the Pontryagin maximum principle, considering the upper and lower boundaries supplied in the control set, it acquires the optimal control
values 

u∗1 (t) = max
{
min

{
(−λ1(t)+λ4(t))S

∗(t)
2 , 0.5

}
, 0
}
,

u∗2 (t) = max
{
min

{
(−λ3(t)+λ4(t))I

∗(t)R∗(t)
2 , 0.3

}
, 0
}
,

u∗3 (t) = max
{
min

{
(λ1(t)−λ2(t))βS

∗(t)I∗(t)
2 , 0.3

}
, 0
}
.

�

4 Numerical Result

This section will present the non-linear state, costate, and control systems. For this, we solved the optimality system using the fourth-order
Runge-Kutta numerical scheme combined with the forward-backward method. While the state system is solved forward, the costate system is
solved backward. The control system is updated in a loop.

Using the parameter values β = 0.3, γ = 0.1887, µ = 0.1, given by Couras et al. [13], initial conditions S (0) = 0.88, E (0) = 0.07,
I (0) = 0.05, and R (0) = 0, and transversality conditions λi (T ) = 0 (i = 1, 2, 3, 4) with final time value chosen as time T = 20, numerical
simulations are obtained with the help of MATLAB.
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Fig. 1: The effect of precaution and vaccination of susceptible individuals and also implementing plasma transfusions to infected individuals
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Fig. 2: Comparison of triple and double control strategies
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Fig. 3: The situation of vaccination, plasma transfusion, and prevention controls according to strategies

Figure 1 reveals that the applied strategy reduces the rate of susceptible, exposed, and infected individuals and increases the rate of individuals
becoming immune as compared with and without control cases. Figure 2 illustrates the comparative of control strategies, and the triple control
strategy appears to yield more effective results for individuals in the population. In other words, the rate of infected and exposed individuals
is lower. Vaccination was applied at a higher rate and for a longer period of time in order to make society immune to the disease. As a result,
susceptible individuals have become immune to the disease without losing their health. Figure 3 contrasts the control functions of the two
strategies. As the rate of individuals infected with the precaution decreases, the plasma transfusion used in their treatment implement earlier
and at a lower rate. Besides, in the triple control strategy, vaccination continued for a longer period of time than in the two control strategy.
Although this seems like a disadvantage in terms of cost and effort, with the help of balancing, individuals have developed immunity without
losing their health.

5 Conclusion

By the strategy we have proposed, the rate of exposed and infected individuals diminishes which indicates the significance of precautions
in preventing the spread of the virus. As a result, plasma transfusion therapy is performed earlier and at a lower rate during the pandemic.
Furthermore, since the rate of infected individuals is less, vaccination for community immunity continues for a long period of time. In addition,
the rate of susceptible individuals is less and the rate of individuals recovery is high. It is better for public health for individuals to acquire
immunity through vaccination rather than by being infected. In conclusion, numerical simulations indicate that the triple control strategy can
be an even more robust method of controlling the pandemic.
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Abstract: Cat1-groups are introduced as an algebraic model for homotopy 2-types and it is proved that there is a categorical equiv-
alence between cat1-groups and crossed modules over groups which are also called as 2-dimensional groups. Crossed modules,
and hence cat1-groups, play a crucial role in many areas of mathematics. After the introducing of cat1-groups, cat1-objects are
investigated in other algebraic categories such as rings, Lie, Leibniz and commutative algebras etc. In this study we describe 2-
dimensional version of cat1-groups namely cat1-group-groupoids and obtain fruitful properties about this kind of algebraic objects.
Moreover, an equivalence is noted between the category of cat1-group-groupoids and that of double group-groupoids.

Keywords: Cat1-object, double group-groupoid, group-groupoid.

1 Introduction

In this section we recall the definitions and properties of cat1–groups, of group-groupoids and of double group-groupoids.

1.1 Cat1–groups

Definition 1. A cat1–group (or 1-cat-group) consists of a group G and two endomorphisms s, t : G→ G such that

1. st = t, ts = s and
2. [ker s, ker t] = 0.

See [2] and [4] for further studies on cat1–groups.

Remark 1. One can see that for a cat1–group ss = s, tt = t and Im s = Im t. Therefore we will denote the image of G under s (or under t)
by RG. A cat1–group will be denoted by (G,RG, s, t) or briefly by (G, s, t) when no confusion arise.

Example 1. Any group G can be regarded as a cat1–group where s = 1G = t. Here RG = G.

Example 2. Let A be an abelian group. Then with the direct product A×A of A with itself (A×A, s, t) becomes a cat1–group where s and
t are given by s(a, a1) = (a, a) and t(a, a1) = (a1, a1) for any a, a1 ∈ A. Here note that RA×A = A×A and ker s = {0} ×A ∼= A ∼=
A× {0} = ker t.

Example 3. Let (A,B, α) becomes a crossed module. Then the semi-direct product AoB has a structure of a cat1–group where s(a, b) =
(0, b) and t(a, b) = (0, α(a) + b) for any (a, b) ∈ AoB.

Example 4. Let X be a topological group and π(X) be the set of all homotopy classes of paths in X . It is a well known fact that π(X) has a
group structure induced from that ofX . π(X) also has a cat1–group structure with s([α]) = [1α(0)] and t([α]) = [1α(1)] for any [α] ∈ π(X).

Let (G, s, t) and (G′, s′, t′) be two cat1–groups. Then a group homomorphism f : G→ G′ is called a morphism of cat1–groups if fs = s′f
and ft = t′f .

G

f
��

s //
t

// G

f

��
G′

s′ //
t′
// G′
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The category of all cat1–groups with morphisms defined above is denoted by Cat1 − Gr.

1.2 Group-groupoids

Now we recall the definition of an internal category within a category with pullbacks as given by Datuashvili [3].

Definition 2. Let C be a category with pullbacks. An internal category D within C is a sextuple (D0, D1, d0, d1, ε,m) where D0, D1 are
objects in C, and d0, d1 : D1 → D0, ε : D1 → D0 and m : D1d1×d0D1 → D1 are morphisms in C such that

1. d0ε = d1ε = 1G0
,

2. d0m = d0π2, d1m = d1π1,
3. m(m× 1D1

) = m(1D1
×m),

4. m(εd0, 1D1
) = m(1D1

, εd1) = 1D1
.

Morphisms between internal categories within a category C are actually functors whose components are morphisms in the category C. These
morphisms are called by internal functors. For a given category C, all internal categories within C and all internal functors form a category and
this category is denoted by Cat(C). A category or an internal category C = (C0, C1, d0, d1, ε,m) will be denoted briefly by C = (C0, C1).

An internal category within the category Gr of groups becomes a groupoid, i.e. a category whose morphisms are isomorphisms. Hence an
internal category within the category Gr of groups is called a group-groupoid. Let G = (G0, G1) be a group-groupoid. Then the class of objects
G0 and the class of morphisms G1 are groups, and d0, d1, ε,m are group homomorphisms such that the conditions given in Definition 2 are
satisfied. Here note that, m being a group homomorphism is equivalent to the following equation:

(b ◦ a) + (d ◦ c) = (b+ d) ◦ (a+ c)

for any a, b, c, d ∈ G1 whenever both sides are meaningful.
Group-groupoid morphisms are actually functors whose components are group-homomorphisms. The category of all group-groupoids and

morphisms between them is denoted by Cat(Gr) or briefly by GpGd.
We sketch the proof of following theorem due to Loday [5] since we need some details later.

Theorem 1 ([5]). The category Cat1 − Gr of cat1–groups and the category GpGd of group-groupoids are naturally equivalent.

Proof: Let (G,RG, s, t) be a cat1–group. Then the corresponding group-groupoid to (G,RG, s, t) is (RG, G, d0, d1, ε,m) where d0 = s,
d1 = t, ε = e the embedding of RG into G, and m(g, g1) = g − t(g) + g1 for any g, g1 such that t(g) = s(g1).

Conversely, let G = (G0, G1) be a group-groupoid. Then the corresponding cat1–group to G is (G1, G0, s, t) where s = εd0 and t =
εd1. �

Definition 3. Let G = (G0, G1) be a group-groupoid and let H = (H0, H1) be a subgroupoid of G. Then we say that H is a subgroup-groupoid
of G if H1 is a subgroup of G1 and that H is a normal subgroup-groupoid (or an ideal) of G if H1 is a normal subgroup of G1.

If H is a subgroup-groupoid (an ideal) of G then we denote this by H ≤ G (HC G).

Example 5. Let G and H be two group-groupoids and f = (f0, f1) : G→ H be a group-groupoid morphism. Then ker f = (ker f0, ker f1)
is an ideal of G and Im f = (Im f0, Im f1) is a subgroup-groupoid of H.

Example 6. A groupoid containing only one object and only one morphism can be regarded as a group-groupoid. This group-groupoid is
denoted by 1 = ({∗}, {1∗}) where ∗ is the single object and 1∗ is the identity morphism on ∗. Moreover, for any group-groupoid G the
subgroupoid 0 =

(
{0G0

},
{
0G1

= 1(0G0)

})
is an ideal of G.

Definition 4. Let G be a group-groupoid and let H,KC G. Then the group-groupoid ([H0,K0], [H1,K1]) is called the commutator subgroup-
groupoid of G generated by H and K. This commutator subgroup-groupoid is in fact an ideal of G and denoted by [H,K]. In particular, [G,G]
is called the derived subgroup of G and denoted by [G,G] = G′ for the sake of brevity.

In [1] Brown and Spencer proved that there is a categorical equivalence between crossed modules over groups and group-groupoids. Hence
the category of cat1–groups and the category of crossed modules are naturally equivalent.

1.3 Double group-groupoids

Definition 5. An internal category G in the category GpGd of group-groupoids is called a double group-groupoid. Therefore, a double group-
groupoid G = (P,H, V, S) consist of four compatible group-groupoids (H,S), (V, S), (P, V ) and (P,H).
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G:

S

dh0 //

dh1

//

dv1

��

dv0

��

Hεhoo

dH1

��

dH0

��
V

εv

OO

dV0 //

dV1

// PεVoo

εH

OO

Let G and G′ be two double group-groupoids. A morphism form G to G′ is a double groupoid morphismF = (fp, fh, fv, fs) : G → G′ such
that fs : S → S′, fh : H → H ′, fv : V → V ′ and fp : P → P ′ are group homomorphisms. Such a morphism of double group-groupoids may
be denoted by a diagram as follows:

H

����

{{

fh // H ′

zz

����

S
fs //

;;
;;

����

S′

::
::

����

P
fp

//

{{

OO

P ′

OO

zz
V

OO

;;
;;

fv

// V ′

OO

::
::

All double group-groupoids and morphisms between them given above form a category which is denoted by DbGpGd. Temel et al. [6]
defined the notion of crossed module over group-groupoids and proved that the category of double group-groupoids and the category of crossed
modules over groups are naturally equivalent.

2 Cat1-objects in the category of group-groupoids

Definition 6. A cat1–group–groupoid (or 1–cat–group–groupoid) (G, s, t) consists of a group-groupoid G and two endomorphisms

s = (s0, s1), t = (t0, t1) : G→ G

of G such that

1. st = t, ts = s and
2. [ker s, ker t] = 0.

Remark 2. Here note from the condition 1 of the Definition 6 that siti = ti, tisi = si for i ∈ {0, 1} and from the condition 2 of the Definition
6 that

[(ker s0, ker s1), (ker t0, ker t1)] = ([ker s0, ker t0], [ker s1, ker t1]) = ({0G0
}, {0G1

}) ,

that is, [ker s0, ker t0] = {0G0
} and [ker s1, ker t1] = {0G1

}.

We can give the following corollary as a consequence of Remark 2.

Corollary 1. Let (G, s, t) be a cat1–group–groupoid. Then (G0, s0, t0) and (G1, s1, t1) have structures of cat1–groups.

Lemma 1. If (G, s, t) is a cat1–group–groupoid then

1. d0s1 = s0d0, d0t1 = t0d0,
2. d1s1 = s0d1, d1t1 = t0d1,
3. εs0 = s1ε, εt0 = t1ε,
4. m(s1 × s1) = s1m, m(t1 × t1) = t1m,

that is, the groupoid structural maps d0, d1, ε and m have structures of cat1–group morphisms.

Proof: This is a direct result of s = (s0, s1) and t = (t0, t1) being group-groupoid morphisms. �

The result given in Lemma 1 tells us that a cat1–group–groupoid can actually be considered as an internal category in the category of
cat1–groups.

Morphisms between cat1–group–groupoids are group-groupoid morphisms which are compatible with the group-groupoid morphisms s =
(s0, t0) and t = (t0, t1). Explicitly; let (G, s, t) and (G′, s′, t′) be two cat1–group–groupoids and let f = (f0, f1) : G→ G′ be a group-
groupoid morphism. Then we say that f is a morphism of cat1–group–groupoids if fs = s′f and ft = t′f .
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G

f=(f0,f1)
��

s=(s0,s1)
//

t=(t0,t1)

// G

f=(f0,f1)

��
G′
s′=(s′0,s

′
1)//

t′=(t′0,t
′
1)

// G′

It is clear that all cat1–group–groupoids and morphisms between them as defined above have a structure of a category. This category is
denoted by Cat1 − GpGd.

3 Equivalence of categories

In this section, first of all, we prove the category of cat1–group–groupoids and the category of double group-groupoids are naturally equivalent.
Using this equivalence we will be able to transfer special objects, special morphisms, examples and results from one to another. Further, we
prove another categorical equivalence between cat1–group–groupoids and cat2–groups.

Theorem 2. There is a categorical equivalence between cat1–group–groupoids and double group-groupoids.

Proof: Let (G, RG, s, t) be a cat1–group–groupoid. Here we already know that G = (G0, G1) and RG = (RG0
, RG1

) are group-groupoids
since RG = Im s (and hence RG = Im t). It can easily be seen from Corollary 1 and Theorem 1 that (RG1

, G1) and (RG0
, G0) are also

group-groupoids. Other details can be shown by direct calculations. Then (G1, G0, RG1
, RG0

) which is diagrammatically shown below is a
double group-groupoid.

G1

s1 //

t1

//

d1

��

d0

��

RG1
e1oo

d1

��

d0

��
G0

ε

OO

s0 //

t0

// RG1
e0oo

ε

OO

Conversely, let G = (P,H, V, S) be a double group-groupoid.

G:

S

dh0 //

dh1

//

dv1

��

dv0

��

Hεhoo

dH1

��

dH0

��
V

εv

OO

dV0 //

dV1

// PεVoo

εH

OO

Then ((V, S), s, t) becomes a cat1–group-groupoid where s1 = εhdh0 , t1 = εhdh1 , s0 = εV dV0 and t0 = εV dV1 . Checking of the conditions
of the Definition 6 is easy. So we omit the proof. �

As a consequence of Theorem 2 and the equivalence obtained by Temel et al. [6] we can give the following corollary.

Corollary 2. The category of cat1–group-groupoids and the category of crossed modules over group-groupoids are naturally equivalent.

Now we recall another algebraic object which will be shown that these kind of objects are categorically equivalent to cat1–group-groupoids.

Definition 7. Let G be a group and let s0, s1, t0 and t1 be four group endomorphisms of G, i.e. s0, s1, t0, t1 : G→ G are group
homomorphisms. The (G, s0, s1, t0, t1) is called a cat2–group (2–cat–group) if

1. siti = ti and tisi = si for i ∈ {0, 1},
2. sisj = sjsi, titj = tjti and sitj = tjsi for i 6= j and
3. [ker si, ker ti] = 0 for i ∈ {0, 1}.

In other words a cat2–group consist of two independent cat1–group structures (G, s0, t0) and (G, s1, t1). Let (G, s0, s1, t0, t1) and
(G′, s′0, s

′
1, t
′
0, t
′
1) be two cat2–groups and let f : G→ G′ be a group homomorphism such that fsi = s′if and fti = t′if for i ∈ {0, 1}.

Then we say that f is a morphism of cat2–groups.
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G

f

��

G

f
��

s1 //
t1

//
t0

oo
s0oo G

f

��
G′ G′

s′1 //
t′1

//
t′0

oo
s′0oo G′

The category of all cat2–groups with morphisms reminded above is denoted by Cat2 − Gr.

Theorem 3. The category Cat2 − Gr of cat2–groups is naturally equivalent to the category Cat1 − GpGd of cat1–group–groupoids.

Proof: Let (G, s0, s1, t0, t1) be a cat2–group. Then we know from Theorem 1 that G = (Im s0, G, s0, t0, e0,m0) is a group-groupoid. Thus
it can be seen that (G, s = (s1, s1), t = (t1, t1)) becomes a cat1–group–groupoid.

Conversely, let (G, s, t) be a cat1–group–groupoid. In this case, (G, s0, s1, t0, t1) becomes a cat2–group where s0 = εd0 and t0 = εd1.
Other details are straightforward. �

4 Conclusion

It is a well known fact that catn–groups are algebraic models for (connected) homotopy (n+1)–types. In particular cat1–groups are alge-
braic models for (connected) homotopy 2–types while cat2–groups are algebraic models for (connected) homotopy 3–types. In this study we
introduce a new algebraic concept namely cat1–group–groupoid which defined as cat1-object in the category of group-groupoids. Then we
proved two categorical equivalences: One of them is between the category Cat1 − GpGd of cat1–group–groupoids and the category DbGpGd
(Theorem 2). The other one is between the category Cat1 − GpGd of cat1–group–groupoids and the category Cat2 − Gr of cat2–groups
(Theorem 3. From the categorical equivalence given in Theorem 3 now it is possible to say that cat1–group–groupoids are also models
(connected) homotopy 3–types.
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* Corresponding Author E-mail: dkaradeniz@balikesir.edu.tr

Abstract: This study analyzes the optimal control of a fractional SEIR model representing the spread of computer viruses in an
internet network under the influence of singular and non-singular fractional operators. The basic model is considered in terms of
the Caputo fractional derivative. However, the model is also discussed with the Caputo-Fabrizio and Atangana-Baleanu derivatives
for comparison purposes. The main aim is to save the network from the devastating effect of the computer virus at a minimum cost.
Therefore, anti-virus software is considered as a control variable and adapted to the model. Optimality conditions are calculated
by the Hamiltonian formalism. Subsequently, the Adams-type predictor-corrector and the forward-backward sweep algorithms are
combined and applied to the system to obtain the numerical solution of the optimal system. Consequently, numerical simulations
are held by the MATLAB software, and hence the effectiveness of the anti-virus program according to different fractional operators
is revealed.

Keywords: Anti-virus software, Computer virus propagation, Optimal control, Caputo, Caputo-Fabrizio, Atangana-Baleanu,
Adams-type predictor-corrector method.

1 Introduction

A computer virus is a man-made destructive computer program or code that is installed on a computer system without the user’s knowledge
and causes undesirable changes to the information stored on the computer, without the person’s authorization [1]. Computer viruses have been
named viruses because they reflect some characteristics of biological viruses. In other words, a computer virus is transmitted from computer
to computer in the same way that a biological virus is transmitted from person to person. Thus, the spread of a biological virus in a living
population is similar to the spread of a computer virus in a computer population [2].

Recently, rapid innovations in science, technology, and commerce have increased the use of computers, the internet, and various software.
The rapidly increasing developments in computer technology have become an indispensable part of real life. But on the other hand, these
developments have unfortunately led to an increase in the threat of malicious software such as computer viruses [3, 4]. Therefore, computer
and software engineers and applied mathematicians are increasingly interested in developing measures to prevent this threat, which could cause
a global crisis.

Mathematical models have been used as a tool to understand the transmission dynamics of epidemics and to predict their course [5, 6]. As
with biological viruses, there is a fundamental need to develop mathematical models to clarify the behavior of computer viruses and control their
spread. Because mathematical models allow to make predictions about their spread in a short time. Thus, many economic losses that computer
viruses may cause at the global level can be prevented easily. Because of the close similarity between the dynamics of epidemiological diseases
and the behavior of computer viruses, the spreading models of computer viruses are developed using the theory of mathematical epidemiology
[7]-[9]. The basic ones of these models are: SIS [10], SIR [11, 12], SIRS [13, 14], SEIR [15], SEIS [16], SIC [17], VEISV [18] and SLBS [19].

Integer-order differential equation systems have been frequently used in modeling epidemics. However, the inherited and memory structure
of viral diseases makes modeling them with integer-order derivatives insufficient. Fractional derivatives can overcome this shortcoming quite
successfully, thanks to their non-local definition. These are basically classified as singular such as Riemann-Liouville (RL) and Caputo [20],
[21] and non-singular fractional derivatives such as Caputo-Fabrizio [22] (CF) and Atangana-Baleanu (AB) [23], depending on their kernel
functions. Deciding which derivative is more effective in modeling is related to which law the modeled phenomenon acts in accordance with
[24]. While it is realistic to model the behavior of a power law-abiding phenomenon with RL or Caputo derivatives, modeling of exponential
law-abiding processes with CF and AB derivatives is more useful.

The heterogeneity in the structure of a computer network (i.e. the complexity of the connections in the network) determines the behavior
of virus propagation in the network. Since computer networks are multi-connected in today’s information technology, computer viruses also
behave like this and spread super fast instead of showing normal propagation. Therefore, it naturally leads to model their propagation with
singular (low heterogeneity) or regular (high heterogeneity) fractional derivatives, depending on the structure of the network. Despite its
importance, there are still limited studies on solutions of fractional order systems, stability analyzes, and control strategies for the propagation
of computer viruses [25]-[30].

The first step of the present study has been determining possible optimal control strategies for the model under consideration and the stability
analysis for the controlled system. This part has been studied recently [31]. In the current work, the optimal control problem of computer
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virus propagation is comparatively investigated according to the effect of singular and regular fractional derivatives. To obtain the numerical
solutions of optimal system, we apply Adams-type predictor-corrector method with forward-backward sweep algorithm. In this hybrid method,
it is important that the numerical integration coefficients vary according to the type of fractional derivative. This is taken into account when
creating the algorithm.

The work can be summarized as follows: In Section 2, we give the definitions and basic properties of the fractional operators: Caputo, CF
and ABC. In Section 3, we adapt the anti-virus control strategy to the system. In Section 4, we pose the optimal control problem and obtain
the optimal system. In Section 5, the numerical algorithm used to obtain the solution of the optimal system is given in detail. Also, there are
numerical simulations and discussions. In conclusion, the contribution of the study is presented in Section 6.

2 Preliminaries

The prescribed model is actually described with Caputo fractional derivative [26]. However, the main purpose of the study is to compare the
behaviors of the model for the Caputo, Caputo-Fabrizio and Atangana-Baleanu fractional derivatives. For this purpose, necessary definitions
and some properties of these operators is given briefly as follows:

Definition 1. [20] Assume that f (·) belongs to AC[a, b]. Hence, the Caputo fractional derivatives (CFDs) are, respectively,

C
a D

α
t f (t) = aI

n−α
t Df (t) =

1

Γ (n− α)

∫ t
a

(t− ξ)n−α−1 f (n) (ξ) dτ, (1)

C
t D

α
b f (t) = tI

n−α
b (−D) f (t) =

(−1)n

Γ (n− α)

∫b
t

(ξ − t)n−α−1 f (n) (ξ) dτ, (2)

where α ∈ (n− 1, n] and Γ (α) is the Euler’s gamma function.

Definition 2. [22] Assume that f ∈ H1 (a, b), b > a and α ∈ [0, 1]. Then, the α-order left and right CF fractional derivatives of the f ,
respectively, are described as

CF
aD

α
t f (t) =

M (α)

α− 1

∫ t
a

df (τ)

dτ
exp

[
− α

1− α (t− τ)

]
dτ, (3)

CF
tD

α
b f (t) = −M (α)

α− 1

∫b
t

df (τ)

dτ
exp

[
− α

1− α (τ − t)
]
dτ, (4)

where M (α) is the normalization function such that M (0) = M (1) = 1.

Definition 3. [23] Assume that f ∈ H1 (a, b), b > a and α ∈ [0, 1]. Then, the α-order left and right ABC fractional derivatives of the f ,
respectively, are described as

ABC
aD

α
t f (t) =

B (α)

1− α

∫ t
a

df (τ)

dτ
Eα

[
− α

1− α (t− τ)α
]
dτ, (5)

ABC
tD

α
b f (t) =

−B (α)

1− α

∫b
t

df (τ)

dτ
Eα

[
− α

1− α (τ − t)α
]
dτ, (6)

where Eα is the Mittag-Leffler function and B (α) is the normalization function such that B (0) = B (1) = 1.

Lemma 1. [32] For α ∈ (0, 1], the following property for CFDs is satisfied:

C
t D

α
tf f (t) = C

t0D
α
t f
(
tf − t

)
, t ∈ [t0, tf ]. (7)

3 Description of Virus Propagation Model with Optimal Control Strategy

In a network of computers, there are two possibilities: If the computer is connected to the internet, this connection is called internal, otherwise,
it is called external. To model virus propagation among the internal computers, this population is considered in four compartments:

S(t) : denotes the susceptible computers on the network that are uninfected and newly connected to the network,
E(t) : represents the exposed computers that are newly infected or threatened by viruses,
I(t) : indicates the infected computers, that is, those hosting the virus,
R(t) : is the recovered computers that are virus-free and immune to viruses.

The discussed model was first proposed with the integer-order derivative by Peng et al. [33]. Subsequently, Bonyah et al. [26] generalized
this model by considering the capability of the Caputo fractional derivative for a power-law network:
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C
0 D

α
t S(t) = Λ− β1S(t)I (t)− β2S(t)E (t)− pS(t)− µS(t),

C
0 D

α
t E(t) = β1S(t)I (t) + β2S(t)E (t)− kE(t)− σE(t)− µE(t),

C
0 D

α
t I(t) = σE(t)− dI (t)− µI (t) ,

C
0 D

α
t R(t) = pS(t) + kE(t) + dI (t) ,

(8)

where C
0 D

α
t denotes the Caputo fractional derivative, α ∈ (0, 1], N = S + E + I +R, (S,E, I,R) ∈ R4

+, and Λ = (1− p)N . The
parameters of the system are as follows:

Λ: the rate of connection of susceptible computers to the internet network, that is, the rate of recruitment,
p : the treatment rate of susceptible computers with the natural anti-virus ability of network,
β1: the incidence rate of infected and susceptible computers,
β2: the incidence rate of susceptible and exposed computers,
µ : the breaking-out rate of the computers due to mechanical reasons,
k : the treatment rate of exposed computers with the natural anti-virus ability of the network,
σ : the rate of exposed computers that may not be recovered by an anti-virus program and become corrupted,
d : the natural treatment rate of infected compartment.

Computers can become unusable due to viruses, and they can also be out of use for mechanical reasons. Therefore, different from the studies
[26] and [33], we consider the mechanical death rate µ and then adapt the term µR(t) to the system (8). In addition, unlike these studies, we
also consider the R compartment while controlling the system optimally.

Our main motivation is to examine the optimal control for the model (8) by using an anti-virus software as the control function. Installing an
anti-virus program on the network is inevitable, as a network’s inherent anti-virus capability is often not sufficient. The virus protection program
can be installed on computers in the network for different purposes. For this, we will give some scenario comparisons with simulations.

In our controlled model, we suppose that we have installed the anti-virus on susceptible and infected computers and others that interact with
them. Let u(t) denotes the cost of installing an anti-virus program. The Lebesque measurable set of admissible control functions is defined as

Uad =
{
u(t) ∈ L2 [0, tf ] : u (t) ∈ [0, 1] , ∀t ∈

[
0, tf

]}
.

Now, we rearrange the model (8) under unit consistency as follows:



C
0 D

α
t S(t) = Λα − (1− u(t))βα1 S(t)I (t)− (1− u(t))βα2 S(t)E (t)− (p+ µα)S(t),

C
0 D

α
t E(t) = (1− u(t))βα1 S(t)I (t) + (1− u(t))βα2 S(t)E (t)− (kα + σα + µα)E(t)− u(t)E(t),

C
0 D

α
t I(t) = σαE(t)− (dα + µα) I (t)− u(t)I (t) ,

C
0 D

α
t R(t) = pS(t) + kαE(t) + dαI(t)− µαR(t) + u(t)E(t) + u(t)I (t)

(9)

with the initial value (S(0), E(0), I(0), R(0)) . Here, we motivate from the control strategy considered in [34].

4 Determination of Necessary Optimality Conditions

Main aim is to
(1) reduce both of the infected (I) and exposed (E) computers,
(2) minimize the cost of installing the anti-virus program.

For this purpose, the objective functional is defined as follows:

J (u) =

tf∫
0

[
E (t) + I (t) +

1

2
εu2 (t)

]
dt, (10)
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subjected to the system (9). In which, ε is a weight coefficient. We should determine the optimality conditions. Let us consider the Hamiltonian
functionH as

H(t, S, E, I, R, λi, u) = E (t) + I (t) +
1

2
εu2 (t)

+λ1(t)C0 D
α
t S(t) + λ2(t) C0 D

α
t E(t) + λ3(t) C0 D

α
t I(t) + λ4(t) C0 D

α
t R(t)

= E (t) + I (t) +
1

2
εu2 (t)

+λ1
{

Λα − (1− u(t))
[
βα1 S(t)I (t) + βα2 S(t)E (t)

]
(11)

−λ1
(
p+ µα

)
S(t)

}
+λ2

{
(1− u(t))

[
βα1 S(t)I (t) + βα2 S(t)E (t)

]
−λ2

(
kα + σα + µα + u(t)

)
E(t)

}
+λ3

{
σαE(t)−

(
dα + µα

)
I (t)− u(t)I (t)

}
+λ4

[
pS(t) +

(
kα + u(t)

)
E(t) +

(
dα + u(t)

)
I(t)− µαR(t)

]
with the transversality conditions λi(tf ) = 0, (i = 1, 2, 3, 4) .

The optimality conditions for the system (9) obtained using the Pontryagin Maximum principle are given by

Theorem 1. Assume that (S∗, E∗, I∗, R∗) be optimal solutions of the system (9) , and u∗ be optimal control minimizing J (u). Hence, there
exist co-states functions (λ1, λ2, λ3, λ4) satisfying

C
t D

α
tfλ1(t) = −λ1 (t) ((1− u (t))βα1 I (t) + (1− u (t))βα2 E (t) + p+ µα)

+λ2 (t) ((1− u (t))βα1 I (t) + (1− u (t))βα2 E (t)) + λ4 (t) p,

C
t D

α
tfλ2(t) = −λ1 (t) (1− u (t))βα2 S (t) + λ2 (t) ((1− u (t))βα2 S (t)− kα − σα − µα − u (t))

+λ3 (t)σα + λ4 (t) (kα + u (t)) + 1,

C
t D

α
tfλ3(t) = −λ1 (t) (1− u (t))βα1 S (t) + λ2 (t) (1− u (t))βα1 S (t)

−λ3 (t) (dα + µα + u (t)) + λ4 (t) (dα + u (t)) + 1,

C
t D

α
tfλ4(t) = −λ4 (t)µα

(12)

with the transversality conditions
λi(tf ) = 0, i = 1, 2, 3, 4, 5. (13)

Additionally, the optimal control function u∗ is obtained as follows:

u∗ (t) = max

{
min

{
(λ2(t)−λ1(t))(βα1 S

∗(t)I∗(t)+βα2 S
∗(t)E∗(t))

ε

+
(λ2(t)−λ4(t))E∗(t)+(λ3(t)−λ4(t))I∗(t)

ε

, 1

}
, 0

}
. (14)

Proof: Consider the fractional Euler-Lagrange equations [35]:

C
0 D

α
t x (t) =

∂H
∂λ

(t, x (t) , u (t) , λ (t)) , (15)

C
t D

α
tf λ (t) =

∂H
∂x

(t, x (t) , u (t) , λ (t)) , (16)

∂H
∂u

(t, x (t) , u (t) , λ (t)) = 0, (17)

which are denoting the optimality system, with the initial state and the final co-state values:

x (0) = x0, λ
(
tf
)

= 0. (18)

By substituting Hamiltonian function (11) into the Eqs. (15)− (17) , we derive the optimality system for co-state functions as follows:

C
t D

α
tfλ1(t) = −λ1 (t) ((1− u (t))βα1 I (t) + (1− u (t))βα2 E (t) + p+ µα)

+λ2 (t) ((1− u)βα1 I (t) + (1− u (t))βα2 E (t)) + λ4 (t) p,

C
t D

α
tfλ2(t) = −λ1 (t) (1− u (t))βα2 S (t) + λ2 (t) ((1− u (t))βα2 S (t)− kα − σα − µα − u (t))

+λ3 (t)σα + λ4 (t) (kα + u) + 1,

C
t D

α
tfλ3(t) = −λ1 (t) (1− u (t))βα1 S (t) + λ2 (t) (1− u (t))βα1 S (t)

−λ3 (t) (dα + µα + u (t)) + λ4 (t) (dα + u (t)) + 1,

C
t D

α
tfλ4(t) = −λ1 (t)µα
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with the transversality conditions:
λ1
(
tf
)

= λ2
(
tf
)

= λ3
(
tf
)

= λ4
(
tf
)

= 0.

From Eq.(17) , we obtain the optimal control function as below:

u∗ (t) =


0, u (t) ≤ 0,
(λ2(t)−λ1(t))(βα1 S(t)I(t)+βα2 S(t)E(t))+(λ2(t)−λ4(t))E(t)+(λ3(t)−λ4(t))I(t)

ε , 0 < u (t) < 1,
1, u (t) > 1,

or equivalently

u∗ (t) = max

{
min

{
(λ2(t)−λ1(t))(βα1 S(t)I(t)+βα2 S(t)E(t))

ε

+
(λ2(t)−λ4(t))E(t)+(λ3(t)−λ4(t))I(t)

ε

, 1

}
, 0

}
.

Consequently, the optimal system consists of Eqs. (9) , (12), and (17) . �

5 Numerical Scheme

There are a limited number of numerical algorithms to solve the optimal control problems for fractional-order systems. In the present study, we
apply the Adams-type predictor-corrector method by combining it with the forward-backward sweep algorithm. Note that while introducing
the numerical algorithm, we convert the right-handed derivatives of the co-state system to the left-handed ones using the property (7) . The
steps of numerical algorithm is given in detail as follows [32, 36]:

Step 1: Putting the initial values S(0);E(0); I(0);R(0) and system coefficients;
Step 2: Divide the interval

[
0, tf

]
into N sub-intervals of equal length and set h =

tf
N , tk = kh, k = 0, 1, ..., N ;

Step 3: The discrete form of control function is given by

u (tk) =
(λ2(tk)−λ1(tk))(βα1 S(tk)I(tk)+βα2 S(tk)E(tk))

ε

+
(λ2(tk)−λ4(tk))E(tk)+(λ3(tk)−λ4(tk))I(tk)

ε , k = 0, 1, ...,M.
(19)

The initial condition for u is calculated using (S(0), E(0), I(0), R(0)) and λi(tf ) = 0, i = 1, 2, 3, 4, 5. Other values of u for k =
1, 2, ...,M − 1 are calculated with the following loop.

Step 4: Solve the system (9) forward-in-time with the initial conditions and the value of u. The critical point is to replace Eq. (9) by the
following equivalent fractional integral equation

x (t) = x0 +
1

Γ (α)

∫ t
0

(t− τ)α−1 g (τ, x (τ) , u (τ)) dτ. (20)

Then, applying the Adams-type predictor-corrector method is as follows:



S (tk+1) = S (0) + hα

Γ(α+2)
[g1 (tk+1, S

p (tk+1) , Ep (tk+1) , Ip (tk+1) , Rp (tk+1) , u (tk+1))

k
+
∑

j=0
aj,k+1g1 (tk, S (tk) , E (tk) , I (tk) , R (tk) , u (tk+1))

]
,

Sp (tk+1) = S (0) + hα

Γ(α+1)

[
k∑
j=0

bj,k+1g1 (tk, S (tk) , E (tk) , I (tk) , R (tk) , u (tk+1))

]
,

E (tk+1) = E (0) + hα

Γ(α+2)
[g2 (tk+1, S

p (tk+1) , Ep (tk+1) , Ip (tk+1) , Rp (tk+1) , u (tk+1))

k
+
∑

j=0
aj,k+1g2 (tk, S (tk) , E (tk) , I (tk) , R (tk) , u (tk+1))

]
,

Ep (tk+1) = E (0) + hα

Γ(α+1)

[
k∑
j=0

bj,k+1g2 (tk, S (tk) , E (tk) , I (tk) , R (tk) , u (tk+1))

]
,

I (tk+1) = I (0) + hα

Γ(α+2)
[g3 (tk+1, S

p (tk+1) , Ep (tk+1) , Ip (tk+1) , Rp (tk+1) , u (tk+1))

k
+
∑

j=0
aj,k+1g3 (tk, S (tk) , E (tk) , I (tk) , R (tk) , u (tk+1))

]
,

Ip (tk+1) = I (0) + hα

Γ(α+1)

[
k∑
j=0

bj,k+1g3 (tk, S (tk) , E (tk) , I (tk) , R (tk) , u (tk+1))

]
,

R (tk+1) = R (0) + hα

Γ(α+2)
[g4 (tk+1, S

p (tk+1) , Ep (tk+1) , Ip (tk+1) , Rp (tk+1) , u (tk+1))

k
+
∑

j=0
aj,k+1g4 (tk, S (tk) , E (tk) , I (tk) , R (tk) , u (tk+1))

]
,

Rp (tk+1) = R (0) + hα

Γ(α+1)

[
k∑
j=0

bj,k+1g4 (tk, S (tk) , E (tk) , I (tk) , R (tk) , u (tk+1))

]
,

(21)
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where k = 0, 1, ...,M − 1, and j = 1, ..., k. In addition, the coefficients aj,k+1 and bj,k+1 in (21) are as follows:

aj,k+1 =

{
kα+1 − (k − α) (k + 1)α , j = 0,

(k − j + 2)α+1 + (k − j)α+1 − 2 (k − j + 1)α+1 , 1 ≤ j ≤ k,
(22)

bj,k+1 = (k + 1− j)α − (k − j)α . (23)

Step 5: Solve the system (12) forward-in-time with terminal conditions and the values of u and x. The Eq. (12) with the condition λ
(
tf
)

= 0
is equivalent to the following fractional integral equation:

λ
(
tf − t

)
=

1

Γ (α)

∫ t
0

(t− τ)α−1

×∂H
∂x

(
tf − τ, x

(
tf − τ

)
, u
(
tf − τ

)
, λ
(
tf − t

))
dτ. (24)

Then, applying the Adams-type predictor-corrector under consideration with the property (7) is as follows:



λ1(tM−k−1) = hα

Γ(α+2)

[
∂H
∂S

(
tM−k−1, S (tM−k−1) , E (tM−k−1) , I (tM−k−1) , R (tM−k−1) , u (tM−k−1) , λpi (tM−k−1)

)
+

k∑
j=0

aj,k+1
∂H
∂S

(
tM−j , S

(
tM−j

)
, E
(
tM−j

)
, I
(
tM−j

)
, R
(
tM−j

)
, u
(
tM−j

)
, λi
(
tM−j

))]
,

λp1(tM−k−1) = hα

Γ(α+1)

[
k∑
j=0

bj,k+1
∂H
∂S

(
tM−j , S

(
tM−j

)
, E
(
tM−j

)
, I
(
tM−j

)
, R
(
tM−j

)
, u
(
tM−j

)
, λi
(
tM−j

))]
,

λ2(tM−k−1) = hα

Γ(α+2)

[
∂H
∂E

(
tM−k−1, S (tM−k−1) , E (tM−k−1) , I (tM−k−1) , R (tM−k−1) , u (tM−k−1) , λpi (tM−k−1)

)
+

k∑
j=0

aj,k+1
∂H
∂E

(
tM−j , S

(
tM−j

)
, E
(
tM−j

)
, I
(
tM−j

)
, R
(
tM−j

)
, u
(
tM−j

)
, λi
(
tM−j

))]
,

λp2(tM−k−1) = hα

Γ(α+1)

[
k∑
j=0

bj,k+1
∂H
∂E

(
tM−j , S

(
tM−j

)
, E
(
tM−j

)
, I
(
tM−j

)
, R
(
tM−j

)
, u
(
tM−j

)
, λi
(
tM−j

))]
,

λ3(tM−k−1) = hα

Γ(α+2)

[
∂H
∂I

(
tM−k−1, S (tM−k−1) , E (tM−k−1) , I (tM−k−1) , R (tM−k−1) , u (tM−k−1) , λpi (tM−k−1)

)
+

k∑
j=0

aj,k+1
∂H
∂I

(
tM−j , S

(
tM−j

)
, E
(
tM−j

)
, I
(
tM−j

)
, R
(
tM−j

)
, u
(
tM−j

)
, λi
(
tM−j

))]
,

λp3(tM−k−1) = hα

Γ(α+1)

[
k∑
j=0

bj,k+1
∂H
∂I

(
tM−j , S

(
tM−j

)
, E
(
tM−j

)
, I
(
tM−j

)
, R
(
tM−j

)
, u
(
tM−j

)
, λi
(
tM−j

))]
,

λ4(tM−k−1) = hα

Γ(α+2)

[
∂H
∂R

(
tM−k−1, S (tM−k−1) , E (tM−k−1) , I (tM−k−1) , R (tM−k−1) , u (tM−k−1) , λpi (tM−k−1)

)
+

k∑
j=0

aj,k+1
∂H
∂R

(
tM−j , S

(
tM−j

)
, E
(
tM−j

)
, I
(
tM−j

)
, R
(
tM−j

)
, u
(
tM−j

)
, λi
(
tM−j

))]
,

λp4(tM−k−1) = hα

Γ(α+1)

[
k∑
j=0

bj,k+1
∂H
∂R

(
tM−j , S

(
tM−j

)
, E
(
tM−j

)
, I
(
tM−j

)
, R
(
tM−j

)
, u
(
tM−j

)
, λi
(
tM−j

))]
,

(25)
where k = 0, 1, ...,M − 1, and j = 1, ..., k. Also, the coefficients aj,k+1 and bj,k+1 in the system (25) are those given in Step 4.

Step 6: Iterative state and co-state values calculated in the Steps 4 and 5 are used to update the values of the control function calculated in
Step 3.

Step 7: Determine tolerance values are determined for states and co-states functions. If the difference between consecutive values is negli-
gibly close for the prescribed error data, the calculation is terminated and the results obtained correspond to the optimal solutions. Otherwise,
it returns to Step 3.

The system (9) discussed in the study is in terms of Caputo fractional derivative. But “I wonder what would be the solution of the optimal
control problem of the system with the fractional derivatives of Caputo-Fabrizio or Atangana-Baleanu?” The answer to this question is also
sought in this thesis. For this, the algorithm whose steps are given above should be made suitable for the Caputo-Fabrizio and Atangana-Baleanu
fractional derivatives.

5.1 Algorithm for Caputo-Fabrizio Fractional Derivative

The first three steps and the last two steps of the algorithm are equally valid for Caputo-Fabrizio fractional derivative. The integral equation
in step 4 and the coefficients a and b in step 5 will change. With these changes, the 4th and 5th steps of the algorithm for the Caputo-Fabrizio
fractional derivative can be expressed as follows [36]:
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Step 4: Solve the system (9) forward-in-time with initial conditions and the value of u. Then the equivalent fractional integral equation is
obtained as follows:

x (t) = x0 + (1− α) g (t, x (t) , u (t)) + α

∫ t
0
g (τ, x (τ) , u (τ)) dτ. (26)

Then, apply the Adams-type predictor-corrector method as follows:
x (tk+1) = x0 + αh

2 g (tk+1, x
p (tk+1) , u (tk+1)) +

k∑
j=0

aj,k+1.g (tk, x (tk) , u (tk)) ,

xp (tk+1) = x0 + h

[
k∑
j=0

bj,k+1.g (tk, x (tk) , u (tk))

]
,

(27)

where k = 0, 1, ...,M − 1 and j = 0, 1, ..., k; In addition, the coefficients aj,k+1 and bj,k+1 in the system (27) are as follows:

aj,k+1 =

 kα+1 − (k − α) (k + 1)α , j = 0,

(k − j + 2)α+1 + (k − j)α+1 − 2 (k − j + 1)α+1 , 1 ≤ j ≤ k,
1, j = k + 1,

(28)

bj,k+1 =

{
1 + 1−α

h , j = k,
1 , 0 ≤ j ≤ k − 1.

(29)

Step 5: Solve the system (12) forward-in-time with terminal conditions and the values of u and x. The system (12) with the condition
λ
(
tf
)

= 0 is equivalent to the following fractional integral equation:

λ
(
tf − t

)
= (1− α) g

(
tf − τ, x

(
tf − τ

)
, u
(
tf − τ

))
+α

∫ t
0

∂H

∂x

(
tf − τ, x

(
tf − τ

)
, u
(
tf − τ

)
, λ
(
tf − t

))
dτ. (30)

Then, applying the Adams-type predictor-corrector gives

λ (tM−k−1) = αh
2

[
∂H
∂x (tM−k−1, x (tM−k−1) , u (tM−k−1) , λp (tM−k−1))

+
k∑
j=0

aj,k+1.
∂H
∂x

(
tM−j , x

(
tM−j

)
, u
(
tM−j

)
, λi (tM−k−1)

)]
,

λp (tM−k−1) = h

[
k∑
j=0

bj,k+1.
∂H
∂x

(
tM−j , x

(
tM−j

)
, u
(
tM−j

)
, λi (tM−k−1)

)]
,

(31)

where k = 0, 1, ...,M − 1, and j = 1, ..., k. Also, the coefficients aj,k+1 and bj,k+1 are those given in Step 4.

5.2 Algorithm for Atangana-Baleanu Fractional Derivative

The first three steps and the last two steps of the algorithm are equally valid for Atangana-Baleanu fractional derivative. The integral equation
in step 4 and the coefficients a and b in step 5 will change. With these changes, the 4th and 5th steps of the algorithm for the Atangana-Baleanu
fractional derivative can be expressed as follows [36]:

Step 4: Solve the system (9) forward-in-time with initial conditions and the value of u. Then, rewrite the system (9) in the following
equivalent form:

x (t) = x0 +
(1− α)

M (α)
g (t, x (t) , u (t)) +

α

M (α) Γ (α)

∫ t
0

(t− τ)α−1 g (τ, x (τ) , u (τ)) dτ. (32)

Then, applying the Adams-type predictor-corrector method gives
x (tk+1) = x0 + hα

(α+1)M(α)Γ(α)

[
g (tk+1, x

p (tk+1) , u (tk+1)) +
k∑
j=0

aj,k+1.g (tk, x (tk) , u (tk))

]
,

xp (tk+1) = x0 + hα

M(α)Γ(α)

[
k∑
j=0

bj,k+1g (tk, x (tk) , u (tk))

]
,

(33)

where k = 0, 1, ...,M − 1 and j = 0, 1, ..., k; In addition, the coefficients aj,k+1 and bj,k+1 in system (33) are as follows:

aj,k+1 =

 kα+1 − (k − α) (k + 1)α , j = 0,

(k − j + 2)α+1 + (k − j)α+1 − 2 (k − j + 1)α+1 , 1 ≤ j ≤ k,
1, j = k + 1,

(34)

bj,k+1 =

{
1 +

(1−α)Γ(α)
hα , j = k,

(k − j + 1)α − (k − j)α , 0 ≤ j ≤ k − 1.
(35)
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Step 5: Solve the system (12) forward-in-time with the terminal conditions and the values of u and x. The system (12) with the condition
λ
(
tf
)

= 0 can be rewritten as follows:

λ
(
tf − t

)
=

(1− α)

M (α)
g
(
tf − τ, x

(
tf − τ

)
, u
(
tf − τ

))
+

α

M (α) Γ (α)

∫ t
0

∂H

∂x

(
tf − τ, x

(
tf − τ

)
, u
(
tf − τ

)
, λ
(
tf − t

))
dτ (36)

Then, applying the Adams-type predictor-corrector leads to

λ (tM−k−1) = hα

(α+1)M(α)Γ(α)

[
∂H
∂x (tM−k−1, x (tM−k−1) , u (tM−k−1) , λp (tM−k−1))

+
k∑
j=0

aj,k+1.
∂H
∂x

(
tM−j , x

(
tM−j

)
, u
(
tM−j

)
, λi (tM−k−1)

)]
,

λp (tM−k−1) = hα

M(α)Γ(α)

[
k∑
j=0

bj,k+1.
∂H
∂x

(
tM−j , x

(
tM−j

)
, u
(
tM−j

)
, λi (tM−k−1)

)]
,

(37)

where k = 0, 1, ...,M − 1, and j = 1, ..., k. Also, the coefficients aj,k+1 and bj,k+1 are those given in Step 4.

5.3 Comparative Results

The numerical simulations are carried out using the parameters given in [26]. The purpose of this is to be able to compare controlled and
uncontrolled systems. The weight coefficient is taken as ε = 0.009, the initial conditions are S(0) = 10, E(0) = 1, I(0) = 1, and R(0) = 0.
Also, the system parameters are p = 0.7, µ = 0.02, σ = 0.09, d = 0.04, k = 0.04, ω = 0.5, β1 = 0.002, and β2 = 0.003.All the simulation
results are held by MATLAB software.

Firstly, Figure 1 shows the controlled and uncontrolled behaviors of system (9). In this case, the order of the derivative is arbitrarily chosen
as α=0.85. The anti-virus program with the control strategy indicates the situation when it is installed on infected, exposed and connected
computers. As intended, the number of computers that are both infected and exposed at time t = 100 is almost 0. Therefore, the number of
recovered computers has increased. There is a slight variation in the number of susceptible computers. This is because it uses a small initial
population of values. Although not given between results, this difference was observed to be significant for larger populations. A similar
situation applies to the recovered computer population. Figure 2 illustrates the dependence of optimal solutions for Caputo fractional derivative
on α. The number of infected and exposed computers will take longer to reach 0 as α values are decreasing, i.e. the smaller α values, the longer
the anti-virus program should run to reduce the effect of the virus on the network. Decreasing values of α less than 1 indicate the cases in which
computers on the network are weaker against a virus attack. As a natural consequence of this, if paying attention to the behavior of the control
in Figure 3, the lower the α value, the longer the effectiveness of the anti-virus program. In Figure 3, as the α value decreases from 1, the
effectiveness of the control gets longer. In other words, if the anti-virus program works longer, we achieve the intended result. In Figure 4, for
the value of α = 0.85, the most desirable case for the number of all compartments is the Caputo fractional derivative, followed by ABC derivative
and the CF derivative last. Because the model in the study represents the spread of computer virus in the computer population connected to a
computer network and this shows a moderately heterogeneous network structure. This gives the most desired result that the network behaves
in accordance with the power law and therefore modeling with the Caputo fractional derivative with the power function kernel. Computer virus
models that represent the situation where there is more than one internet network and devices such as mobile phones and USBs are connected
to infect computers are more prone to exhibit exponential behavior, which helps in the selection of the fractional derivative. Because the kernel
functions of CF and ABC fractional derivatives are of exponential type, CF and ABC fractional derivatives can be chosen for such models, that
is, computer models with a fully heterogeneous network structure. While the value of α approaches 1 for the Caputo fractional derivative, the
intended results for all compartments have been obtained. In Figure 5, For the value of α = 0.85, the behavior of the control is the same for
Caputo, CF and ABC. In other words, the anti-virus program is effective for all fractional derivatives used at the same time.

6 Conclusion

This study presents the effects of Caputo, Caputo-Fabrizio and Atangana-Baleanu fractional derivatives on an anti-virus spreading model
equipped with the anti-virus control strategy. The aim of the proposed optimal control problem has to eliminated the damage caused by the
virus in the network at minimum cost. The basis model has been first discussed by Bonyah et al. [26] in sense of stability analysis but without
control. In the present work, Adams-type predictor-corrector method and forward-backward sweep algorithm are combined to obtain numerical
solutions of the optimal system. According to the numerical results, the behaviors of the proposed model are close to each other for the Caputo
and ABC derivatives. For the model equipped with CF derivative, it is observed that it takes longer to reduce infected computers with anti-virus
software. Thus, reconsidering the present model with the CF derivative represents a situation where virus spread is more aggressive. In fact,
the main purpose of comparison studies on fractional derivatives should not be which derivative is better. The important manner is which
derivative represents the process to be modeled better. What is critical in the spread of a computer virus is the structure of the network, i.e. the
heterogeneity degree of network. In other words, if the heterogeneity of the network behaves according to the power law, virus propagation
in this network behaves similarly, and therefore modeling with the Caputo derivative is more realistic. On the other hand, as the complexity
of connectivity in the network increases, it makes more sense to model virus propagation in this network with CF or ABC derivatives. Future
studies are planned to focus on the different functional relationships of incidence rates, which significantly determine the content of the virus
spread problem. It is aimed to investigate the effect of different incidence rates on the proposed optimal control problem.
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Fig. 1: System behaviours with and without control for Caputo fractional derivative: α = 0.85 [31].
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Fig. 2: The dependence of optimal solutions for Caputo fractional derivative on α [31].
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Fig. 3: The dependence of control function u (t) for Caputo fractional derivative on α [31].

Fig. 4: Comparison of Caputo, CF and ABC fractional derivatives for α = 0.85.
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1 Introduction

In this work, we are concerned with the following problem:
utt + ∆2u− div

(
|∇u|m−2∇u

)
+ ξ1 (t) |ut|p−2 ut = ξ2 (t) |u|q−2 u, x ∈ Ω, t > 0,

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,

u (x, t) = ∆u (x, t) = 0, x ∈ ∂Ω, t > 0,

(1)

where Ω is a bounded domain in Rn (n ∈ N), with a smooth boundary ∂Ω, m ≥ 2, p ≥ 2, q > 2, ξ1 (t) is a non-negative function of t and
ξ2 (t) is a positive functions of t. The quantity |ut|p−2 ut is a damping term which assures global existence, and |u|q−2 u is the source term
which contributes to nonxistence of global solutions. ξ1 (t) and ξ2 (t) can be regarded as two control buttons which can dominate the polarity
between damping term and source term.

Pişkin and Fidan [1] investigated

utt −∆u−∆ut + µ1 (t) |ut|p−2 ut = µ2 (t) |u|q−2 u,

with boundary and initial conditions, and proved a nonexistence of solutions.
Messaoudi, [2] studied the following problem

utt − div
(
|∇u|m−2∇u

)
−∆ut + |ut|q−1 ut = |u|p−1 u. (2)

He studied decay of solutions of the problem (2). Then the problem (2) was studied by Wu and Xue [3] and Pişkin [4]. For more depth, here
are some papers that focused on the study of div term (see [5–10])

Zheng et al. [11] considered the fourth order equation

utt + ∆2u+ k1 (t) |ut|m−2 ut = k2 (t) |u|p−2 u

in a bounded domain. They proved the nonexistence of solutions.
In this work, we established the nonexistence of solutions. To our best konowledge, the nonexistence of solutions of the quasilinear wave

equation with variable coefficients have not yet studied. By using the same techniques as in [11].
This work is organized as follows: In the next part, we present some lemmas, notations and local existence theorem. In part 3, the

nonexistence of solutions are given.

2 Preliminaries

Throughout this work ‖u‖p = ‖u‖Lp(Ω) and ‖u‖2 = ‖u‖ denote the usual Lp (Ω) norm and L2 (Ω) norm, respectively. Also, Wm,2
0 (Ω) =

Hm
0 (Ω) is a Hilbert spaces (see [12, 13], for details).
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Lemma 1. [14]. Suppose that {
m ≤ q <∞, n ≤ m,
m < q < nm

n−m , n > m.

Then, there exist a positive constant C > 1, depending on Ω only, such that

‖u‖sq ≤ C
(
‖∇u‖mm + ‖u‖qq

)
(3)

for any u ∈W 2,m
0 (Ω) and m ≤ s ≤ q.

Lemma 2. Assume that ξ1 (t) is a nonnegative function of t, ξ2 (t) is a positive functions of t and ξ′2 (t) ≥ 0. Let u (t) be a solution of problem
(1) then the energy functional E (t) is non-increasing, namely E′ (t) ≤ 0.

Proof: Multiplying the equation (1) with ut and integrating with respect to x over the domain Ω, we get

d

dt

(
1

2
‖ut‖2 +

1

m
‖∇u‖mm +

1

2
‖∆u‖2 − ξ2 (t)

q
‖u‖qq

)
= −ξ1 (t) ‖ut‖pp −

ξ′2 (t)

q
‖u‖qq . (4)

By the equality (4), we have

E′ (t) = −ξ1 (t) ‖ut‖pp −
ξ′2 (t)

q
‖u‖qq ≤ 0,

and E (t) ≤ E (0) .Here

E (t) =
1

2
‖ut‖2 +

1

m
‖∇u‖mm +

1

2
‖∆u‖2 − ξ2 (t)

q
‖u‖qq (5)

and

E (0) =
1

2
‖u1‖2 +

1

m
‖∇u0‖mm +

1

2
‖∆u0‖2 −

ξ2 (0)

q
‖u0‖qq .

�

In order to obtain our main results, we set

H (t) = −E (t) (6)

In the following remark, C denotes a generic constant that varies from line to line.

Remark 1. Suppose that {
m ≤ q <∞, n ≤ m,
m < q < nm

n−m , n > m.

and energy functional E (t) < 0. Then, there exist a positive constant C, depending only on Ω, such that

‖u‖sq ≤ C
(
H (t) + ‖ut‖2 +

(
ξ2 (t)

q
+ 1

)
‖u‖qq

)
(7)

for any u ∈W 2,m
0 (Ω) and m ≤ s ≤ q.

Next, we state the local existence theorem that can be established by combining arguments of [15–17].

Theorem 1. (Local existence). Assume that {
m ≤ q <∞, n ≤ m,
m < q < nm

n−m , n > m.

Then, for any given u0 ∈W 2,m
0 (Ω) and u1 ∈ L2 (Ω) , the problem (1) has a local solution satisfying

u ∈ C
(

[0, T ] : W 2,m
0 (Ω) , ut ∈ C

(
[0, T ] ;L2 (Ω)

)
∩ Lp (Ω, [0, T ])

)
for some T > 0.

3 Nonexistence

In this part, we will consider the blow up of solutions for the problem (1).
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Theorem 2. Let the assumptions of Lemma 2 hold. And suppose that ξ1 (t) is a nonnegative function of t, ξ2 (t) is a positive functions of t,
ξ′2 (t) ≥ 0 and

lim
t→∞

ξ1 (t) ξ2 (t)α(p−1)

exists, where

0 < α ≤ min

{
q − 2

2q
,
q − p

q (p− 1)

}
.

Then the solution of Eq. (1) blows up in finite time T ∗ and

T ∗ ≤ 1− α
αγL

α
1−α (0)

if q > p and the initial energy function
E (0) < 0,

where

L (0) = [H (0)]1−α + ε

∫
Ω
u0u1dx > 0.

Proof: From (4)-(6), we obtain
d

dt
H (t) = ξ1 (t) ‖ut‖pp +

ξ′2 (t)

q
‖u‖qq ≥ 0 (8)

for almost, every t ∈ [0, T ) . Also,

0 < H (0) ≤ H (t) ≤ ξ2 (t)

q
‖u‖qq , t ∈ [0, T ) . (9)

Define

L (t) = H1−α (t) + ε

∫
Ω
uutdx (10)

where ε > 0 is small to be chosen later, and

0 < α ≤ min

{
q − 2

2q
,
q − p

q (p− 1)

}
. (11)

Differentiating (10) with respect to t and combining the first equation of (1), we get

L′ (t) = (1− α)H−α (t)H ′ (t) + ε

∫
Ω

(
uutt + u2

t

)
dx

= (1− α)H−α (t)H ′ (t)

+ε

∫
Ω

(
udiv

(
|∇u|m−2∇u

)
− u∆2u− ξ1 (t) |ut|p−1 u+ ξ2 (t)uq + u2

t

)
dx

= (1− α)H−α (t)H ′ (t) + ε ‖ut‖2 − ε ‖∇u‖mm − ‖∆u‖
2

−εξ2 (t) ‖u‖qq − εξ1 (t)

∫
Ω
|ut|p−1 udx. (12)

Due to the Hölder’s and Young’s inequalities, we have∣∣∣∣ξ1 (t)

∫
Ω
|ut|p−1 udx

∣∣∣∣ ≤ ξ1 (t)

∫
Ω
|ut|p−1 udx

≤
(∫

Ω
ξ1 (t) |ut|p dx

) p−1
p
(∫

Ω
ξ1 (t) |u|p dx

) 1
p

≤ p− 1

p
ξ1 (t) δ−

p
p−1 ‖ut‖pp +

δp

p
ξ1 (t) ‖u‖pp (13)

where δ is positive constant to be determined later. According to the conditions ξ1 (t) ≥ 0, ξ′2 (t) ≥ 0 and (8), we have

H ′ (t) ≥ ξ1 (t) ‖ut‖pp . (14)

Combining (5), (6), (12), (13) and (14), we have

L′ (t) ≥
[
(1− α)H−α (t)− p− 1

p
εδ−

p
p−1

]
H ′ (t)

+ε

(
qH (t)− δp

p
ξ1 (t) ‖ut‖pp −

( q
2
− 1
)
‖∆u‖2

)
+ε
( q

2
+ 1
)
‖ut‖2 + ε

( q
m
− 1
)
‖∇u‖mm . (15)

c© CPOST 2022 205



Since the integral is taken over the variable x, it is reasonable to take δ depending on variable t. From (9), we have

0 < H−α (t) ≤ H−α (0) ,

for every t > 0. Hence H−α (t) is a positive function and bounded. Thus, by taking δ−
p
p−1 = kH−α (t) , for large k to be specified later, and

substituting in (15), we have

L′ (t) ≥
[
(1− α)− p− 1

p
εk

]
H−α (t)H ′ (t)

+ε
( q

2
+ 1
)
‖ut‖2 + ε

( q
m
− 1
)
‖∇u‖mm

+ε

[
qH (t)− k1−p

p
ξ1 (t)Hα(p−1) (t) ‖u‖pp −

( q
2
− 1
)
‖∆u‖2

]
(16)

By using the (5), (6), (9) and the embedding Lq (Ω) ↪→ Lp (Ω) (q > p) , we arrive at ‖u‖pp ≤ C ‖u‖
p
q and

L′ (t) ≥
[
(1− α)− p− 1

p
εk

]
H−α (t)H ′ (t)

+ε
( q

2
+ 1
)
‖ut‖2 + ε

( q
m
− 1
)
‖∇u‖mm

+ε

[
qH (t)− Ck1−p

p

(
ξ2 (t)

q

)α(p−1)

‖u‖p+qα(p−1)
q −

( q
2
− 1
)
‖∆u‖2

]
. (17)

From (11), we get 2 ≤ s = p+ qα (p− 1) ≤ q. Combining (5), (6), Remark 1 and (17), we get

L′ (t) ≥
[
(1− α)− p− 1

p
εk

]
H−α (t)H ′ (t) + ε

( q
2

+ 1
)
‖ut‖2 + ε

( q
m
− 1
)
‖∇u‖mm

+ε

[
qH (t)− C1k

1−pξ2 (t)α(p−1) ξ1 (t)

(
H (t) + ‖ut‖22 + ‖∆u‖2 +

ξ2 (t)

q
+ 1

)
‖u‖qq

]
−ε
( q

2
− 1
)(
−H (t)− 1

2
‖ut‖2 −

1

m
‖∇u‖mm +

ξ2 (t)

q
‖u‖qq

)
(18)

≥
[
(1− α)− p− 1

p
εk

]
H−α (t)H ′ (t) + ε

(
q + 2

2
− C1k

1−pξ2 (t)α(p−1) ξ1 (t)

)
H (t)

+ε

[
q + 6

4
− C1k

1−pξ2 (t)α(p−1) ξ1 (t)

]
‖ut‖2

+ε

[
q − 2

2q
ξ2 (t)− C1k

1−pξ2 (t)α(p−1) ξ1 (t)

(
ξ2 (t)

q
+ 1

)]
‖u‖qq (19)

where C1 = C
pqα(p−1) . Since limt→∞ ξ1 (t) ξ2 (t)α(p−1) exists, ξ1 (t) ξ2 (t)α(p−1) is bounded for every t > 0. Then, we choose k large

enough so that the coefficients of H (t) , ‖ut‖2 and ‖u‖qq in (19) are strictly positive. Therefore, we arrive at

L′ (t) ≥
[
(1− α)− p− 1

p
εk

]
H−α (t)H ′ (t)

+εβ

[
H (t) + ‖ut‖22 +

(
ξ2 (t)

q
+ 1

)
‖u‖qq

]
(20)

where

β = min

{
q + 2

2
− C1k

1−pξ2 (t)α(p−1) ξ1 (t) ,

q + 6

4
− C1k

1−pξ2 (t)α(p−1) ξ1 (t) ,

q − 2

2q
ξ2 (t)− C1k

1−pξ2 (t)α(p−1) ξ1 (t)

}

is the minimum of the coefficients of H (t) , ‖ut‖2 and ‖u‖qq . Once k is fixed, we can take ε small enough so that 1− α− p−1
p εk ≥ 0 and

L (0) = H1−α (0) + ε

∫
Ω
u0u1dx > 0. (21)
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Then (20) becomes

L′ (t) ≥ εβ
[
H (t) + ‖ut‖22 +

(
ξ2 (t)

q
+ 1

)
‖u‖qq

]
≥ 0. (22)

Then, we have
L (t) ≥ L (0) > 0. (23)

For the definition of L (t) (see (10)) we have ∣∣∣∣∫
Ω
uutdx

∣∣∣∣ ≤ ‖u‖ ‖ut‖

≤ C ‖u‖q ‖ut‖ (24)

using Hölder’s inequality and the embedding Lq (Ω) ↪→ Lp (Ω) (q > p). Thanks to Young’s inequality, we have

∣∣∣∣∫
Ω
uutdx

∣∣∣∣ 1
1−α

≤ C ‖u‖
1

1−α
q ‖ut‖

1
1−α

≤ C

(
‖u‖

2
1−2α
q + ‖ut‖2

)
(25)

from (11), we arrive at 2
1−2α < q.

Combining (25) and Remark 1, we get

∣∣∣∣∫
Ω
uutdx

∣∣∣∣ 1
1−α
≤ C

(
H (t) + ‖ut‖22 +

(
ξ2 (t)

q
+ 1

)
‖u‖qq

)
. (26)

Therefore, we obtain

L
1

1−α (t) =

[
H1−α (t) + ε

∫
Ω
uutdx

] 1
1−α

≤ 2
1

1−α

(
H (t) +

∣∣∣∣ε ∫
Ω
uutdx

∣∣∣∣ 1
1−α

)

≤ C

(
H (t) + ‖ut‖22 +

(
ξ2 (t)

q
+ 1

)
‖u‖qq

)
. (27)

Combining (22), (23) and (27), we have

L′ (t) ≥ γL
1

1−α (t) (28)

where γ is a constant depending only on C, β and ε. Integrating (28), we arrive at

L
1

1−α (t) ≥ 1

L−
α

1−α (0)− α
1−αγt

(29)

If

t→

[
1− α

αγL
α

1−α (0)

]−
, L−

α
1−α (0)− α

1− αγt→ 0.

Hence, L (t) blows up in finite time T ∗ and

T ∗ ≤ 1− α
αγL

α
1−α (0)

,

which complete the proof of the Theorem. �
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compare some recent positive linear operators to approximate functions.
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1 Introduction

The uniform approximation of continuous functions by polynomials was one of the problems that Karl Weierstrass focused on (see [24]).
The classical Weierstrass approximation theorem asserts that there exists a sequence of polynomials rp(u) that converges uniformly to r(u)
for any continuous function r(u) on the closed interval [a, b]. Later, Bernstein provided an alternative proof of the well-known Weierstrass
approximation theorem currently called Bernstein polynomials (see [7]). The following Bernstein operators:

Bp(r;u) =
p∑
i=0

bp,i(u)r

(
i

p

)
,

where,

bp,i(u) =

(
p

i

)
ui(1− u)p−i, u ∈ [0, 1]

were given in [7] to approximate a given continuous function r(u) on [0, 1].
The Bernstein polynomials satisfy the following recursive formula

bm,j(z) = (1− z)bm−1,j(z) + zbm−1,j−1(z).

There are several generalization mentioned regarding Bernstein operators, for example,

(a) λ-Bernstein operators [14] with b̃n,i(λ;x) Bézier bases and shape parameter λ (see [23]):

b̃n,0(λ;x) = bn,0(x)−
λ

n+ 1
bn+1,1(x),

b̃n,i(λ;x) = bn,i(x) +
n− 2i+ 1

n2 − 1
λbn+1,i(x)−

n− 2i− 1

n2 − 1
λbn+1,i+1(x), i = 1, 2 . . . , n− 1,

b̃n,n(λ;x) = bn,n(x)−
λ

n+ 1
bn+1,n(x). (1)

(b) Bernstein type operators by using continuously differentiable∞ times function τ on [0, 1] [15].
(c) New variant of Bernstein operators [20]
(d) (p, q)-Bernstein operators.
(e) Stancu-type λ-Bernstein operators [22].
(f) Modified Un operators [13] and references therein.
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(g) α-Bernstein operators [16, 18] p(α)m,γ,j(z) denotes the α-Bernstein-Schurer polynomials defined by

p
(α)
1,γ,0 (z) = 1− z, p

(α)
1,γ,1(z) = z

and

p
(α)
m,γ,j (z) =

[
(1− α) z

(
m+ γ − 2

j

)
+ (1− α) (1− z)

(
m+ γ − 2

j − 2

)

+αz (1− z)

(
m+ γ

j

)]
zj−1 (1− z)m+γ−(j+1) (m ≥ 2). (2)

(h) Bivariate extension of α-Bernstein-Durrmeyer operators [19].
(i) Kantorovich modifications of α-Bernstein operators.
(j) λ-Bernstein-Schurer operators [21].
(k) Bivariate λ-Bernstein operators [34].
(l) λ-Bernstein-Kantorovich operators [17].
(m) Univariate and bivariate λ-Bernstein-Kantorovich operators [11].
(n) Genuine modified Bernstein-Durrmeyer operators.
(p) Blending type Bernstein operators [5].
(r) Blending type Bernstein-Kantorovich operators [6].

Recently, Chen et al. constructed a new family of Bernstein operators for the continuous function r(u) on [0, 1], which includes the shape
parameter α, and named it the α-Bernstein operators [16]. They investigated certain elementary properties of these operators, such as end-point
interpolation, linearity, and positivity, and obtained an upper bound for the error in terms of the usual modulus of continuity. Many variations
of α-Bernstein operators have been examined (see [39]).

A new basis with shape parameter λ ∈ [−1, 1] was introduced in [28] to give a practical algorithm of curve modeling. The authors studied
certain important properties of the basis function and the related curves, and extended their research to the tensor product surface with two
shape parameters. A new type of λ-Bernstein operators was constructed by shape parameter λ in [32]. A Korovkin-type approximation theorem
was provided; a local approximation theorem was investigated; a convergence theorem for the Lipschitz continuous functions was given; a
Voronovskaja-type asymptotic formula was obtained as well.

Recently, shape parameters α and λ were used to extend Bernstein operators to α-Bernstein type (see [1, 3, 16, 25, 39]) and λ-Bernstein
type operators (see [28–31, 38]) in order to approximate functions better, respectively.

This paper is focused on the literature review of certain blending type Bernstein operators.

2 Recent results on blending operators

In this section, the definitions of α-Bernstein, λ-Bernstein, and blending (α, λ, s)-Bernstein operators and all needed results are provided.
Let throughout the paper the binomial coefficients be given by the formula:

(
p

i

)
=

{
p!

i!(p−i)! , 0 ≤ i ≤ p,
0, otherwise.

In [1], the authors introduced generalized blending-type α-Bernstein operators by implementing a positive integer s as:

Lα,sp (r;u) =

p∑
i=0

{
(1− α)

(
p− s
i− s

)
ui−s+1(1− u)p−i

+(1− α)

(
p− s
i

)
ui(1− u)p−s−i+1

+α

(
p

i

)
ui(1− u)p−i

}
r

(
i

p

)
, for p ≥ s

and:

Lα,sp (r;u) =

p∑
i=0

(
p

i

)
ui(1− u)p−ir

(
i

p

)
, for p < s

which depend on shape parameter α, where u, α ∈ [0, 1], r(u) ∈ C[0, 1].
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Finally, blending-type (α, λ, s)-Bernstein operators were constructed in [2] as follows:

L(α,s)p,λ (r;u) =

p∑
i=0

b̃α,sp,i (λ;u)r

(
i

p

)
, (3)

where 0 ≤ α ≤ 1, −1 ≤ λ ≤ 1 and s is a positive integer, and the blending-type (α, λ, s) basis is given as:

b̃α,sp,i (λ;u) =


b̃p,i(λ;u), if p < s

(1− α)
[
xb̃p−s,i−s(λ;u) + (1− u)b̃p−s,i(λ;u)

]
+αb̃p,i(λ;u), if p ≥ s

and b̃p,i(λ;u) defined in Equation (1).
In [2], the authors proposed an alternative representation for (3) as:

L(α,s)p,λ (r;u) =


Bp,λ(r;u), if p < s

Bα,sp,λ(r;u), if p ≥ s.
(4)

The operator Bα,sp,λ(r;u) is defined by:

Bα,sp,λ(r;u) = (1− α)Bs,(?)p,λ (r;u) + αBp,λ(r;u),

where:

Bs,(?)p,λ (r;u) =

[
u

p∑
i=0

b̃p−s,i−s(λ;u) + (1− u)
p∑
i=0

b̃p−s,i(λ;u)

]
r

(
i

p

)
.

In [2], the representation (4) was also explicitly written as:

Bp,λ(r;u) =

p∑
i=0

bp,i(u)r

(
i

p

)

+λ

p−1∑
i=0

p− 2k − 1

p2 − 1
bp+1,i+1(u)

[
r

(
i+ 1

p

)
− r

(
i

p

)]

and

Bs,(?)p,λ (r;u) =

p−s∑
i=0

bp−s,i(u)

[
ur

(
i+ s

p

)
+ (1− u)r

(
i

p

)]

+λu

p−s−1∑
i=0

p− s− 2k − 1

(p− s)2 − 1
bp−s+1,i+1(u)

×
[
r

(
i+ s+ 1

p

)
− r

(
i+ s

p

)]

+λ(1− u)
p−s−1∑
i=0

p− s− 2k − 1

(p− s)2 − 1
bp−s+1,i+1(u)

×
[
r

(
i+ 1

p

)
− r

(
i

p

)]
.

Moments of the operators L(α,s)p,λ were found in the paper [[2] Theorem 2]:
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If p ≥ s, for any 0 ≤ α ≤ 1 and −1 ≤ λ ≤ 1, we have the following identities:

(i) L(α,s)p,λ (1;u) = 1;

(ii) L(α,s)p,λ (t;u) = u+ (1− α)λ
[
1− 2u+ up−s+1 − (1− u)p−s+1

p(p− s− 1)

]
+αλ

[
1− 2u+ up+1 − (1− u)p+1

p(p− 1)

]
;

(iii) L(α,s)p,λ (t2;u) = u2 +

[
p+ (1− α)s(s− 1)

]
u(1− u)

p2

+
αλ

p

[
2u− 4u2 + 2up+1

(p− 1)

]
+
(1− α)λ

p

[
2u− 4u2 + 2up−s+1

(p− s− 1)

]
+
αλ

p2

[
up+1 + (1− u)p+1 − 1

(p− 1)

]
+
(1− α)λ

p2

[
up−s+1 + (1− u)p−s+1 − 1

(p− s− 1)

]
+

[
2su(up−s+1 − (1− u)p−s+1)

(p− s− 1)

]
.

Let L1[0, 1] denote the space of all Lebesgue integrable functions on the interval I. The following sequence of operators involving shape
parameters λ and α, and a positive integer s is called it as blending (α, λ, s)-Bernstein-Kantorovich operators [6]:

K(α,s)
p,λ (r;u) = (p+ 1)

p∑
i=0

b̃α,sp,i (λ;u)

∫ i+1
p+1

i
p+1

r(t)dt. (5)

By the following theorem we give uniform convergence of some positive linear operators.

Theorem 1. For any α ∈ [0, 1], then L(r) converge uniformly to r on [0, 1], that is,

lim
m→∞

‖L(r)− r‖ = 0,

where L = L(α,s)p,λ , Bα,sp,λ , K
α,s
p,λ.

Proof: Taking into account moments of Bernstein type operators we have

L(e0) = e0 as m→∞, L(e1;x) = e1 as m→∞

and similarly Lm,α(e2) = e2 as m→∞. Hence, by the Korovkin theorem, we obtain

lim
m→∞

‖L(f)− f‖ = 0,

where L = L(α,s)p,λ , Bα,sp,λ , K
α,s
p,λ. �

3 Concluding Remarks

This paper is based on the results in [1–3, 5, 6], this is why we refer these papers for further literature. We will study approximation properties
of Stancu variant of blending (α, λ, s)-Bernstein operators and blending (α, λ, s)-Bernstein-Kantorovich operators in close future.
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1 Introduction

Bernstein opened a new way [3] by giving the most well known proof of Weierstrass approximation theorem (see [35]). He constructed a
sequence of approximating polynomials and many researchers have successfully extended this idea to approximate functions (see [23, 25–
27]). Korovkin-type theorems provide a process to decide whether a given sequence of positive linear operators converges strongly. Using
certain types of statistical convergences instead of the classical convergence in Korovkin type approximation theory gives us many advantages.
Applications of Korovkin type approximation on positive linear operators can be seen in [9–12].

In this study, we construct an original extension of bivariate Bernstein type operators based on multiple shape parameters and prove some
Korovkin theorems using a four-dimensional summability method, and a power series method. We obtain rate ofD-statistical convergence, and
rate of convergence for power series method with the help of the modulus of continuity. Finally, we demonstrate some computer graphics to
numerically see the efficiency and accuracy of convergence of proposed operators, and obtain corresponding error plots.

We first provide certain notions and auxiliary results that are needed in this study.
Assume that there is N = N(τ) ∈ N for each τ > 0, so that |%u,v −Q| < τ whenever u, v > N, in this case double sequence % = (%u,v)

is said to be convergent to Q in Pringsheim’s sense (or simply Π-convergent), and it is denoted by

Π − lim
u,v

%u,v = Q

(see [20]). When there is a positive number E so that |%u,v| ≤ E for all (u, v) ∈ N2 = N× N, double sequence is said to be bounded. As it is
well known, a convergent single sequence is bounded whereas a convergent double sequence need not to be bounded.

Assume that D = (dl,o,u,v) is a four-dimensional summability method. Given a double sequence % = (%u,v), D transform of %, denoted
by D% := ((D%)l,o), is defined as

(D%)l,o =

∞∑
u,v=1

dl,o,u,v%u,v,

and the double series is Π-convergent for (l, o) ∈ N2. When four-dimensional matrix D = (dl,o,u,v) maps every bounded Π−convergent
sequence into a Π−convergent sequence with the same Π−limit, it is called RH−regular (shortly RHR).

A four-dimensional matrix D = (dl,o,u,v) is RHR if and only if
(a) Π − liml,o dl,o,u,v = 0,

(b) Π − liml,o

∞∑
u,v=1

dl,o,u,v = 1,

(c) Π − liml,o

∞∑
r=1

∣∣dl,o,u,v∣∣ = 0 (∀s ∈ N),

(d)Π − liml,o

∞∑
s=1

∣∣dl,o,u,v∣∣ = 0 (∀r ∈ N),

(e)
∞∑

u,v=1

∣∣dl,o,u,v∣∣ is Π−convergent,

(f) The inequality
∑

u,v>E2

∣∣dl,o,u,v∣∣ < E1 is satisfied for finite positive integers E1 and E2 and for each (l, o) ∈ N2.
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These conditions are called Robinson-Hamilton conditions [21]. Assume that D = (dl,o,u,v) is a nonnegative RHR matrix, and S ⊂ N2,
then D−density of S is defined as

δ2D(S) := Π − lim
l,o

∑
(u,v)∈S

dl,o,u,v.

provided that the limit on the right-hand side exists in the Pringsheim sense. A real double sequence % = (%u,v) is called D−statistically
convergent to Q and denoted by

st2D − lim
u,v

%u,v = Q

if, for every τ > 0,

δ2D(
{

(u, v) ∈ N2 : |%u,v −Q| ≥ τ
}

) = 0

(see also [19, 22]). A Π−convergent double sequence is D−statistically convergent to the same number even if converse statement may not
be true. When D = C(1, 1), C(1, 1)−statistical convergence becomes statistical convergence for double sequences (see also [18]), where
C(1, 1) = (cl,o,u,v) is double Cesàro matrix, defined by
cl,o,u,v = 1/lo if 1 ≤ r ≤ o, 1 ≤ s ≤ l, and
cl,o,u,v = 0 otherwise.
Suppose that (ξu,v) is a double sequence of nonnegative numbers with condition ξ0,0 > 0, then power series

ξ (a, b) :=

∞∑
u,v=0

ξu,va
ubv

has radius of convergence Θ, where Θ ∈ (0,∞] and a, b ∈ (0, Θ) . When following equality is satisfied

lim
a,b→Θ−

1

ξ (a, b)

∞∑
u,v=0

ξu,va
ubv%u,v = Q

∀a, b ∈ (0, Θ) , then double sequence % = (%u,v) is said to be convergent to Q in the sense of power series method [30]. power series method
for double sequences is regular if and only if

lim
a,b→Θ−

∞∑
r=0

ξr,υa
u

ξ (a, b)
= 0; lim

a,b→Θ−

∞∑
s=0

ξµ,sb
v

ξ (a, b)
= 0

are satisfied for any µ, υ [30]. In this work, we assume that power series method is regular.
When Θ = 1 and ξu,v = 1 power series method becomes Abel summability method, and it becomes logarithmic summability method if

ξu,v =
1

(u+ 1) (v + 1)
.

Also, power series method becomes Borel summability method when

Θ =∞

and

ξu,v =
1

u!v!
.

Some properties of modified Szász-Mirakyan, Baskakov-Schurer-Szasz and generalized Szasz operators in polynomial weight spaces were
studied by power summability methods in [6–8]. We also note that applications of various statistical summability methods in approximation
theory can be seen in the papers [32–34]. Finally, one can see more information about double sequences in [18, 19], and application of double
sequences in approximation theory in [9, 12, 30].

2 Multivariate Operators

In this part, we give certain recent multivariate Bersntein type operators.
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The following polynomial functions

au,0(ρ;x) = (1− x)u (1− ρ1x),

au,i(ρ;x) = xi(1− x)u−i
((

u

v

)
+ ρi − ρix− ρi+1x

)
, i = 1, 2 . . . , [

u

2
]− 1,

au,[u2 ](ρ;x) = x[
u
2 ](1− x)u−[

u
2 ]
((

u

[u2 ]

)
+ ρ[

u
2 ] − ρ[

u
2 ]x+ ρ[

u
2 ]+1x

)
,

au,i(ρ;x) = xi(1− x)u−i
((

u

v

)
− ρi + ρix+ ρi+1x

)
, i = [

u

2
] + 1, . . . , u− 1,

au,u(ρ;x) = xu(1− ρu + ρux) (1)

are called generalized Bernstein polynomials of degree u (u ≥ 2) and for x ∈ [0, 1] with shape parameters ρi, i = 1, 2, . . . , u, where{
ρi ∈ [−

(u
i

)
,
( u
i−1
)
] ; i = 1, 2, . . . , [u2 ]

ρi ∈ [−
( u
i−1
)
,
(u
i

)
] ; i = [u2 ] + 1, . . . , u

with

{
[u2 ] = u

2 ; if u is even
[u2 ] = u−1

2 ; if u is odd.
(2)

These polynomials were introduced by Han et al. in. [29] and they are reduced to classical Bernstein basis functions bu,i(x) of degree u on
x ∈ [0, 1] which is defined as

bu,i(x) =

(
u

v

)
xi (1− x)u−i, i = 0, . . . , u

when ρi = 0 (i = 1, 2, . . . , u). Generalized Bernstein basis functions with parameters ρi (i = 1, 2, . . . , u) are linearly independent (see [28])
and these basis functions are effectively and flexibly used in designing parametric curves and surfaces (see [28, 29]). These functions also have
partition of unity, symmetry and nonnegativity properties (see [29]). In 2017, Hu et al. [28] have obtained the following equations to convert
classical Bernstein polynomials of degree u to generalized Bernstein polynomials of degree u associated with shape parameters ρi:

au,0(ρ;x) = bu+1,0(x) +

(u
0

)
− ρ1(u+1
1

) bu+1,1(x),

au,i(ρ;x) =

(u
i

)
+ ρi(u+1
i

) bu+1,i(x) +

(u
i

)
− ρi+1(u+1
i+1

) bu+1,i+1(x), i = 1, 2 . . . ,
[u

2

]
− 1,

au,i(ρ;x) =

(u
i

)
+ ρv(u+1
i

) bu+1,i(x) +

(u
i

)
+ ρi+1(u+1
i+1

) bu+1,i+1(x), i =
[u

2

]
,

au,i(ρ;x) =

(u
i

)
− ρi(u+1
i

) bu+1,i(x) +

(u
i

)
+ ρi+1(u+1
i+1

) bu+1,i+1(x), i =
[u

2

]
+ 1, . . . , u− 1,

au,u(ρ;x) =

(u
u

)
− ρu(u+1
u

) bu+1,u(x) + bu+1,u+1(x). (3)

Let C[0, 1] = C be the space of all continuous functions on unit interval [0, 1] and C ([0, 1]× [0, 1]) = C̄. The operators Bνu,Bµv : C −→ C
for any u, v ∈ N are given as follows, respectively,

Bνu(f ; y) =

u∑
i=0

f

(
i

u

)
au,i(νi; y), (4)

Bµv (g; z) =

v∑
j=0

g

(
j

v

)
av,j(µj ; z), (5)

where polynomials au,i(ν; y) and av,j(µ; z) are given in (3). The parametric extension of (4) and (5) for u, v ∈ N and h ∈ C̄ are the operators

Bν,yu ,Bµ,zv : C̄ −→ C̄,

where

Bν,yu (h; y, z) =

u∑
i=0

au,i(νi; y)h

(
i

u
,
i

u

)
, (6)

Bµ,zv (h; y, z) =

v∑
j=0

av,j(µj ; z)h

(
j

v
,
j

v

)
. (7)

The parametric extension of operators defined in (6) and (7) are linear and positive.
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The parametric extensions of bivariate operators commute on C̄. Their product establishes bivariate operators Bν,µu,v : C̄ −→ C̄ defined for
any u, v ∈ N and any h ∈ C̄ by the relation

Bν,µu,v(h; y, z) =

u∑
i=0

v∑
j=0

au,i(νi; y)av,j(µj ; z)h

(
i

u
,
j

v

)
. (8)

Let Lp[0, 1] denote the space of all Lebesgue integrable functions on the interval I. For p arbitrary real values of λs (s = 1, . . . , p) and
z ∈ I the following operator

Kp(ϑ; z;λ) = (p+ 1)

p∑
s=0

ap,s(λ; z)

∫ s+1
p+1

s
p+1

ϑ(t) dt (9)

is called the generalized Bernstein-Kantorovich operators involving shape parameters λs satisfying the conditions (2).
Also, multivariate Bernstein operators were defined in [1] as:

Bp(ϑ; z;λ) = (p+ 1)

p∑
s=0

ap,s(λ; z)ϑ(s/p). (10)

And Stancu version of [1] was defined in [2].

3 Recent results for multivariate Bernstein type operators

Theorem 1. If ϑ is continuous on [0, 1], then L converges uniformly to ϑ on [0, 1], that is,

lim
p→∞

‖Lp(ϑ)− ϑ‖ = 0,

where L is Bp(ϑ; z;λ), Kp(ϑ; z;λ), Sp(ϑ; z;λ).
Also, Korovkin theorem is satisfied for the bivariate cases of these operators.

Proof: Using the moments of mentioned operators we have

lim
p→∞

Lp(e0) = e0, lim
p→∞

Lp(e1;x) = e1

and similarly limp→∞ ‖Lp(e2)− e2‖ = 0. Hence, by the Korovkin theorem, we obtain

lim
p→∞

‖Lp(ϑ)− ϑ‖ = 0.

�

As a future work, we will study Stancu version of Bp(ϑ; z;λ) and Kp(ϑ; z;λ).
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1 Introduction

The idea of fuzzy sets initially introduced by Zadeh [34] to deal with imprecise phenomena as an alternative to classical set theory. After that,
several classical concepts were reconstructed. Fuzzy topological spaces [4, 20], fuzzy metric [13, 16, 18], fuzzy norm [2, 5, 12, 17] are just some
of the examples. Felbin’s fuzzy norm [12], which is associated with Kaleva and Seikkala [16] type metric space by assigning a non-negative
fuzzy real number to each element of a linear space, forms the basis of this study. Das and Das [6] studied fuzzy topology generated by fuzzy
norm. Diamond and Kloeden [9] investigated the metric spaces of fuzzy sets-theory and applications. Fang and Huang [11] studied on the level
convergence of a sequence of fuzzy numbers. Also some other authors [10, 14, 15, 22] studied the notion about of fuzzy numbers and fuzzy
normed space.

Banach [3] defined the generalized limit as an application of Hahn-Banach theorem on the set of all bounded real valued sequences. It is
also known as Banach limit. Later, Lorentz [19] offered that if all Banach limits of a given bounded sequence are equal, it is called almost
convergent. In further studies [8, 26], invariant mean and invariant convergence are given as a more general case of Banach limit and almost
convergence. Also, several authors including Schaefer [30], Mursaleen and Edely [23], Mursaleen [24, 25], Savaş [27, 28] studied on invariant
convergent sequences. Additionally, Yalvaç and Dündar [32] defined invariant convergence in fuzzy normed space.

Lacunary convergent sequences space was given by Freedman et al. in their study [1] where they showed the relation between strong Cesaro
convergent space and the sequence of integers (2r). Further studies about lacunary convergence were done by several author [7, 29].

Now, we recall the basic notions and some important definitions used in our paper (See [1, 2, 5, 8, 10, 12, 14, 17, 19, 21–26, 30–34]).
A fuzzy number is a fuzzy set provided that
(i) u is normal, i.e., there exists an x0 ∈ R such that u(x0) = 1;
(ii) u is fuzzy convex, i.e., u(λx+ (1− λ)y) ≥ min[u(x), u(y)] for x, y ∈ R and 0 ≤ λ ≤ 1;
(iii) u is upper semi-continuous;
(iv) cl{x ∈ R : u(x) > 0} is a compact set.
Let L(R) be denote the set of all fuzzy number.
R can be embedded in L(R) since each r ∈ R can be considered a fuzzy real number r̃ denoted by r̃(t) = 1 if t = r and r̃(t) = 0 if t 6= r.
For u ∈ L(R), the α-level set of u is defined by

[u]α =

{
{x ∈ R : u(x) ≥ α}, if α ∈ (0, 1] ,
cl {x ∈ R : u(x) > α} , if α = 0.

The α-level set of a fuzzy number denoted by [u]α = [u−α , u
+
α ] is a non-empty, bounded and closed interval for each α ∈ [0, 1] where u−α =

−∞ and u+α =∞ are also admissible.
If u ∈ L(R) and u(x) = 0 for x < 0, then u is called a non-negative fuzzy number. Let L∗(R) denote the set of all non-negative fuzzy

number. It is easy to see 0̃ ∈ L∗(R).
A partial ordering � in L(R) is defined by for u, v ∈ L(R),

u � v iff u−α ≤ v−α and u+α ≤ v+α for all α ∈ [0, 1].

Arithmetic equations addition, multiplication and multiplication with a scaler on L(R) are defined by
(i) (u⊕ v) (t) = sups∈R {u (s) ∧ v (t− s)} , t ∈ R
(ii) (u� v) (t) = sups∈Rs6=0 {u (s) ∧ v (t/s)} , t ∈ R
(iii) For k ∈ R+, ku is defined as ku (t) = u (t/k) and 0u (t) = 0̃, t ∈ R.
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Let u, v ∈ L(R) and [u]α = [u−α , u
+
α ], [u]α = [u−α , u

+
α ]. Arithmetic equations in terms of α-level sets are defined by

(i) [u⊕ v]α =
[
u−α + v−α , u

+
α + v+α

]
,

(ii) [u� v]α =
[
u−α .v

−
α , u

+
α .v

+
α

]
, u, v ∈ L∗(R),

(iii) [ku]α = k[u]α =

{
[ku−α , ku

+
α ], k ≥ 0,

[ku+α , ku
−
α ], k < 0.

For u, v ∈ L(R), the supremum metric on L(R) is defined by

D (u, v) = sup
0≤α≤1

max
{∣∣∣u−α − v−α ∣∣∣ , ∣∣∣u+α − v+α ∣∣∣} .

One can see that

D
(
u, 0̃
)
= sup

0≤α≤1
max

{∣∣∣u−α ∣∣∣ , ∣∣∣u+α ∣∣∣} = max
{∣∣∣u−0 ∣∣∣ , ∣∣∣u+0 ∣∣∣} .

Obviously, D
(
u, 0̃
)
= u+α when u ∈ L∗(R).

A sequence (un) in L(R) is called convergent to u ∈ L(R) denoted by D − lim
n→∞

un = u if limn→∞D(un, u) = 0, i.e., for all given
ε > 0 there exists a positive integer N = N(ε) ∈ R such that D (un, u) < ε, for n > N .

Let X be a vector space over R, ‖.‖ : X → L∗ (R) and the mappings L,R : [0, 1]× [0, 1]→ [0, 1] be symmetric, nondecreasing in both
arguments and satisfy L (0, 0) = 0 and R(1, 1) = 1.

The quadruple (X, ‖.‖ , L,R) is called fuzzy normed linear space (FNS) and ‖.‖ is a fuzzy norm if the following axioms are satisfied
(i) ‖x‖ = 0̃ iff x = θ,
(ii) ‖rx‖ = |r| � ‖x‖ for x ∈ X, r ∈ R,
(iii) For all x, y ∈ X
(a) ‖x+ y‖ (s+ t) ≥ L (‖x‖ (s) , ‖y‖ (t)) ,

whenever s ≤ ‖x‖−1 , t ≤ ‖y‖
−
1 and s+ t ≤ ‖x+ y‖−1 ,

(b) ‖x+ y‖ (s+ t) ≤ R (‖x‖ (s) , ‖y‖ (t)) ,
whenever s ≥ ‖x‖−1 , t ≥ ‖y‖

−
1 and s+ t ≥ ‖x+ y‖−1 .

When L = min and R = max are taken in above (iii), triangle inequalities become

‖x+ y‖−α ≤ ‖x‖−α + ‖y‖−α and ‖x+ y‖+α ≤ ‖x‖+α + ‖y‖+α

for all α ∈ (0, 1] and x, y ∈ X . Since they fulfil the all conditions of norm, ‖x‖−α and ‖x‖+α can be seen as ordinary norms on X .

Example 1. Let
(
X, ‖.‖C

)
be an ordinary normed linear space. Then, a fuzzy norm ‖.‖ on X can be obtained

‖x‖ (t) =


0, if 0 ≤ t ≤ a ‖x‖C or t ≥ b ‖x‖C ,

t
(1−a)‖x‖C

− a
1−a , if a ‖x‖C ≤ t ≤ ‖x‖C ,

−t
(b−1)‖x‖C

+ b
b−1 , if ‖x‖C ≤ t ≤ b ‖x‖C ,

where ‖x‖C is the ordinary norm of x (6= θ) , 0 < a < 1 and 1 < b <∞. For x = θ, define ‖x‖ = 0̃.Hence (X, ‖.‖) is a fuzzy normed linear
space.

Throughout paper let (X, ‖.‖) be an fuzzy normed linear space (FNS).
A sequence (xn)

∞
n=1 in X is convergent to x ∈ X with respect to the fuzzy norm on X and we denote by xn

FN→ x, provided that
(D)− lim

n→∞
‖xn − x‖ = 0̃, i.e., for every ε > 0 there is an N (ε) ∈ N such that D

(
‖xn − x‖ , 0̃

)
< ε, for all n > N (ε) . This means that

for every ε > 0 there is an N (ε) ∈ N such that for all n > N (ε) ,

sup
α∈[0,1]

‖xn − x‖+α = ‖xn − x‖+0 < ε.

Let σ be a mapping of the positive integers into itself. A continuous linear functional φ on `∞, the space of real bounded sequences, is said
to be an invariant mean or a σ mean if and only if

(i) φ(x) ≥ 0, when the sequence x = (xn) has xn ≥ 0 for all n,
(ii) φ(e) = 1, where e = (1, 1, 1...),
(iii) φ(xσ(n)) = φ(x) for all x ∈ `∞.
The mappings σ are assumed to be one-to-one and satisfied the condition σm(n) 6= n for all positive integers n andm, where σm(n) denotes

the mth iterate of the mapping σ at n. Invariant mean, φ, is a extension of the limit functional on c, the space of convergent sequences, in the
sense that φ(x) = limx for all x ∈ c. The sequence is called invariant convergent when its invariant means are equal. In case σ(n) = n+ 1,
the σ mean is often called a Banach limit and invariant convergent is almost convergent.
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A bounded sequence (xn) is σ-convergent to the number L if lim
m→∞

tmn = L uniformly in m, where

tmn =
xn + xσ(n) + xσ2(n) + · · ·+ xσm(n)

m+ 1
.

A sequence x = (xn) in fuzzy normed spaceX is invariant convergent toLwith respect to fuzzy norm if (D)− limm→∞ ‖tmn − L‖ =
∼
0 ,

uniformly in n, Namely, for given ε > 0 there exists m0 = m0(ε) ∈ N such that for all m > m0,

D(‖tmn − L‖,
∼
0) = sup

α∈[0,1]
‖tmn − L‖+α = ‖tmn − L‖+0 < ε, for every n ∈ N.

An increasing sequence of non-negative integers θ = (kr) with k0 = 0 and hr = kr − kr−1 →∞, is called lacunary sequence. The
intervals determined by θ are denoted by Ir = (kr−1, kr] and the ratio kr

kr−1
is given by qr.

For any lacunary sequence θ = (kr), the sequence x = (xn) is lacunary convergent to L if

lim
r→∞

1

hr

∑
i∈Ir

(xi − L) = 0.

2 Main Results

We firstly give the concept of lacunary invariant convergence in fuzzy normed spaces. After then, we show that the uniqueness of the limit of
the lacunary invariant convergent sequence in fuzzy normed spaces. Also, we investigate the linearity of this new concept.

Definition 1. For any lacunary sequence θ = (kr), the sequence x = (xn) is lacunary invariant convergent to L with respect to fuzzy norm

and denoted by xn
σ−FNθ−→ L, if

lim
r→∞

D

∥∥∥∥∥∥ 1

hr

∑
i∈Ir

xσi(n) − L

∥∥∥∥∥∥ ,∼0
 = lim

r→∞

∥∥∥∥∥∥ 1

hr

∑
i∈Ir

xσi(n) − L

∥∥∥∥∥∥
+

0

= 0,

unifomly in n; that is, for every ε > 0, there exists r0 ∈ N such that for all r > r0,

D

∥∥∥∥∥∥ 1

hr

∑
i∈Ir

xσi(n) − L

∥∥∥∥∥∥ ,∼0
 =

∥∥∥∥∥∥ 1

hr

∑
i∈Ir

xσi(n) − L

∥∥∥∥∥∥
+

0

< ε,

for all n ∈ N.

Theorem 1. Let θ = (kr) be a lacunary sequence, (X, ‖.‖) be a fuzzy normed space and x = (xn) be a sequence in X. If x is lacunary
invariant convergent to L, then L is unique.

Proof: Let’s assume that

xn
σ−FNθ−→ L1 and xn

σ−FNθ−→ L2,

for

L1 6= L2.

Then for every ε > 0, there exists r1 ∈ N such that for all r > r1,∥∥∥∥∥∥ 1

hr

∑
i∈Ir

xσi(n) − L1

∥∥∥∥∥∥
+

0

<
ε

2
,

for all n ∈ N and for the given ε > 0, there exists r2 ∈ N such that for all r > r2,∥∥∥∥∥∥ 1

hr

∑
i∈Ir

xσi(n) − L2

∥∥∥∥∥∥
+

0

<
ε

2

for all n ∈ N. Take

r0 = max{r1, r2}.
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Then for all r > r0,

‖L1 − L2‖+0 ≤

∥∥∥∥∥∥ 1

hr

∑
i∈Ir

xσi(n) − L1

∥∥∥∥∥∥
+

0

+

∥∥∥∥∥∥ 1

hr

∑
i∈Ir

xσi(n) − L2

∥∥∥∥∥∥
+

0

≤ ε

2
+
ε

2
= ε,

for all n ∈ N. Since for all ε > 0,

‖L1 − L2‖+0 ≤ ε

and so, we have

L1 = L2.

�

Theorem 2. Let θ = (kr) be a lacunary sequence, (X, ‖.‖) be a fuzzy normed space and x = (xn), y = (yn) be sequences in X . If x and y
are lacunary invariant convergent to L1 and L2, respectively then the sequence x+ y is lacunary invariant convergent to L1 + L2.

Proof: Let’s assume that

xn
σ−FNθ−→ L1 and yn

σ−FNθ−→ L2.

Then, for every ε > 0, there exists r1 ∈ N such that for all r > r1,

∥∥∥∥∥∥ 1

hr

∑
i∈Ir

xσi(n) − L1

∥∥∥∥∥∥
+

0

<
ε

2
,

for all n ∈ N and for given ε > 0, there exists r2 ∈ N such that for all r > r2,

∥∥∥∥∥∥ 1

hr

∑
i∈Ir

yσi(n) − L2

∥∥∥∥∥∥
+

0

<
ε

2
,

for all n ∈ N. Take

r0 = max{r1, r2}.

Then for all r > r0,

∥∥∥∥∥∥
 1

hr

∑
i∈Ir

xσi(n) +
1

hr

∑
i∈Ir

yσi(n)

− (L1 + L2)

∥∥∥∥∥∥
+

0

≤

∥∥∥∥∥∥ 1

hr

∑
i∈Ir

xσi(n) − L1

∥∥∥∥∥∥
+

0

+

∥∥∥∥∥∥ 1

hr

∑
i∈Ir

yσi(n) − L2

∥∥∥∥∥∥
+

0

≤ ε

2
+
ε

2
= ε,

for all n ∈ N. Hence we have

xn + yn
σ−FNθ−→ L1 + L2.

�

Theorem 3. Let θ = (kr) be a lacunary sequence, (X, ‖.‖) be a fuzzy normed space and x = (xn) be a sequence in X . If x is lacunary
invariant convergent to L and c is a scaler then the sequence cx = (cxn) is lacunary invariant convergent to cL.
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Proof: Let’s assume that xn
σ−FNθ−→ L and c is a scaler. Then for every ε > 0, there exists r0 ∈ N such that for all r > r0,∥∥∥∥∥∥ 1

hr

∑
i∈Ir

xσi(n) − L

∥∥∥∥∥∥
+

0

<
ε

|c| ,

for all n ∈ N. Therefore, we have ∥∥∥∥∥∥ 1

hr

∑
i∈Ir

cxσi(n) − cL1

∥∥∥∥∥∥
+

0

= |c|

∥∥∥∥∥∥ 1

hr

∑
i∈Ir

xσi(n) − L1

∥∥∥∥∥∥
+

0

< |c| ε|c|
= ε,

for all n ∈ N. So we conclude

(cxn)
σ−FNθ−→ cL.

�
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