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eevrenkara@duzce.edu.tr

Mahmut Akyiğit
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Abstract: In this paper, we investigate the quaternionic expression of the ruled surfaces drawn by the motion of the Bishop vectors.
The distribution parameters, the pitches, and the angle of pitches of the ruled surfaces are calculated as quaternionic.

Keywords: Distribution parameter, Angle of pitch, Bishop Frame, Ruled surface, Spatial quaternion, Quaternion, The pitch.

1 Introduction

The quaternion was discovered in 1843 by Hamilton [1]. Quaternions arose historically from Hamilton’s essays in the mid-nineteenth century
to generalize complex numbers in some way that would apply to three-dimensional (3D) space. A feature of quaternions is closely related to
3D rotations, a fact apparent to Hamilton almost immediately but first published by Hamilton’s contemporary Arthur Cayley in 1845 [2]. The
technology did not penetrate the computer animation community until the landmark Siggraph 1985 paper of Ken Shoemake [3]. The importance
of Shoemake’s paper is that it took the concept of the orientation frame for moving 3D objects and cameras, which require precise orientation
specification, exposed the deficiencies of the then-standard Euler-angle methods, and introduced quaternions to animators as a solution. The
Serret-Frenet formulae for quaternionic curves in IR3 and IR4 were introduced by K. Bharathi and M. Nagaraj [4]. There are lots of studies that
investigated quaternionic curves by using this study. One of them is Karadağ and Sivridağ’s study whose they gave many characterizations for
quaternionic inclined curves in IR4 [5]. Şenyurt et al. calculated curvature and torsion of spatial quaternionic involute curve according to the
normal vector and the unit Darboux vector of Smarandache curve [6]. In [7], the authors investigated the ruled surface as spatial quaternionic.
They quaternionally calculated the integral invariants of the ruled surface. Bishop frame, which is called alternate or parallel frame of curves
depending on parallel vector fields, was defined by Bishop. Thanks to this frame, Bishop frame is used as an alternative roof for situations where
the Frenet frame cannot be defined (especially where the second derivative of the curve is zero) [8]. Hanson and Hui investigated Bishop frame
as quaternion. They found interesting results [9]. Masal and Azak attempted to introduce ruled surfaces generated from the Bishop vectors.
Some properties of integral invariants of these surfaces were discussed and they obtained some important results [10]. Tunçer examined ruled
surfaces generated from the Bishop vectors with different method and he obtained some characterizations [11].

A surface is said to be "ruled" if it is generated by moving a straight line continuously in Euclidean space IR3. Ruled surfaces are one of
the simplest objects in geometric modeling. One important fact about ruled surfaces is that they can be generated by straight lines. A practical
application of ruled surfaces is that they are used in civil engineering. The result is that if engineers are planning to construct something with
curvature, they can use a ruled surface since all the lines are straight. Among ruled surfaces, developable surfaces form an important subclass
since they are useful in sheet metal design and processing [12, 13].

In this study, we investigate the ruled surfaces drawn by the motion of the Bishop vectors as quaternionic. We calculate integral invariants of
the ruled surface with the theory of quaternion.

2 Preliminaries

In E3, the standard inner product is given by 〈x, x〉 = x21 + x22 + x23 where x = (x1, x2, x3) ∈ E3. Let α : I → E3 be a unit speed curve.
Denote by {~T (s), ~N(s), ~B(s)} the moving Frenet frame. ~T (s) is the tangent vector field, ~N(s) is the principal normal vector field and ~B(s)
is the binormal vector field of the curve α, respectively. The Frenet formulas are given by [14]

~T ′(s) = κ(s) ~N(s), ~N ′(s) = −κ(s)~T (s) + τ(s) ~B(s), ~B′(s) = −τ(s) ~N(s).

Here curvature and torsion of the curve α are defined with [14]

κ(s) = ‖α′′(s)‖, τ(s) =
〈α′(s) ∧ α′′(s), α′′′(s)〉
‖α′(s) ∧ α′′(s)‖2

·
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Bishop frame, which is called alternate or parallel frame of curves depending on parallel vector fields, was defined by Bishop. Bishop’s
equations are similar to the Frenet equations:  T ′(s)

N ′1(s)
N ′2(s)

 =

 0 k1 k2
−k1 0 0
−k2 0 0

 T (s)
N1(s)
N2(s)

 , (1)

where k1(s) and k2(s) are Bishop curvatures. The formulas between Bishop curvatures and Frenet curvatures are [9, 10]

κ =
√
k21 + k22, θ = arctan(

k2
k1

), τ = θ′(s),

k1(s) = κ(s) cosφ(s), k2(s) = κ(s) sinφ(s).

On the other hand, Steiner rotation and Steiner translation vectors are

D =

∮
(−k2N1 + k1N2)ds, V =

∮
dα,

respectively, [10].
Real quaternion is defined by the 1, e1, e2, e3. 1 is a real number, e1, e2, e3 are vectors with the following properties:

e1
2 = e2

2 = e3
2 = e1 × e2 × e3 = −1, e1, e2, e3 ∈ IR3,

e1 × e2 = e3, e2 × e3 = e1, e3 × e1 = e2. (2)

The 4-dimensional real Euclidean space IR4 is identified with the space of real quaternions

K =
{
q = d+ ae1 + be2 + ce3|a, b, c, d ∈ IR, ~e1, e2, e3 ∈ IR3}

in [4, 15].
Let q1 = Sq1 + Vq1 = d1 + a1e1 + b1e2 + c1e3 and q2 = Sq2 + Vq2 = d2 + a2e1 + b2e2 + c2e3 be two quaternions in K, the quaternion
multiplication of q1 and q2 is given by

q1 × q2 = d1d2 − (a1a2 + b1b2 + c1c2) + (d1a2 + a1d2 + b1c2 − c1b2)e1

+ (d1b2 + b1d2 + b1a2 − a1b2)e2 + +(d1c2 + c1d2 + a1b2 − b1a2)e3.

The symmetric real-valued bilinear form h which is defined as

h : K×K→ IR, h(q1, q2) =
1

2
(q1 × q̄2 + q2 × q̄1)

is called quaternion inner product [4]. Let q be a real quaternion. Its conjugate is q̄ = Sq − Vq. The norm of a real quaternion is a real number
in the form of

N(q) =
√
h(q, q) =

√
d2 + a2 + b2 + c2.

If N(q) = 1, q is called a unit quaternion. Invers of real quaternion is q−1 =
q̄

N(q)
· Quaternion the division is noncommutative, and is

defined by the (order-dependent) relations r1 = q1 × q2−1, r2 = q2
−1 × q1. Where r1 is the right division, r2 is the left division [15]. The

three-dimensional real Euclidean space IR3 is identified with the space of spatial quaternions

Q = {q ∈ K | q + q̄ = 0}

in the obvious manner [4]. In this case, the elements ofQ are q = ae1 + be2 + ce3. As a result, the quaternion multiplication of the two spatial
quaternions is [15]

q1 × q2 = −〈q1, q2〉+ q1 ∧ q2. (3)

Definition 1. Let s ∈ .I = [0, 1] be the arc parameter along the smooth curve

α : [0, 1]→ Q, α(s) =
3∑

i=1

αi(s)ei.

This is called a spatial quaternionic curve [4].
Definition 2. A ruled surface in IR3 is a surface that contains at least one 1-parameter family of straight lines. Thus a ruled surface has a
parametrization in the form

ϕ : I × IR→ IR3, −→ϕ (s, v) = −→α (s) + v−→x (s),

where we call α the anchor curve, X the generator vector of the ruled surface [14].
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The quaternionic express of distribution parameter (drall) belonging to the ruled surface is given by [7]

Px =
h(~x× ~x′, α′)

N(~x′)2
=

1

2

(
(~x× ~x′)× α′ + α′ × (~x× ~x′)

)
N(~x′)2

· (4)

The angle of pitch and the pitch of the closed quaternionic ruled surface, λx and Lx , are equal to the projection of the generator x on the Steiner
rotation vector ~D and the Steiner translation vector ~V [7]

λx = h(
−→
D,−→x ), (5)

Lx = h(
−→
V ,−→x ). (6)

3 The Quaternionic Ruled Surfaces in terms of Bishop Frame

The ruled surfaces drawn by the motion of the Bishop vectors are given by

ϕT (s, v) = ~α(s) + v ~T (s),

ϕN1
(s, v) = ~α(s) + v ~N1(s),

ϕN2
(s, v) = ~α(s) + v ~N2(s).

Using the equation 4, the distribution parameter of the closed spatial quaternionic ruled surface drawn by the motion of the principal vectors ~T
belonging to the spatial quaternionic curve α is

PT =
h(~T × ~T ′, ~α′)

N(~T ′)2
· (7)

Considering the equations 1 and 3, we obtain

h(~T × ~T ′, ~T ) =
1

2

(
(~T × ~T ′)× ~T + ~T × (~T × ~T ′)

)
=

1

2

(
(~T × (k1 ~N1 + k2 ~N2))× ~T + ~T × (~T × (k1 ~N1 + k2 ~N2))

)
=

1

2

(
(k1(~T × ~N1) + k2(~T × ~N2))× ~T + ~T × (k1(~T × ~N1) + k2(~T × ~N2))

)
=

1

2

(
(k1(−〈~T , ~N1〉+ ~T ∧ ~N1) + k2(−〈~T , ~N2〉+ ~T ∧ ~N2))× ~T

+~T × (k1(−〈~T , ~N1〉+ ~T ∧ ~N1) + k2(−〈~T , ~N1〉+ ~T ∧ ~N1))
)

=
1

2

(
(k1 ~N2 − k2 ~N1)× ~T + ~T × (k1 ~N2 − k2 ~N1)

)
= 0.

If this value is substituted in equation 7, PT = 0 is found.
Similarly, the distribution parameter of the closed spatial quaternionic ruled surface drawn by the motion of the vector ~N1 is

PN1
=
h( ~N1 × ~N1

′
, ~α′)

N( ~N1
′
)2

· (8)

Considering the equations 1 and 3, we can write

h( ~N1 × ~N1
′
, ~T ) =

1

2

(
( ~N1 × ~N1

′
)× ~T + ~T × ( ~N1 × ~N1

′
)
)

=
1

2

(
( ~N1 × (−k1 ~T ))× ~T + ~T × ( ~N1 × (−k1 ~T ))

)
=

1

2

(
− ( ~N1 × ~T )× k1(~T × ~T )− (~T × ~N1)× (k1(~T × ~T ))

)
= 0.

If this value is substituted in equation 8, PN1
= 0 is found.
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Similarly, the distribution parameter of the closed spatial quaternionic ruled surface drawn by the motion of the vector ~N2 is

PN2
=
h( ~N2 × ~N2

′
, ~α′)

N( ~N2
′
)2

· (9)

Considering the equations 1 and 3, we can write

h( ~N2 × ~N2
′
, ~T ) =

1

2

(
( ~N2 × ~N2

′
)× ~T + ~T × ( ~N2 × ~N2

′
)
)

=
1

2

(
( ~N2 × (−k2 ~T ))× ~T + ~T × ( ~N2 × (−k2 ~T ))

)
=

1

2

(
− ( ~N2 × ~T )× k2(~T × ~T )− (~T × ~N2)× (k2(~T × ~T ))

)
= 0.

If this value is substituted in equation 9, PN2
= 0 is found.

Corollary 1. The ruled surfaces drawn by the motion of the Bishop vectors are developable as quaternionic.

Theorem 1. The pitches of the closed spatial quaternionic ruled surfaces drawn by the Bishop vectors are

LT =

∮
ds, LN1

= LN2
= 0.

Proof: According to the equations 3 and 6, the pitches of the closed spatial quaternionic ruled surfaces drawn by the motion of the Bishop
vectors belonging to the spatial quaternionic curve α are as follows:

LT = h(

∮
d~α, ~T ) = h(

∮
~Tds, ~T ) =

1

2

(
~T

∮
ds× ~T + ~T × ~T

∮
ds
)

=

∮
ds,

LN1
= h(

∮
d~α, ~N1) = h(

∮
~Tds, ~N1) =

1

2

(
~T

∮
ds× ~N1 + ~N1 × ~T

∮
ds
)

=
1

2

((
~T × (−N1)

) ∮
ds+

(
N1 × (−~T )

) ∮
ds
)

= 0,

LN2
= h(

∮
d~α, ~N2) = h(

∮
~Tds, ~N2) =

1

2

(
~T

∮
ds× ~N2 + ~N2 × ~T

∮
ds
)

= 0.

�

Theorem 2. The angle of pitches of the closed spatial quaternionic ruled surfaces drawn by the Bishop vectors are

λT = 0, λN1
= −

∮
k2ds, λN2

=

∮
k1ds.

Proof: According to the equations 3 and 5, the angles of pitches of the closed spatial quaternionic ruled surfaces drawn by the motion of the
Bishop vectors belonging to the spatial quaternionic curve α are as follows:

λT = h( ~D, ~T ) =
1

2

(
~D × ~T + ~T × ~D

)
=

1

2

((∮
(−k2N1 + k1N2)ds

)
× ~T + ~T ×

(∮
(−k2N1 + k1N2)ds

))

=
1

2

(
~N1 × ~T

∮
k2ds− ~N2 × ~T

∮
k1ds+ ~T × ~N1

∮
k2ds− ~T × ~N2

∮
k1ds)

)
=

1

2

(
− ~N2

∮
k2ds− ~N1

∮
k1ds+ ~N2

∮
k2ds+ ~N1

∮
k1ds)

)
= 0,
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λN1
= h( ~D, ~N1) =

1

2

(
~D × ~N1 + ~N1 × ~D

)
=

1

2

((∮
(−k2N1 + k1N2)ds

)
× ~N1 + ~N1 ×

(∮
(−k2N1 + k1N2)ds

))

=
1

2

(
( ~N1 × ~N1)

∮
k2ds− ( ~N2 × ~N1)

∮
k1ds+ ( ~N1 × ~N1)

∮
k2ds

−( ~N1 × ~N2)

∮
k1ds)

)
= −

∮
k2ds,

λN2
= h( ~D, ~N2) =

1

2

(
~D × ~N2 + ~N2 × ~D

)
=

1

2

((∮
(−k2N1 + k1N2)ds

)
× ~N2 + ~N2 ×

(∮
(−k2N1 + k1N2)ds

))

=
1

2

(
( ~N1 × ~N2)

∮
k2ds− ( ~N2 × ~N2)

∮
k1ds+ ( ~N2 × ~N1)

∮
k2ds

−( ~N2 × ~N2)

∮
k1ds)

)
=

∮
k1ds.

�

4 Conclusion

The distribution parameter, pitch, and angle of pitch are the invariants in the ruled surface. We quaternionically express the ruled surface drawn
by the Bishop vectors. These invariants are quaternionically calculated for ruled surfaces.
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Abstract: Our main interest in this paper is to explore dual-generalized complex (DGC) Oresme sequence extension. We present
two new types of Oresme numbers. We investigate special linear recurrence relations and summation properties for DGC Oresme
numbers of type-1. Furthermore, we describe the recurrence relation of DGC Oresme numbers of type-1 in matrix form. We also
discuss the theory using the doubling approach to DGC Oresme sequence and then investigate all of the notions for type-2.
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1 Literature Review

Recurrence sequences attract much interest and have been a central part of number theory for a long time now. Moreover, these sequences
appear almost everywhere, not only in mathematics but also in physics, engineering, cryptography, biology, economics, computer algorithms,
and in our daily lives, for instance, the interest portion of monthly payments made to pay off something.

Horadam sequenceWn (a, b; p, q), where a, b, p, q are arbitrary integers andW0 = a,W1 = b, so named after the papers of A. F. Horadam,
is a special linear recurrence sequence∗. With special specific values of (a, b; p, q), the Horadam sequence reduces to the Fibonacci, gen-
eralized Fibonacci, Lucas, generalized Lucas, Pell, Pell-Lucas, modified Pell, Jacobsthal, Jacobsthal-Lucas, Mersenne, Fermat, balancing,
Lucas-balancing, and so on. Many direct or indirect publications on this sequence have appeared in the literature, i.e., [1–10].

Furthermore, one can extend the values of p, q in Horadam sequence to be arbitrary rational numbers. In the mid-fourteenth century, French
philosopher and naturalist N. Oresme studied on the sum of the sequence of rational numbers:

1

2
,
2

4
,
3

8
,
4

16
,
5

32
,
6

64
,

7

128
,

8

256
, ....

Unfortunately, Oresme’s original working papers remained unpublished. The derivation of Oresme sequence from the general Horadam
sequence (for a = 0, b = 1

2 , p = 1, q = 1
4 ), were discussed in [12], as a special case. The properties of Oresme numbers were investigated

by Horadam’s paper [12]. The biological role of this special sequence is an answer to the question, "if we know the first two terms, i.e., the
proportion of grandparents and parents of different genotypes, how do we calculate the proportions in any later generations?" as L. Hogben
remark [13].

In 2004, C. K. Cook presented the generalization of Oresme numbers in more than one way and established identities analogous to
Horadam’s, [14]. In 2019, T. Goy considered some families of Toeplitz-Hessenberg determinants, the entries of which are Oresme num-
bers. These determinant formulas were rewritten as identities involving the sums of products of Oresme numbers and multinomial coefficients,
[15]. In 2019, G. Cerda-Morales studied the generalization of Oresme numbers with a new sequence of numbers called Oresme polynomi-
als. Moreover, using the matrix methods for Oresme polynomials, the identities, including the general bilinear index-reduction formula, were
obtained. Finally, Oresme polynomials that are natural extensions of the k−Oresme numbers were introduced and investigated, [16]. In 2020,

∗Some of the special cases of Horadam sequence can be found in OEIS, [11]. More specifically,

• A085939 for Horadam sequence Wn(0, 1; 6, 4),

• A085449 for Horadam sequence Wn(0, 1; 4, 2),

• A085504 for Horadam sequence Wn(0, 1; 9, 3),

• A000045 for Fibonacci sequence Wn(0, 1; 1,−1),

• A000032 for Lucas sequence Wn(2, 1; 1,−1),
• A000129 for Pell sequence Wn(0, 1; 2,−1),
• A273692 for Oresme sequence Wn

(
0, 1

2
; 1, 1

4

)
.
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the characteristic equation of each Fibonacci, Lucas, Mersenne, Oresme, Jacobsthal, Pell, Leonardo, Padovan, Perrin and Narayana sequence
was given, and then their respective roots were investigated and analyzed, through fractal theory based on Newton’s method, [17]. For that,
Google Colab was used as a technological tool, [17]. In 2021, the authors extended the generalization of the matrix form of Oresme sequence to
the field of integers. In addition, the hybrid Oresme sequence was introduced, and mathematical properties and theorems were obtained, [18].
In other respect, 2-component number systems can be classified as follows:

• complex numbers C with elements z = a+ bi, i2 = −1, [19],
• hyperbolic (double, binary, split complex, perplex) numbers H with elements z = a+ bj, j2 = 1, j 6= ±1, [20–22],
• dual numbers D with elements, z = a+ bε, ε2 = 0, ε 6= 0, [20, 23, 24].

The generalization of the above systems is the set of generalized-complex numbers:

Cp :=
{
z = a+ bJ : a, b ∈ R, J2 = p, p ∈ R, J 6∈ R

}
examined in [25, 26], which led to the construction of other n-dimensional number systems. Cp is a vector space over R. It is an analog to
complex numbers C for p = −1, hyperbolic numbers H for p = 1 and dual numbers D for p = 0.

Additionally, some of the four-component number systems which can be constructed by utilizing the complex, hyperbolic and dual two-
component systems are:

• complex-hyperbolic numbers (or hyperbolic-complex) in [25, 27–30],
• complex-dual numbers (or dual-complex) in [27, 31–33],
• dual-hyperbolic numbers in [27, 28],
• bicomplex numbers, as an extension of complex numbers, in [34–37],
• bihyperbolic numbers, as an extension of hyperbolic numbers, in [37–41],
• hyper-dual numbers, as an extension of dual numbers, in [42–44].

Taking into account all of these and using the Cayley-Dickson doubling procedure for construction, the dual-generalized complex (DGC)
are investigated in [45], considering various properties and matrix representations. The set of DGC numbers are defined as [45]:

DCp :=
{
ã = z1 + z2ε : z1, z2 ∈ Cp, ε

2 = 0, ε 6= 0, ε 6∈ R
}
.

It is analog to dual-complex numbers for p = −1, dual-hyperbolic numbers for p = 1 and hyperdual numbers for p = 0.
With the help of dual numbers and dual-complex numbers, dual-complex generalized k−Horadam numbers have been carefully scrutinized

in [46]. Hyper-dual Horadam numbers have been studied, and the characteristic identities for Horadam numbers have been presented in [47].
The Horadam Hybrid numbers and the relations about them have been examined in [48, 49]. The Binet formula and the generating function
of bicomplex Horadam numbers have been described, and two important identities that relate the matrix theory to the second-order recurrence
relations are obtained [50]. The dual-hyperbolic Horadam numbers and their well-known identities have been discussed in [51]. Finally, the
DGC Horadam numbers are defined and the relations about them are presented in [52].

In this present study, we are interested in the following three problems.

Problem 1. Is it possible to extend the Oresme sequence for the DGC numbers?

Problem 2. If the answer to Problem 1 is affirmative, what relations and properties are satisfied?

Problem 3. Is it possible to define a new DGC Oresme sequence by using a doubling process?

This paper is organized as follows: Section 2 presents general information for Oresme sequence,DGC numbers andDGC Horadam sequence.
Section 3 and Section 4 are the main contributions of this paper. In Section 3, we attempt to extend some related computational results about
Oresme sequence to DGC Oresme sequence. Furthermore, within the framework of the doubling process, we define another DGC Oresme
sequence and discuss its relations in Section 4. In the conclusion section, we reduce DGC Oresme sequence to dual complex, hyper-dual and
dual-hyperbolic Oresme sequences.

2 Basic Notations and Arguments

First, let us recall DGC numbers. Then also recall Oresme sequence as a special case of the Horadam sequence introducing some properties.
Additionally, considering the paper [52], we present major elements of the DGC Horadam sequence.

2.1 DGC Numbers

The DGC numbers are of the form [45]:
ã = z1 + z2ε = a1 + a2J + a3ε+ a4Jε.

The base elements {1, J, ε, Jε} satisfy the conditions as follows:

J2 = p, (Jε)2 = 0, Jε = εJ. (1)

The operations for DGC numbers are given as follows, respectively:

• equality: ã1 = ã2 ⇔ z11 = z21, z12 = z22,
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• addition (and hence subtraction): ã1 + ã2 = (z11 + z21) + (z12 + z22) ε,
• scalar multiplication: λã1 = λz11 + λz12ε,
• multiplication: ã1ã2 = (z11z21) + (z11z22 + z12z21) ε,

where ã1 = z11 + z12ε, ã2 = z21 + z22ε ∈ DCp and λ ∈ R. DCp is a commutative ring with unity and a vector space over real numbers.
For further information, we refer the reader to [45].

2.2 Horadam Sequence and Its Special Types

Definition 1. For a, b, p, q ∈ Z, the generalized sequence of Wn (a, b; p, q), briefly Wn, is satisfied in the following second-order recurrence
relation

Wn (a, b; p, q) = pWn−1 − qWn−2, (2)

where initial conditions are W0 = a, W1 = b. In honor of Horadam, this general sequence is called a Horadam sequence, [1–3].

Definition 2. The n-th Oresme sequence, briefly On, is satisfied in the following second-order recurrence relation, [12]:

On = On−1 −
1

4
On−2, ∀n ∈ Z, (3)

where initial conditions are O0 = 0, O1 = 1
2 , that is special kind of Horadam sequence obtained by taking a = 0, b = 1

2 , p = 1, q = 1
4 in

equation (2).

Remark 1. ∀n ∈ N, the following recurrence relation can also be written for Oresme numbers with negative subscripts (see in [18]):

O−n = 4O−n+1 − 4O−n+2. (4)

Hence we can write several values of Oresme numbers as follows:

... O−6 O−5 O−4 O−3 O−2 O−1 O0 O1 O2 O3 O4 O5 O6 ...

... −384 −160 −64 −24 −8 −2 0
1

2

1

2

3

8

1

4

5

32

3

32
...

Also, the characteristic equation of Oresme sequence is determined by x2 − x+ 1
4 = 0.

Theorem 1. The permutation of rows and columns of the O generating matrix can be performed by obtaining another matrix from Oresme
sequence, totaling the following matrices for positive and negative integer terms as follows (see details in [16, 18]):

• For O =

[
1 − 1

4
1 0

]
and n ≥ 1, we have On =

[
2On+1 − 1

2On

2On − 1
2On−1

]
in [18].

• For O =

[
0 1
− 1

4 1

]
and n ≥ 1, we have On =

[
− 1

2On−1 2On

− 1
2On 2On+1

]
in [18].

• For O =

[
0 1
−4 4

]
and n > 0, we have On =

[
2O−n+1 − 1

2O−n
2O−n − 1

2O−n−1

]
in [18].

• For O =

[
4 −4
1 0

]
and n > 0, we have On =

[
− 1

2O−n−1 2O−n
− 1

2O−n 2O−n+1

]
in [18].

Proposition 1. Let On be n-th Oresme number. Then the following properties hold:

1. On = 1
2Un−1, where Un =Wn

(
1, 1; 1, 14

)
,

2. limn→∞On = 0,

3. limn→−∞On = −∞,

4. limn→∞
On

On−1
=

1

2
,

5. On =
n

2n
, n ∈ Z

6. OnO−n = −n2,

7.
O−n
On

= −22n,

8. On+2 −
3

4
On +

1

4
On−1 = 0,

9. On+2 −
3

4
On+1 +

1

16
On−1 = 0,

10.
n−1∑
j=0

Oj = 4

(
1

2
−On+1

)
,

11.
∞∑
j=0

Oj = 2,

12.
n−1∑
j=0

(−1)jOj =
4

9

(
−
1

2
+ (−1)n (On+1 − 2On)

)
,

13.
n−1∑
j=0

O2j =
4

9
(2 +O2n−1 − 5O2n) ,

14.
n−1∑
j=0

O2j+1 =
1

9
(10 + 5O2n−1 − 16O2n).

Definition 3. The DGC Horadam sequence W̃n (a, b; p, q) is defined by:

W̃n =Wn +Wn+1J +Wn+2ε+Wn+3Jε

and satisfy the following recurrence relation:
W̃n = pW̃n−1 − qW̃n−2, (n ≥ 2) .

For details, we refer the reader to [52].
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DGC Horadam numbers can be exactly examined in Table 1 as follow:

W̃n (a, b; p, q) DGC Horadam sequence
W̃n (0, 1; 1,−1) DGC Fibonacci sequence
W̃n (0, 1; p, q) DGC Generalized Fibonacci sequence
W̃n (2, 1; 1,−1) DGC Lucas sequence
W̃n (2, p; p, q) DGC Generalized Lucas sequence
W̃n (0, 1; 2,−1) DGC Pell sequence
W̃n (2, 2; 2,−1) DGC Pell-Lucas sequence
W̃n (1, 1; 2,−1) DGC Modified Pell sequence
W̃n (0, 1; 1,−2) DGC Jacobsthal sequence
W̃n (2, 1; 1,−2) DGC Jacobsthal-Lucas sequence
W̃n (0, 1; 3, 2) DGC Mersenne sequence
W̃n (1, 3; 3,−2) DGC Fermat sequence
W̃n (0, 1; 6, 1) DGC balancing sequence
W̃n (1, 3; 6, 1) DGC Lucas-balancing sequence

Table 1 Major DGC Horadam sequences

3 DGC Oresme Numbers of Type-1

In this original section, we extend the familiar relations of Oresme numbers to DGC Oresme numbers.

Definition 4. Considering a = 0, b = 1
2 , p = 1, q = 1

4 in DGC Horadam sequence W̃n (a, b; p, q), and denoting a term of this special
sequence by Õn, we get DGC Oresme sequence. The n-th DGC Oresme number of type-1 is of the form:

Õn = On +On+1J +On+2ε+On+3Jε, (5)

where On is the n-th Oresme number. The DGC Oresme numbers of type-1 satisfy the following second-order relation

Õn+2 = Õn+1 −
1

4
Õn, ∀n ∈ Z.

The followings are several values of Õn:

Õ−3 = −24− 8J − 2ε Õ1 =
1

2
+

1

2
J +

3

8
ε+

1

4
Jε,

Õ−2 = −8− 2J +
1

2
Jε Õ2 =

1

2
+

3

8
J +

1

4
ε+

5

32
Jε,

Õ−1 = −2 +
1

2
ε+

1

2
Jε Õ3 =

3

8
+

1

4
J +

5

32
ε+

3

32
Jε,

Õ0 =
1

2
J +

1

2
ε+

3

8
Jε, Õ4 =

1

4
+

5

32
J +

3

32
ε+

7

128
Jε.

We give a fundamental approach to define elementary arithmetic operations. Consider the DGC Oresme numbers of type-1 Õn and Õm.
Equality is as follows:

Õn = Õm ⇔ On = Om ∧ On+1 = Om+1 ∧ On+2 = Om+2 ∧ On+3 = Om+3.

Addition (and hence subtraction) of Õn to another Oresme Õm acts in a component-wise way:

Õn + Õm = (On +Om) + (On+1 +Om+1)J + (On+2 +Om+2)ε+ (On+3 +Om+3)Jε.

The scalar multiplication of Õn with a scalar λ gives another DGC Oresme number

λÕn = λOn + λOn+1J + λOn+2ε+ λOn+3Jε, λ ∈ R.
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Multiplication of the DGC Oresme number is performed as

ÕnÕm = OnOm + pOn+1Om+1 + (On+1Om +OnOm+1) J + (OnOm+2 +On+2Om + p(On+1Om+3 +On+3Om+1)) ε
+(On+1Om+2 +OnOm+3 +On+3Om +On+2Om+1) Jε.

One can write the recurrence relation of DGC Oresme numbers of type-1 for n ≥ 1 in matrix form as the following:

[
Ôn+1

Ôn

]
=

[
1 −

1

4
1 0

] [
Ôn

Ôn−1

]
.

If we consider Ôn =

[
Ôn+1

Ôn

]
and O =

[
1 −

1

4
1 0

]
, then we get linear system Ôn = OÔn−1. More generally, we have the following theorem.

Theorem 2. The solution of the system Ôn = OÔn−1 can also be given in terms of the powers of the O-matrix. That is

Ôn = OnÔ0,

where Ô0 =

12 + 1

2
J +

3

8
ε+

1

4
Jε

1

2
J +

1

2
ε+

3

8
Jε

 is the initial solution and On =

2On+1 −
1

2
On

2On −
1

2
On−1

 (see details O and On in [16, 18]).

Remark 2. According to different matrix forms of Oresme sequence in Theorem 1, one can give another version of Theorem 2.

The different conjugations and modules can be defined in Table 2 :

Conjugates Modules

Õ†1n = (On −On+1J) + (On+2 −On+3J) ε N †1
Õn

= ÕnÕ†1n
Õ†2n = (On +On+1J)− (On+2 +On+3J) ε N †2

Õn
= ÕnÕ†2n

Õ†3n = (On −On+1J)− (On+2 −On+3J) ε N †3
Õn

= ÕnÕ†3n
Table 2 Conjugations and modules of DGC Oresme numbers of type-1

Bearing in mind Definition 4, Table 2 and Proposition 1, the following mathematical expressions can be given:

Proposition 2. Let Õn be n-th DGC Oresme number. Then, the below properties can be given:

• Õn + Õ†1n = 2 (On +On+2ε) =
1

2n

(
2n+

n+ 2

2
ε

)
,

• ÕnÕ†1n = O2
n − pO2

n+1 + 2 (OnOn+2 − pOn+1On+3) ε,

• Õn + Õ†2n = 2 (On +On+1J) =
1

2n
(2n+ (n+ 1)J),

• ÕnÕ†2n = O2
n + pO2

n+1 + 2OnOn+1J ,

• Õn + Õ†3n = 2 (On +On+3Jε) =
1

2n

(
2n+

n+ 3

4
Jε

)
,

• ÕnÕ†3n = O2
n − pO2

n+1 + 2 (OnOn+3 −On+1On+2) Jε.

Lemma 1. The relationship between Ũn = W̃n
(
1, 1; 1, 14

)
and Õn can be given as follows:

Õn =
1

2
Ũn−1.

Theorem 3. Several facts related to the DGC Oresme number of type-1 are:

1. limn→∞ Õn = 0,

2. limn→−∞ Õn = −∞,

3. limn→∞
Õn

On
= 1 +

1

2
J +

1

4
ε+

1

8
Jε,

4. limn→∞
Õn

On−1
=

1

2
+

1

4
J +

1

8
ε+

1

16
Jε,

5. Õn =
1

2n

(
n+

n+ 1

2
J +

n+ 2

22
ε+

n+ 3

23
Jε

)
, n ∈ Z

6.
Õ−n
On

= −22n
(
1 +

n− 1

2n
J +

n− 2

4n
ε+

n− 3

8n
Jε

)
.
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Proof:
Using the equation (5) and item 5 of Proposition 1, we can make the following computation for the proof of item 4 as follows:

limn→∞
Õn

On−1
= limn→∞

On +On+1J +On+2ε+On+3Jε

On−1

= limn→∞

(
n

2(n− 1)
+

n+ 1

4(n− 1)
J +

n+ 2

8(n− 1)
ε+

n+ 3

16(n− 1)
Jε

)
=

1

2
+

1

4
J +

1

8
ε+

1

16
Jε.

This indicates validity of item 4. The other items can be proved similarly. �

Theorem 4. The following linear recurrence relations and summation properties are valid for DGC Oresme numbers of type-1:

1. Õn+2 −
3

4
Õn +

1

4
Õn−1 = 0,

2. Õn+2 −
3

4
Õn+1 +

1

16
Õn−1 = 0,

3.
n−1∑
j=0
Õj = 4

(
Õ1 − Õn+1

)
,

4.
∞∑
j=0
Õj = 4Õ1,

5.
n−1∑
j=0

(−1)jÕj =
n−1∑
j=0

(−1)jOj(1− J + ε− Jε) + (−1)nOn(−J + ε− Jε) + (−1)n+1On+1(ε− Jε) + (−1)n+2On+2(−Jε) +O1ε

6.
n−1∑
j=0
Õ2j =

(
n−1∑
j=0

O2j +
n−1∑
j=0

O2j+1J

)
(1 + ε) +O2nε+ (O2n+1 −O1) Jε,

7.
n−1∑
j=0
Õ2j+1 =

(
n−1∑
j=0

O2j+1 +
n−1∑
j=0

O2jJ

)
(1 + ε) +O2nJ + (O2n+1 −O1) ε+ (O2n +O2n+2 −O2) Jε.

Proof: The proofs can efficiently be conducted by using Proposition 1. For item 6 we have:

n−1∑
j=0
Õ2j =

n−1∑
j=0

O2j +
n−1∑
j=0

O2j+1J +
n−1∑
j=0

O2j+2ε+
n−1∑
j=0

O2j+3Jε

=

(
n−1∑
j=0

O2j +
n−1∑
j=0

O2j+1J

)
(1 + ε) +O2nε+ (O2n+1 −O1) Jε.

�

4 Doubling Approach to DGC Oresme Numbers

This section, introduces DGC Oresme numbers of type-2 by using the dual number theory over the generalized complex Oresme numbers.
For this purpose, firstly, we define generalized complex Oresme numbers:

Definition 5. The nth generalized complex Oresme numbers are defined by:

Ôn = On +On+1J, (6)

where J2 = p. The generalized complex Oresme sequence satisfies the following relation:

Ôn+2 = Ôn+1 −
1

4
Ôn, ∀n ∈ Z.

The followings are several values of Ôn:

Ô−4 = −64− 24J, Ô−1 = −2, Ô2 =
1

2
+

3

8
J,

Ô−3 = −24− 8J, Ô0 =
1

2
J, Ô3 =

3

8
+

1

4
J,

Ô−2 = −8− 2J, Ô1 =
1

2
+

1

2
J, Ô4 =

1

4
+

5

32
J.

The generalized complex Oresme sequence is analog to complex Oresme sequence for p = −1, hyperbolic Oresme sequence for p = 1 and
dual Oresme sequence for p = 0.

We now present an alternative DGC Oresme sequence and its properties.
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Definition 6. The nth DGC Oresme numbers of type-2 are defined by:

On = Ôn + Ôn+1ε, (7)

where Ôn = On +On+1J is generalized complex Oresme number. The DGC Oresme numbers of type-2 satisfy the following second-order
relation

On+2 = On+1 −
1

4
On, ∀n ∈ Z.

The followings are several values On:

O−3 = −24− 8J − 8ε− 2Jε O1 =
1

2
+

1

2
J +

1

2
ε+

3

8
Jε,

O−2 = −8− 2J − 2ε O2 =
1

2
+

3

8
J +

3

8
ε+

1

4
Jε,

O−1 = −2 +
1

2
Jε O3 =

3

8
+

1

4
J +

1

4
ε+

5

32
Jε,

O0 =
1

2
J +

1

2
ε+

1

2
Jε, O4 =

1

4
+

5

32
J +

5

32
ε+

3

32
Jε.

Equation (7) formulate another key concept of this paper. Hence, it is natural to seek its algebraic structure and relations. For any On and
Om, the standard algebraic operations are defined as follows:

• On is equal to Om if and only if Ôn = Ôm ∧ Ôn+1 = Ôm+1.
• Addition (and hence subtraction) acts component-wise, i.e., On + Om =

(
Ôn + ÔmJ

)
+
(
Ôn+1 + Ôm+1J

)
ε.

• The scalar multiplication is calculated as: λOn = (λÔn) + (λÔn+1)J , where λ ∈ R.
• The product of two DGC Oresme numbers of type-2: OnOm = ÔnÔm +

(
ÔnÔm+1 + Ôn+1Ôm

)
ε.

• The different conjugations∗ and modules for these numbers can be defined in Table 3.

Conjugates Modules

O
†1
n = Ôn + Ôn+1ε N

†1
On

= OnO
†1
n

O
†2
n = Ôn − Ôn+1ε N

†2
On

= OnO
†2
n

O
†3
n = Ôn − Ôn+1ε N

†3
On

= OnO
†3
n

Table 3 Conjugations and modules of DGC Oresme numbers of type-2

The following elementary properties are an extension of the familiar relations of Oresme numbers to DGC versions of type-2. We omit the
proofs because they are quite easy to verify using Definition 6, Table 3 and Proposition 1:

Proposition 3. Let On be DGC Oresme number of type-2. Then, the below properties can be given:

• On + O
†1
n = 2 (On +On+1ε) =

1

2n
(2n+ (n+ 1)ε),

• OnO
†1
n = O2

n − pO2
n+1 + 2On+1 (On − pOn+2) ε,

• On + O
†2
n = 2 (On +On+1J) =

1

2n
(2n+ (n+ 1)J),

• OnO
†2
n = O2

n + pO2
n+1 + 2OnOn+1J ,

• On + O
†3
n = 2 (On +On+2Jε) =

1

2n

(
2n+

n+ 2

2
Jε

)
,

• OnO
†3
n = O2

n − pO2
n+1 + 2

(
OnOn+2 −O2

n+1

)
Jε.

Theorem 5. Several facts related to the DGC Oresme number of type-2 are:

1. limn→∞On = 0,

2. limn→−∞On = −∞,

3. limn→∞
On

On
= 1 +

1

2
J +

1

2
ε+

1

4
Jε,

4. limn→∞
On

On−1
=

1

2
+

1

4
J +

1

4
ε+

1

8
Jε,

5. On =
1

2n

(
n+

n+ 1

2
J +

n+ 1

2
ε+

n+ 2

22
Jε

)
, n ∈ Z,

6.
O−n
On

= −22n
(
1 +

n− 1

2n
J +

n− 1

2n
ε+

n− 2

4n
Jε

)
.

∗The overline represents the standard generalized complex conjugate.

212 c© CPOST 2021



Proof: Using equation (7) and item 7 of Proposition 1, we can make the following computation for the proof of item 6 as follows:

O−n
On

=
Ô−n + Ô−n+1ε

On

=
O−n +O−n+1J +O−n+1ε+O−n+2Jε

On

=
− n2n − (n− 1)2n−1J − (n− 1)2n−1ε− (n− 2)2n−2Jε

n

2n

= −22n
(
1 +

n− 1

2n
J +

n− 1

2n
ε+

n− 2

4n
Jε

)
.

The proof of item 6 is verified. The other items can be seen similarly.
�

Theorem 6. The following linear recurrence relations and summation properties are valid for DGC Oresme numbers of type-2:

1. On+2 −
3

4
On +

1

4
On−1 = 0,

2. On+2 −
3

4
On+1 +

1

16
On−1 = 0,

3.
n−1∑
j=0

Oj = 4 (O1 − On+1),

4.
∞∑
j=0

Oj = 4O1,

5.
n−1∑
j=0

(−1)jOj =
n−1∑
j=0

(−1)jOj(1− J − ε+ Jε) + (−1)nOn(−J − ε+ Jε) + (−1)n+1On+1Jε+O1Jε,

6.
n−1∑
j=0

O2j =
n−1∑
j=0

O2j (1 + Jε) +
n−1∑
j=0

O2j+1 (J + ε) +O2nJε,

7.
n−1∑
j=0

O2j+1 =
n−1∑
j=0

O2j+1 (1 + Jε) + (
n−1∑
j=0

O2j +O2n) (J + ε) + (O2n+1 −O1) Jε.

Proof: According to the fundamental properties in Proposition 1, the proof is relatively easy to verify. For item 7 we obtain:

n−1∑
j=0

O2j+1 =
n−1∑
j=0

Ô2j+1 +
n−1∑
j=0

Ô2j+2ε

=
n−1∑
j=0

O2j+1 +
n−1∑
j=0

O2j+2J +
n−1∑
j=0

O2j+2ε+
n−1∑
j=0

O2j+3Jε

=
n−1∑
j=0

O2j+1 (1 + Jε) + (
n−1∑
j=0

O2j +O2n) (J + ε) + (O2n+1 −O1) Jε.

�

5 Conclusion

The main target of this study is to obtain DGC Oresme numbers of type-1 and type-2 by introducing their general recurrence relations for
any real number p in the light of the study [45]. The striking part of this paper is that one can reduce the calculations to dual complex,
hyper-dual and dual-hyperbolic Oresme for real values p = −1, p = 0 and p = 1, respectively. Considering these values, the above mentioned
special Oresme numbers are generalized from the viewpoint of definition, algebraic properties, recurrence relations and well-known identities
in Sections 3 and 4. Hence, Sections 3 and 4 are directly linked to the paper dual-complex case for p = −1, the hyper-dual case for p = 0, and
the dual-hyperbolic case for p = 1 in view of Oresme. These classifications can be seen in Table 4.

Cases type-1 type-2 (doubling) Condition (ε2 = 0)

Dual-complex On +On+1i+On+2ε+On+3iε On +On+1i+On+1ε+On+2iε i2 = −1
Hyper-dual On +On+1ε+On+2ε+On+3εε On +On+1ε+On+1ε+On+2εε ε2 = 0, (ε 6= 0, ε 6= 0, εε 6= 0)
Dual-hyperbolic On +On+1j +On+2ε+On+3jε On +On+1j +On+1ε+On+2jε j2 = 1, (j 6= ±1)

Table 4 DGC Oresme numbers of type-1 and type-2 for p ∈ {−1, 0, 1}

With a similar thought, our next goal is to examine multiplicative identities include DGC Oresme numbers. Additionally, we are planned to
construct a bridge between DGC Oresme numbers and quaternions. Further, the construction of the same relation is planned to carry out for
DGC k-Oresme numbers after examining the necessary properties.
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Abstract: The objective of the present paper is to study the (k, µ)-contact metric manifold with the semiconformal curvature tensor.
The (k, µ)-contact metric manifold satisfying P ·R = 0 and semiconformally flat are studied and the conditions under which it is η-
Einstein manifold are established. Further, P · S = 0 is investigated and the relation for Ricci tensor is obtained. Also, some results
for η-Einstein (k, µ)-contact metric manifold satisfying the condition P · S = 0 are established. Finally, h-semiconformally semi-
symmetric (k, µ)-contact metric manifold and φ-semiconformally semi-symmetric (k, µ)-contact metric manifold are introduced and
shown that non-Sasakian h-semiconformally semi-symmetric (k, µ)-contact metric manifold and non-Sasakian φ-semiconformally
semi-symmetric (k, µ)-contact metric manifold are η-Einstein manifold if µ 6= 1 and µ 6= n−1

n respectively.

Keywords: η-Einstein manifold, h-semiconformally semi-symmetric, (k, µ)-contact metric manifold, φ-semiconformally semi-
symmetric, semiconformal curvature.

1 Introduction

In 2016, Kim [1, 2] introduced a new type of curvature tensor, named as semiconformal curvature tensor, which remain invariant under con-
harmonic transformation. It is observed that conformal curvature tensor and conharmonic curvature tensor are special cases of semiconformal
curvature tensor. Later, Kim [2] studied the geometrical properties of semiconformal curvature tensor on pseudo semiconformally symmetric
manifold. The semiconformal curvature tensor P of type (1, 3), as defined by Kim, on a Riemannian manifold (M2n+1, g), (n > 1) is as
follows:

P (U, V )W = −(2n− 1)bC(U, V )W + [a+ (2n− 1)b]H(U, V )W, (1)

where, a, b are constants and not simultaneously zero, C(U, V )W denotes the conformal curvature tensor of type (1, 3) whereas, H(U, V )W
denotes the conharmonic curvature tensor of type (1, 3). The expression of conformal curvature tensor of type (1, 3) and the conharmonic
curvature tensor of type (1, 3) are given as:

C(U, V )W = R(U, V )W − 1

(2n− 1)

[
S(V,W )U − S(U,W )V + g(V,W )QU

− g(U,W )QV
]
+

r

2n(2n− 1)

[
g(V,W )U − g(U,W )V

]
, (2)

and

H(U, V )W = R(U, V )W − 1

(2n− 1)

[
S(V,W )U − S(U,W )V + g(V,W )QU

− g(U,W )QV
]
, (3)

where, r and R are the scalar curvature and Riemannian curvature of type (1, 3) of the manifold M2n+1 respectively and S is the Ricci tensor
of the manifold, given by g(QU, V ) = S(U, V ), where Q is the Ricci-operator. In consequence of(1),(2) and (3), the semiconformal curvature
tensor P̃ of type (0,4) assume the following form:

P̃ (U, V,W,X) = aR̃(U, V,W,X)− a

(2n− 1)

[
S(V,W )g(U,X)

− S(U,W )g(V,X) + S(U,X)g(V,W )− S(V,X)g(U,W )
]

− br

2n

[
g(V,W )g(U,X)− g(U,W )g(V,X)

]
, (4)

where, P̃ (U, V,W,X) = g(P (U, V )W,X) and R̃(U, V,W,X) = g(R(U, V )W,X).
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For a = 1 and b = − 1

(2n− 1)
, the semiconformal curvature becomes conformal curvature tensor and for a = 1 and b = 0, the semi-

conformal curvature tensor reduces to conharmonic curvature tensor. Recently, De and Suh [3] studied the geometrical properties of weakly
semiconformally symmetric manifolds. In [4], almost pseudo semiconformally symmetric manifolds is studied.

The k-nullity distribution on a contact metric manifold (M ;φ, ξ, η, g) for any p ∈ Tp(M) and for real numbers k is as follows:

N(k) : p→ Np(k) = [W ∈ Tp(M) : R(U, V )W = k{g(V,W )U − g(U,W )V }], (5)

for any U, V,W ∈ Tp(M), where Tp(M) denotes the tangent vector space at any point p on the manifold M . The notion of k-nullity distri-
bution on a contact metric manifold was introduced by Tanno [5]. Blair et al. [6] introduced (k, µ)-nullity distribution which is the generalized
notion of k-nullity distribution and defined it as, “A (k, µ)-nullity distribution on a contact metric manifold (M ;φ, ξ, η, g) for any p ∈ Tp(M)
and for real numbers k, µ is as follows:

Np(k, µ) = {W ∈ Tp(M) : R(U, V )W = k[g(V,W )U − g(U,W )V ]

+µ[g(hV,W )U − g(hU,W )V ]}, (6)

where h is a tensor field of type (1,3) defined by h = 1
2Lξφ, where L denotes the Lie differentiation. If the characteristic vector field, i.e.,ξ

of a contact metric manifold M2n+1 lies in (k, µ)-nullity distribution, then it is called (k, µ)-contact metric manifold.”A full classification
of (k, µ)-contact metric manifolds was given by Boeckx [7]. This class contains Sasakian manifolds for k = 1. The k-nullity distribution is a
subclass of (k, µ)-nullity distribution.

The notion of symmetric spaces was introduced by Cartan [8]. According to him, “An n-dimensional Riemannian manifold is said to be
locally symmetric if its curvature tensor R satisfies ∇R = 0, where ‘∇’, represent covariant differentiation with respect to metric tensor”.
Cartan noticed that all locally symmetric and 2-dimensional Riemannian spaces belong to a class of Riemannian manifold satisfying the condi-
tionR(U, V ) ·R = 0. Kowalski [9] studied 3-dimensional Riemannian manifold satisfyingR(U, V ) ·R = 0. In recent years, many geometers
[10–15] studied (k, µ)-contact metric manifolds, as it is an interesting topic in differential geometry. One of its interesting characteristics is
that there is a special case of (k, µ)-spaces which were the first known example of a non-sasakian locally φ-symmetric space [16]. Sarkar and
De [17] studied on the (k, µ)-contact metric manifold and obtained some results based on quasi-conformal curvature tensor. Motivated by the
above studies, we studied semiconformal curvature tensor in (k, µ)-contact metric manifold.

The present paper is organized as follows: After preliminaries, in Section 3, we studied the flatness of semiconformal curvature tensor in
(k, µ)-contact metric manifold and observed that under such condition it is η-Einstein manifold. In section 4, the manifold satisfying P · S = 0
is studied and observed that the Ricci tensor satisfies the relation (33). We showed that for η-Einstein (k, µ)-contact metric manifold with
semiconformally Ricci semi-symmetric the relation 2a(n2 + nk − 1) = (2n− 1)(br − ak) holds. Next, in Section 5 and 6, we introduced
h-semiconformally semi-symmetric (k, µ)-contact metric manifold and φ-semiconformally semi-symmetric (k, µ)-contact metric manifold
respectively. In both cases, under certain conditions of µ, (k, µ)-contact metric manifold is η-Einstein manifold. Also based on previous
results, the expression of Ricci tensor for different semi-symmetric conditions is obtained and tabulated. Finally, in Section 7, we investigated
semiconformally semi-symmetric (k, µ)-contact metric manifold. Throughout this paper, we assumed that a 6= 0.

2 Preliminaries

Here, we listed out some of the basic results obtained by different authors which we used in the study of (k, µ)-contact metric manifold.
A contact manifold [18] is a (2n+ 1)-dimensional differentiable manifold M2n+1, together with a global differentiable 1-form η such that
η ∧ (dη)n 6= 0 everywhere onM2n+1. This 1-form η is called the contact form ofM2n+1. A contact manifold satisfies the following relations:

φ2 = −I + η ⊗ ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0, (7)

g(U, φV ) = dη(U, V ), (8)

g(U, φV ) = −g(V, φU), g(U, ξ) = η(U), (9)

g(φU, φV ) = g(U, V )− η(U)η(V ), (10)

for all vector fields U, V on M . Here, φ is a tensor field of type (1,1), ξ is a contravariant global vector field called the characteristic vector
field of the manifold and g is the Riemannian metric associated with the manifold. The contact metric manifold together with the Riemannian
metric g is called contact Riemannian manifold (M ;φ, ξ, η, g). The vector field h of type (1,3) is symmetric in contact metric manifold and
satisfies:

hφ = −φh, Trh = Trφh = 0, hξ = 0. (11)

∇U ξ = −φU − φhU. (12)

In (k, µ)-contact metric manifold the following relation holds [6, 19],

h2 = (k − 1)φ2, k ≤ 1, (13)

R(U, V )ξ = k[η(V )U − η(U)V ] + µ[η(V )hU − η(U)hV ], (14)

R(ξ, U)V = k[g(U, V )ξ − η(V )U ] + µ[g(hU, V )ξ − η(V )hU ], (15)

S(U, ξ) = 2nkη(U), (16)
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S(φU, φV ) = S(U, V )− 2nkη(U)η(V )− 2(2n− 2 + µ)g(hU, V ), (17)

S(U, V ) = [2(n− 1)− nµ]g(U, V ) + [2(n− 1) + µ]g(hU, V )

+[2(1− n) + n(2k + µ)]η(U)η(V ), n ≥ 1, (18)

(∇Uη)(V ) = g(U + hU, φV ), (19)

(∇Uh)(V ) = {(1− k)g(U, φV ) + g(U, hφV )}ξ
+η(V ){h(φU + φhU)} − µη(U)φhV. (20)

Blair et al. [6] obtained the relation between the Ricci operator Q and φ, which is as follows:

Proposition 1. Let M2n+1 be a (k, µ)-contact metric manifold. Then the relation

Qφ− φQ = 2[2(n− 1) + µ]hφ,

holds.

In (k, µ)-contact metric manifold, the Ricci operator Q does not generally commute with φ. We recalled the results obtained by Yildiz [20]
which is as follows:

Lemma 1. [20] In a non-Sasakian (k, µ)-contact metric manifold the following conditions are equivalent:
(i) η-Einstein manifold,
(ii) Qφ = φQ.

3 Semiconformally flat (k, µ)-contact metric manifold

The flatness of the semiconformal curvature tensor in (k, µ)-contact metric manifold M2n+1 is studied in this section. From (4), the
semiconformal curvature tensor of type (1,3) takes the form

P (U, V )W = aR(U, V )W − a

(2n− 1)

[
S(V,W )U − S(U,W )V

+g(V,W )QU − g(U,W )QV
]
− br

2n

[
g(V,W )U − g(U,W )V

]
, (21)

for all vector fields U, V,W on Tp(M).

Definition 1. A (k, µ)-contact metric manifold M2n+1 is said to be η-Einstein [21] if its Ricci tensor S satisfies

S(U, V ) = αg(U, V ) + βη(U)η(V ), (22)

for all vector fields U, V and some real constants α and β. For β = 0, it reduces to Einstein manifold.

Theorem 1. If (k, µ)-contact metric manifold M2n+1(n > 1), is semiconformally flat, then it is η-Einstein manifold, provided µ 6= 1.

Proof: Suppose that M2n+1(φ, ξ, η, g) is a semiconformally flat (k, µ)-contact metric manifold. Then, from (4), we obtain

R̃(U, V,W,X) =
1

(2n− 1)

[
S(V,W )g(U,X)− S(U,W )g(V,X) + g(V,W )S(U,X)

−g(U,W )S(V,X)
]
+

br

2na

[
g(V,W )g(U,X)− g(U,W )g(V,X)

]
. (23)

Putting W = ξ in (23) and using (14), (16) we get

k
[
η(V )g(U,X)− η(U)g(V,X)

]
+ µ

[
η(V )g(hU,X)− η(U)g(hV,X)

]
=

1

(2n− 1)

[
2nkη(V )g(U,X)− 2nkη(U)g(V,X) + η(V )S(U,X)

−η(U)S(V,X)
]
+

br

2na

[
η(V )g(U,X)− η(U)g(V,X)

]
. (24)

Put U = ξ in (24) we obtain

S(V,X) =
[−2nak − br(2n− 1)

2na

]
g(V,X)

+
[2nak(2n+ 1) + br(2n− 1)

2na

]
η(X)η(V ) + µ(2n− 1)g(hV,X). (25)
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Using (18) and (25), we obtain the following relation

S(V,X) = A1g(V,X) +B1η(V )η(X), (26)

where

A1 =
(1− n)[2(2n− 1)(µ+ br)− 4nak(µ− 1)] + µ(2n− 1)(2nµ− k − br)

4na(µ− 1)(1− n) ,

and

B1 =
(1− n)[4nak(k − 1)(2n+ 1)− 2(2n− 1)(2naµ+ br)]

4na(µ− 1)(1− n)

+
µ(2n− 1)[br(3− 4n)− 2na(nµ+ k)]

4na(µ− 1)(1− n) .

Thus, M is η-Einstein manifold. �

Combining Lemma 1 and Theorem 1, we can obtain the following:

Corollary 1. If non-Sasakian (k, µ)-contact metric manifold M2n+1(n > 1), is semiconformally flat and µ 6= 1 then Qφ = φQ is satisfied.

4 A (k, µ)-contact metric manifold M2n+1 satisfying P · S = 0

Definition 2. A (k, µ)-contact metric manifold M2n+1 is said to be semiconformally Ricci semi-symmetric if the semiconformal curvature
tensor satisfies the condition,

P (U, V ) · S = 0,

for any vector fields U, V on M .

Theorem 2. If (k, µ)-contact metric manifold M2n+1, (n > 1) is semiconformally Ricci semi-symmetric, then the Ricci tensor S of M2n+1

satisfies the relation (33).

Proof: Suppose (k, µ)-contact metric manifold is semiconformally Ricci semi-symmetric, i.e.,

P (ξ, V ) · S = 0,

which implies,
S(P (ξ, V )U,W ) + S(U,P (ξ, V )W ) = 0. (27)

Putting W = ξ in (27), we obtain
2nkη(P (ξ, V )U) + S(U,P (ξ, V )ξ) = 0. (28)

From (21), we have

P (ξ, V )U = aR(ξ, V )U − a

2n− 1

[
S(V,U)ξ − 2nkη(U)V

+g(V,U)Qξ − η(U)QV
]
− br

2n

[
g(V,U)ξ − η(U)V

]
. (29)

In (29), taking its inner product with ξ and using (14), we get the following expression

η(P (ξ, V )U) =
[
ak
(
1− 2n

2n− 1

)
− br

2n

]
g(U, V ) +[

−ak +
4nak

2n− 1
+
br

2n

]
η(U)η(V )− a

2n− 1
S(U, V ) + aµg(hV, U). (30)

Again, using (21) we can have

P (ξ, V )ξ = ak
[
η(V )ξ − V

]
− aµhV − a

2n− 1

[
2nkη(V )ξ

−2nkV + η(V )Qξ −QV
]
− br

2n

[
η(V )ξ − V

]
. (31)

In regard of (31), we get

S(U,P (ξ, V )ξ) = 2nk
[
ak − br

2n
− 4nak

2n− 1

]
η(U)η(V ) +[

−ak +
br

n
+

2nka

2n− 1

]
S(U, V )− aµS(U, hV ) +

a

2n− 1
S2(U, V ). (32)
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From (28), (30) and (32) we obtain

S2(U, V ) =
k

a

[
2nak + br(2n− 1)

]
g(U, V ) +

(2n− 1)

na

[
nak − br

]
S(U, V )

−2nk(2n− 1)µg(hU, V ) + µ(2n− 1)S(U, hV ). (33)

�

Theorem 3. If M2n+1, (n > 1) is a (k, µ)-contact metric manifold whose Ricci tensor S is η-Einstein and satisfies P · S = 0, then 2a(n2 +
nk − 1) = (2n− 1)(br − ak) holds.

Proof: From (18), we see that (k, µ)-contact metric manifold is η-Einstein if and only if µ = −2(n− 1) is satisfied. For this value, (17) gives

S(U, V ) = 2(n2 − 1)g(U, V )− 2(n2 − nk − 1)η(U)η(V ). (34)

and,
QU = 2(n2 − 1)U − 2(n2 − nk − 1)η(U)ξ. (35)

By using (21), (34) and (35), we get the following relations,

S(P (ξ, V )U, ξ) = 2nk
[
ak − br

2n
+

2a[n2 + nk − 1]

2n− 1

]
[
g(V,U)− η(U)η(V )

]
− 4nak(n− 1)g(hV,X). (36)

and,

S(U,P (ξ, V )ξ) =
[
ak − br

2n
+

2a[n2 + nk − 1]

2n− 1

]
[
2nkη(U)η(V )− S(U, V )

]
+ 2a(n− 1)S(U, hV ). (37)

Putting W = ξ in (27), we get
S(P (ξ, V )U, ξ) + S(U,P (ξ, V )ξ) = 0. (38)

Making use of (34), (36), (37) in (38), we obtain

2(n2 − nk − 1)
[
ak − br

2n
+

2a[n2 + nk − 1]

2n− 1

]
[η(U)η(V )− g(U, V )]

+4a(n− 1)(n2 − 1− nk)g(U, hV ) = 0. (39)

Contracting (39) with respect to U and V , we get

4n(n2 − nk − 1)
[
ak − br

2n
+

2a[n2 + nk − 1]

2n− 1

]
= 0. (40)

Clearly, we see that either n2 − nk − 1 = 0 or 2a(n2 + nk − 1) = (2n− 1)(br − ak). For the case when n2 − nk − 1 = 0 implies k =
n2 − 1

n
, a contradiction as k ≤ 1. �

5 h-semiconformally semi-symmetric non-Sasakian (k, µ)-contact metric manifold

Definition 3. A Riemannian manifold (M2n+1, g) is said to be h-semiconformally semi-symmetric if

P (U, V ) · h = 0,

holds for any vector fields U, V on M .

Lemma 2. [6] Let M2n+1(φ, ξ, η, g) be a contact metric manifold with ξ belonging to the (k, µ)-nullity distribution. Then

R(U, V )hW − hR(U, V )W =
{
k
[
g(hV,W )η(U)− g(hU,W )η(V )

]
+

µ(k − 1)
[
g(U,W )η(V )− g(V,W )η(U)

]}
ξ + k

{
g(V, φW )φhU −

g(U, φW )φhV + g(W,φhV )φU − g(W,φhU)φV + η(W )
[
η(U)hV −

η(V )hU
]}
− µ

{
η(V )

[
(1− k)η(W )U + µη(U)hW

]
−

η(U)
[
(1− k)η(W )V + µη(V )hW

]
+ 2g(U, φV )φhW

}
, (41)

for any vector fields U, V,W on M .
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Theorem 4. If M2n+1, (n > 1) is a non-Sasakian h-semiconformally semi-symmetric (k, µ)-contact metric manifold with µ 6= 1, then M is
η-Einstein manifold.

Proof: Suppose M is h-semiconformally semi-symmetric,i.e.,

(P (U, V ) · h)W = 0.

or,
P (U, V )hW − hP (U, V )W = 0. (42)

Using (21) in (42), we obtain

a
[
R(U, V )hW − hR(U, V )W

]
− a

2n− 1

[
S(V, hW )U − S(V,W )hU −

S(U, hW )V + S(U,W )hV + g(V, hW )QU − g(V,W )hQU −

g(U, hW )QV + g(U,W )hQV
]
− br

2n

[
g(V, hW )U − g(V,W )hU −

g(U, hW )V + g(U,W )hV
]
= 0. (43)

Using (41) in (43),

a

[{
k
[
g(hV,W )η(U)− g(hU,W )η(V )

]
+ µ(k − 1)

[
g(U,W )η(V )−

g(V,W )η(U)
]}
ξ + k

{
g(V, φW )φhU − g(U, φW )φhV + g(W,φhV )φU −

g(W,φhU)φV + η(W )
[
η(U)hV − η(V )hU

]}
− µ

{
η(V )

[
(1− k)η(W )U +

µη(U)hW
]
− η(U)

[
(1− k)η(W )V + µη(V )hW

]
+ 2g(U, φV )φhW

}]
−

a

2n− 1

[
S(V, hW )U − S(V,W )hU − S(U, hW )V + S(U,W )hV +

g(V, hW )QU − g(V,W )hQU − g(U, hW )QV + g(U,W )hQV
]
−

br

2n

[
g(V, hW )U − g(V,W )hU − g(U, hW )V + g(U,W )hV

]
= 0. (44)

Putting U = hU in (44) and using (7), (13), we obtain

a
[
−k(k − 1)η(U)η(V )η(W )ξ + k(k − 1)g(U,W )η(V )ξ +

µ(k − 1)g(hU,W )η(V )ξ − k(k − 1)g(V, φW )φU − kg(hU, φW )φhV +

kg(W,φhV )φhU + k(k − 1)g(W,φU)φV − k(k − 1)η(U)η(V )η(W )ξ +

k(k − 1)η(V )η(W )U − µ(1− k)η(W )η(V )hU − 2µg(hU, φV )φhW
]
−

a

2n− 1

[
S(V, hW )hU − (k − 1)η(U)S(V,W )ξ + (k − 1)S(V,W )U −

2nk(k − 1)η(U)η(W )V + (k − 1)S(U,W )V + S(hU,W )hV + g(V, hW )QhU −
g(V,W )hQhU − (k − 1)η(U)η(W )QV + (k − 1)g(U,W )QV +

g(hU,W )hQV
]
− br

2n

[
g(V, hW )hU − (k − 1)g(V,W )η(U)ξ +

(k − 1)g(V,W )U − (k − 1)η(U)η(W )V + (k − 1)g(U,W )V +

g(hU,W )hV
]
= 0. (45)

Taking an inner product with ξ in (45), we yield

S(U,W ) =
[2nak(2n+ 1) + br(2n− 1)]

2na
η(U)η(W )

− [2nak + br(2n− 1)]

2na
g(U,W ) + µ(2n− 1)g(hU,W ). (46)

Using (18) and (46), we obtain the following relation

S(U,W ) = A1g(U,W ) +B1η(U)η(W ), (47)
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where,

A1 =
(1− n)[2(2n− 1)(µ+ br)− 4nak(µ− 1)] + µ(2n− 1)(2nµ− k − br)

4na(µ− 1)(1− n) ,

and,

B1 =
(1− n)[4nak(k − 1)(2n+ 1)− 2(2n− 1)(2naµ+ br)]

4na(µ− 1)(1− n)

+
µ(2n− 1)[br(3− 4n)− 2na(nµ+ k)]

4na(µ− 1)(1− n) .

Thus, M is η-Einstein manifold. �

In view of Lemma 1, we can state the following:

Corollary 2. If M2n+1, (n > 1) is a non-Sasakian h-semiconformally semi-symmetric (k, µ)-contact metric manifold with µ 6= 1, then
Qφ = φQ is satisfied.

In view of (47), by simple substitution we can obtain the following theorem:

Theorem 5. Let M2n+1, (n > 1) be a non-Sasakian (k, µ)-contact metric manifold. The expression for the Ricci tensor of the manifold
satisfying certain curvature conditions are as follows:

Curvature condition Expression for Ricci tensor

H(U, V ) · h = 0, S=


(1− n)[2µ(2n− 1)− 4nak(µ− 1)]

4n(µ− 1)(1− n)

+
µ(2n− 1)(2nµ− k)
4n(µ− 1)(1− n)

 g+

(For a = 1, b = 0)


(1− n)[4nk(k − 1)(2n + 1)− 4nµ(2n− 1)]

4n(µ− 1)(1− n)

−
2nµ(2n− 1)(nµ + k)

4n(µ− 1)(1− n)

 η ⊗ η
η-Einstein manifold

C(U, V ) · h = 0, S =


(1− n)[2µ(2n− 1)− 2r − 4nk(µ− 1)]

4n(µ− 1)(1− n)

+
µ[(2nµ− k)(2n− 1) + r]

4n(µ− 1)(1− n)

 g

(For a = 1, b = − 1
2n−1 ) +


(1− n)[4nk(k − 1)(2n + 1)− 4nµ(2n− 1) + 2r]

4n(µ− 1)(1− n)

−
µ[r(3− 4n) + 2n(2n− 1)(nµ + k)]

4n(µ− 1)(1− n)

 η ⊗ η.
η-Einstein manifold

6 φ-semiconformally semi-symmetric non-Sasakian (k, µ)-contact metric manifold

Definition 4. A Riemannian manifold (M2n+1, g) is said to be φ-semiconformally semi-symmetric if

P (U, V ) · φ = 0,

holds for any vector fields U, V on M .

Lemma 3. [6] Let M2n+1(φ, ξ, η, g) be a contact manifold with ξ belonging to the (k, µ)-nullity distribution. Then, one has

R(U, V )φW − φR(U, V )W =
{
(1− k)[g(φV,W )η(U)− g(φU,W )η(V )] +

(1− µ)[g(φhV,W )η(U)− g(φhU,W )η(V )]
}
ξ − g(V + hV,W )(φU + φhU) +

g(U + hU,W )(φV + φhV )− g(φV + φhV,W )(U + hU) +

g(φU + φhU,W )(V + hV )− η(W )
{
(1− k)[η(U)φV − η(V )φU ] +

(1− µ)[η(U)φhV − η(V )φhU ]
}
, (48)

for any vector fields U, V,W on M .

Theorem 6. Let M2n+1, (n > 1) be a non-Sasakian (k, µ)-contact metric manifold. If M is φ-semiconformally semi-symmetric with µ 6=
n−1
n , then M is η-Einstein manifold.
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Proof: Suppose M is φ-semiconformally semi-symmetric, i.e.,

(P (U, V ) · φ)W = 0,

which implies,
P (U, V )φW − φP (U, V )W = 0. (49)

Using (21) in (49), we get,

a
[
R(U, V )φW − φR(U, V )W

]
− a

2n− 1

[
S(V, φW )U − S(V,W )φU −

S(U, φW )V + S(U,W )φV + g(V, φW )QU − g(V,W )φQU −

g(U, φW )QV + g(U,W )φQV
]
− br

2n

[
g(V, φW )U −

g(V,W )φU − g(U, φW )V + g(U,W )φV
]
= 0. (50)

Using (48) in (50), we obtain,

a

[{
(1− k)[g(φV,W )η(U)− g(φU,W )η(V )] + (1− µ)[g(φhV,W )η(U)−

g(φhU,W )η(V )]
}
ξ − g(V + hV,W )(φU + φhU) +

g(U + hU,W )(φV + φhV )− g(φV + φhV,W )(U + hU) +

g(φU + φhU,W )(V + hV )− η(W )
{
(1− k)[η(U)φV − η(V )φU ] +

(1− µ)[η(U)φhV − η(V )φhU ]
}]
− a

2n− 1

[
S(V, φW )U −

S(V,W )φU − S(U, φW )V + S(U,W )φV + g(V, φW )QU −

g(V,W )φQU − g(U, φW )QV + g(U,W )φQV
]
− br

2n

[
g(V, φW )U −

g(V,W )φU − g(U, φW )V + g(U,W )φV
]
= 0. (51)

Putting U = φU and making use of (7) in (51), we get,

a

[{
−(1− k)η(U)ηV ηW + (1− k)g(U,W )η(V )− (1− µ)g(hU,W )η(V )

}
ξ −

η(U)g(V + hV,W )ξ + g(V + hV,W )U − g(V + hV,W )hU +

g(φU + hφU,W )(φV + φhV )− g(φV + φhV,W )(φU + hφU) +

η(U)η(W )(V + hV ) + g(hU,W )(V + hV ) + (1− k)η(U)η(V )η(W )ξ −

(1− k)η(V )η(W )U − (1− µ)η(V )hU

]
− a

2n− 1

[
S(V, φW )φU −

η(U)S(V,W )ξ + S(V,W )U − S(U,W )V + 2nkη(U)η(W )V +

4(n− 1)g(hU,W )V + S(φU,W )φV + g(V, φW )QφU − g(V,W )φQφU −

g(U,W )QV + η(U)η(W )QV + g(φU,W )φQV
]
− br

2n

[
g(V, φW )φU −

η(U)g(V,W )ξ + g(V,W )U − g(U,W )V + η(U)η(W )V +

g(φU,W )φV
]
= 0. (52)

Taking an inner product with ξ in (52) we get

S(U,W ) =
[2nak(2n+ 1) + br(2n− 1)]

2na
η(U)η(W )

− [2na(1− k){2n(1 + k)− 1}+ br(2n− 1)]

2na
g(U,W )

+[4(n− 1)− µ(2n− 1)]g(hU,W ). (53)

Using (18), (53) can be written as

S(U,W ) = A2g(U,W ) +B2η(U)η(W ), (54)

where,

A2 =
[4(n− 1)− µ(2n− 1)][2na{k(2nk − 1) + n(µ− 4) + 3} − br(2n− 1)]

4na(nµ− n+ 1)

−2(nµ− n+ 1)[2na(1− k)(2nk + 2n− 1) + br(2n− 1)]

4na(nµ− n+ 1)
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and,

B2 =
[4(n− 1)− µ(2n− 1)][(2n− 1)(br − 2nak)− 4an(nµ− n+ 1)]

4na(nµ− n+ 1)

+
2(nµ− n+ 1)[2nak(2n+ 1) + br(2n− 1)]

4na(nµ− n+ 1)
.

Hence, this proves the theorem. �

In view of Lemma 1, we can state the following:

Corollary 3. If M2n+1, (n > 1) is a non-Sasakian φ-semiconformally semi-symmetric (k, µ)-contact metric manifold with µ 6= n−1
n , then

Qφ = φQ is satisfied.

In view of (54), one can obtain the following:

Theorem 7. Let M2n+1, (n > 1) be a non-Sasakian (k, µ)-contact metric manifold. The expression for the Ricci tensor of the manifold
satisfying certain curvature conditions are as follows:

Curvature condition Expression for Ricci tensor

H(U, V ) · φ = 0, S =


[4(n− 1)− µ(2n− 1)][2n{k(2nk − 1) + n(µ− 4) + 3}]

4n(nµ− n + 1)

−
2(nµ− n + 1)[2n(1− k)(2nk + 2n− 1)]

4n(nµ− n + 1)

 g

(For a = 1, b = 0) +


[49n− 1)− µ(2n− 1)][−2nk(2n− 1)− 4n(nµ− n + 1)]

4n(nµ− n + 1)

+
2(nµ− n + 1)[2nk(2n + 1)]

4n(nµ− n + 1)

 η ⊗ η
η-Einstein manifold

C(U, V ) · φ = 0) S =


[4(n− 1)− µ(2n− 1)][2n{k(2nk − 1) + n(µ− 4) + 3} + r]

4n(nµ− n + 1

−
2(nµ− n + 1)[2n(1− k)(2nk + 2n− 1)− r]

4n(nµ− n + 1)

 g

(For a = 1, b = − 1
2n−1 ) -


[4(n− 1)− µ(2n− 1)][(2nk(2n− 1) + r) + 4n(nµ− n + 1)]

4n(nµ− n + 1)

−
2(nµ− n + 1)[2nk(2n + 1)− r]

4n(nµ− n + 1)

 η ⊗ η
η-Einstein manifold

7 A (k, µ)-contact metric manifold M2n+1 satisfying R · P = 0

Definition 5. A (k, µ)-contact metric manifold M2n+1 is said to be semiconformally semi-symmetric, if the semiconformal curvature tensor
satisfies

R(U, V ) · P = 0,

for all vector fields U, V in M .

Theorem 8. Let M2n+1, (n > 1) be a non-Sasakian (k, µ)-contact metric manifold. If M is semiconformally semi-symmetric, then it is
η-Einstein manifold, provided µ 6= 1.

Proof: Suppose M is semiconformally semi-symmetric,i.e.,

(R(ξ, U) · P (V,W )X = 0.

which implies,

R(ξ, U)P (V,W )X − P (R(ξ, U)V,W )X

−P (V,R(ξ, U)W )X − P (V,W )R(ξ, U)X = 0. (55)

Using (15) in (55), we get

k[g(U,P (V,W )X)ξ − η(P (V,W )X)U − g(U, V )P (ξ,W )X +

η(V )P (U,W )X − g(U,W )P (V, ξ)X + η(W )P (V,U)X −
g(U,X)P (V,W )ξ + η(X)P (V,W )U ] + µ[g(hU, P (V,W )X)ξ −
g(hU, V )P (ξ,W )X + η(V )P (hU,W )X + g(hU,W )P (ξ, V )X −
η(W )P (hU, V )X + η(X)P (V,W )hU − g(hU,X)P (V,W )ξ −

η(P (V,W )X)hU ] = 0. (56)
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Putting U = hU in (56), we have

k[g(hU, P (V,W )X)ξ − η(P (V,W )X)hU − g(hU, V )P (ξ,W )X +

η(V )P (hU,W )X − g(hU,W )P (V, ξ)X + η(W )P (V, hU)X)−
g(hU,X)P (V,W )ξ + η(X)P (V,W )hU ]− µ(k − 1)[g(U,P (V,W )X)ξ −

η(P (V,W )X)U − g(U, V )P (ξ,W )X + η(V )P (U,W )X −
g(U,W )P (V, ξ)X + η(W )P (V,U)X − g(U,X)P (V,W )ξ +

η(X)P (V,W )U ] = 0. (57)

From (56) and (57), we obtain

[k2 + µ2(k − 1)][g(U,P (V,W )X)ξ − η(P (V,W )X)U −
g(U, V )P (ξ,W )X + η(V )P (U,W )X − g(U,W )P (V, ξ)X +

η(W )P (V,U)X − g(U,X)P (V,W )ξ + η(X)P (V,W )U ] = 0. (58)

We know that for a non-Sasakian (k, µ)-contact metric manifold, [k2 + µ2(k − 1)] 6= 0. Taking an inner product with ξ in (58) we obtain

g(U,P (V,W )X)− η(P (V,W )X)η(U)− g(U, V )η(P (ξ,W )X) +

η(V )η(P (U,W )X)− g(U,W )η(P (V, ξ)X) + η(W )η(P (V,U)X)−
g(U,X)η(P (V,W )ξ) + η(X)η(P (V,W )U) = 0. (59)

Contracting (60) with U over V , we obtain

2n+1∑
i=1

P̃ (ei,W,X, ei)− 2nη(P (ξ,W )X) +

2n+1∑
i=1

η(X)η(P (ei,W )ei)

−
2n+1∑
i=1

η(W )η(P (ei, ei)X)− η(P (X,W )ξ) = 0. (60)

Using (30), (60) reduces to

S(W,X) =
[ar − 2nak]

2na
g(W,X)− [ar − 2nak(2n+ 1)]

2na
η(X)η(W )

+µ(2n− 1)g(hW,X). (61)

From (18) and (61), we obtain the following

S(W,X) =

[
[2(µ− 1)(r − 2nk) + 4nµ(2n− 1)](n− 1)

4n(n− 1)(µ− 1)

+
µ(2n− 1)[2(k − nµ)− r]

4n(n− 1)(µ− 1)

]
g(W,X)

+

[
[2r(1− µ)− 4n(2n+ 1)](n− 1)− 2nµk(2n+ 1)

4n(n− 1)(µ− 1)

+
µ(2n− 1)[2n9µ+ 4n− 2) + r]

4n(n− 1)(µ− 1)

]
η(W )η(X). (62)

Hence, the manifold is η-Einstein manifold, provided µ 6= 1. �

In view of Lemma 1, we can state the following:

Corollary 4. If M2n+1(n > 1), is a non-Sasakian semiconformally semi-symmetric (k, µ)-contact metric manifold with µ 6= 1, then Qφ =
φQ is satisfied.
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Abstract: In this study, we present some solutions to an open problem related to the geometric study of ϕ-fixed points arisen in a
recent paper. Our methods depend on the usage of appropriate auxiliary numbers such as M(u, v) defined by

M(u, v) = max

{
d(u, v), d(u, Tu), d(v, Tv),

[
d(u, Tv) + d(v, Tu)

1 + d(u, Tu) + d(v, Tv)

]
d(u, v)

}
,

for all u, v ∈ X, and

ρ = inf {d (Tu, u) : u ∈ X,Tu 6= u} .

Keywords: Fixed point, ϕ-fixed point, ϕ-fixed circle, ϕ-fixed disc.

1 Introduction and Motivation

The notion of a ϕ-fixed point was introduced in [1]. An element u ∈ X is said to be a ϕ-fixed point of the self-mapping T : X → X , where
ϕ : X → [0,∞) is a given function, if u is a fixed point of T and ϕ (u) = 0 [1]. Several existence results of ϕ-fixed points for various classes
of operators have been studied (see for example [1–9]). Following [1], we denote the set of all zeros of the function ϕ by Zϕ, that is, we have

Zϕ = {u ∈ X : ϕ (u) = 0} .

Recently, an open problem related to the geometric properties of non-unique ϕ-fixed points was stated in [10]. Let T : X → X be a self-
mapping on a metric space (X, d) and Fix(T ) = {u ∈ X : Tu = u} be the fixed point set of T . In [10], in the context of the fixed-circle
problem (resp. fixed-disc problem), it was pointed out that new results on the geometric properties of the ϕ-fixed points of a self-mapping can
be investigated via the help of appropriate auxiliary numbers. The new notions of a ϕ-fixed circle and of a ϕ-fixed disc were defined as follows:

Definition 1. [10] Let (X, d) be a metric space, T be a self-mapping of X and ϕ : X → [0,∞) be a given function.
1) A circle Cu0,r = {u ∈ X : d (u, u0) = r} in X is said to be a ϕ-fixed circle of T if and only if Cu0,r ⊆ Fix(T ) ∩ Zϕ.
2) A disc Du0,r = {u ∈ X : d (u, u0) ≤ r} in X is said to be a ϕ-fixed disc of T if and only if Du0,r ⊆ Fix(T ) ∩ Zϕ.

For examples and more details we refer the reader to [10]. The proposed open problem is the investigation of the existence and uniqueness of
ϕ-fixed circles (resp. ϕ-fixed discs) for various classes of self-mappings. In [11], some solutions to this problem were presented via the help of
appropriate auxiliary numbers and geometric conditions. It was proved that any zero of a given function ϕ : X → [0,∞) can produce a fixed
circle (resp. fixed disc) contained in the set Fix (T ) ∩ Zϕ for a self-mapping T on a metric space. To do this, new types of a contraction such
as a type 1 ϕu0 -contraction (resp. type 2 ϕu0 -contraction, type 3 ϕu0 -contraction) and a generalized type 1 ϕu0 -contraction (resp. generalized
type 2 ϕu0 -contraction, generalized type 3 ϕu0 -contraction) were defined.

In this paper, we define new types of ϕu0 -contractions to present new solutions to the ϕ-fixed circle problem (resp. ϕ-fixed disc problem).
Our main tools are the numbers

M(u, v) = max

{
d(u, v), d(u, Tu), d(v, Tv),

[
d(u, Tv) + d(v, Tu)

1 + d(u, Tu) + d(v, Tv)

]
d(u, v)

}
, (1)

defined for all u, v ∈ X and
ρ := inf {d (Tu, u) : u ∈ X,u 6= Tu} , (2)

µ := inf
{√

d (Tu, u) : u ∈ X,u 6= Tu
}
. (3)
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2 ϕ-Fixed Circle and ϕ-Fixed Disc Results

In this section, we give new ϕ-fixed circle (resp. ϕ-fixed disc) results using the auxiliary numbers M(u, v), ρ and µ defined in (1), (2) and (3),
respectively, together with geometric conditions.

First, we define a new type of a ϕu0 -contraction on a metric space.

Definition 2. Let (X, d) be a metric space, T be a self-mapping of X and ϕ : X → [0,∞) be a given function. If there exists a point u0 ∈ X
such that

d (Tu, u) > 0⇒ max {d (u, Tu) , ϕ (Tu)}+ ln (ϕ (u) + 1) ≤ kmax {d (u, u0) , ϕ (u)}+ ln (ϕ (u0) + 1) , (4)

for all u ∈ X and some k ∈ (0, 1), then T is called a type 4 ϕu0 -contraction.

In the following theorem, we see that the number ρ defined in (2) and the point u0 produce a ϕ-fixed circle (resp. ϕ-fixed disc) of a type 4
ϕu0 -contraction T under a geometric condition.

Theorem 1. Let (X, d) be a metric space, the number ρ be defined as in (2) and T : X → X be a type 4 ϕu0 -contraction with the point
u0 ∈ X and the given function ϕ : X → [0,∞). If u0 ∈ Zϕ and

ϕ (u) ≤ d (Tu, u) , (5)

for all u ∈ Cu0,ρ, then the circle Cu0,ρ is a ϕ-fixed circle of T .

Proof: To show u0 ∈ Fix (T ), conversely, suppose that u0 6= Tu0. Then we have d (Tu0, u0) > 0 and using the inequality (4) together with
the hypothesis u0 ∈ Zϕ, we find

max {d (u0, Tu0) , ϕ (Tu0)}+ ln (ϕ (u0) + 1) ≤ kmax {d (u0, u0) , ϕ (u0)}+ ln (ϕ (u0) + 1) = 0,

and hence

max {d (u0, Tu0) , ϕ (Tu0)} = 0.

This implies d (u0, Tu0) = 0, which is a contradiction with our assumption. Hence we obtain Tu0 = u0 and u0 ∈ Fix (T ) ∩ Zϕ.
If ρ = 0, then clearly Cu0,ρ = {u0} ⊂ Fix (T ) ∩ Zϕ and hence, the circle Cu0,ρ is a ϕ-fixed circle of T .
Let ρ > 0. For any u ∈ Cu0,ρ with Tu 6= u, we have

max {d (u, Tu) , ϕ (Tu)}+ ln (ϕ (u) + 1) ≤ kmax {d (u, u0) , ϕ (u)}+ ln (ϕ (u0) + 1)

= kmax {ρ, ϕ (u)} .

If max {ρ, ϕ (u)} = ρ, then by the definition of the number ρ, we get

max {d (u, Tu) , ϕ (Tu)}+ ln (ϕ (u) + 1) ≤ kρ ≤ kd (u, Tu)

and so d (u, Tu) ≤ kd (u, Tu), a contradiction by the hypothesis k ∈ (0, 1).
If max {ρ, ϕ (u)} = ϕ (u), we get

max {d (u, Tu) , ϕ (Tu)}+ ln (ϕ (u) + 1) ≤ kϕ (u)

and hence d (u, Tu) ≤ kϕ (u), a contradiction because of (5) and the hypothesis k ∈ (0, 1).
This contradiction shows that Tu = u, that is, u ∈ Fix (T ). By (5), we have ϕ (u) = 0 for all u ∈ Cu0,ρ. This means u ∈ Fix (T ) ∩ Zϕ

for all u ∈ Cu0,ρ. Consequently, we find Cu0,ρ ⊂ Fix (T ) ∩ Zϕ and hence, the circle Cu0,ρ is a ϕ-fixed circle of T . �

Theorem 2. Let (X, d) be a metric space, the number ρ be defined as in (2), T : X → X be a type 4 ϕu0 -contraction with the point u0 ∈ X
and the given function ϕ : X → [0,∞). If u0 ∈ Zϕ and the inequality

ϕ (u) ≤ d (Tu, u)

is satisfied for all u ∈ Du0,ρ, then the disc Du0,ρ is a ϕ-fixed disc of T .

Proof: The proof is similar to the proof of Theorem 1, so we omit it. �

We give an illustrative example for Theorem 1 and Theorem 2.
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Example 1. Let (R, d) be the usual metric space and consider the self-mapping T : X → X defined by

Tu =

{
u+ 1

2 , u > 2
u ; u ≤ 2

and the function ϕ : R→ [0,∞) defined by

ϕ (u) =

{
0 ; u ≥ −1
|u| ; u < −1 .

We show that T is a type 4 ϕu0 -contraction with the point u0 = 0 and k = 2
3 . Indeed, we have

max

{∣∣∣∣u− (u+
1

2

)∣∣∣∣ , ϕ(u+
1

2

)}
+ ln (0 + 1) =

1

2
≤ 2

3
max {|u− 0| , ϕ (u)}+ ln (0 + 1) =

2

3
u,

for all u > 2. We find

ρ = inf {d (Tu, u) : u ∈ X,u 6= Tu}

= inf

{∣∣∣∣u+
1

2
− u
∣∣∣∣ = 1

2
: u > 2

}
=

1

2

and all conditions of Theorem 1 are satisfied by T . Observe that Fix (T ) ∩ Zϕ = (−∞, 2] ∩ [−1,∞) = [−1, 2] and we get

C0, 12
=

{
−1

2
,
1

2

}
⊂ Fix (T ) ∩ Zϕ.

Hence, the circle C0, 12
is a ϕ-fixed circle of T .

Clearly, T also satisfies all conditions of Theorem 2 and we have D0, 12
⊂ Fix (T ) ∩ Zϕ. That is, the disc D0, 12

=
[
− 1

2 ,
1
2

]
is a ϕ-fixed

disc of T .

Now, we define another type of a ϕu0 -contraction using the auxiliary number M(u, v).

Definition 3. Let (X, d) be a metric space, T be a self-mapping of X and ϕ : X → [0,∞) be a given function. If there exists a point u0 ∈ X
such that

d (Tu, u) > 0⇒ max {d (u, Tu) , ϕ (Tu)}+ ln (ϕ (u) + 1) ≤ kmax {M (u, u0) , ϕ (u)}+ ln (ϕ (u0) + 1) , (6)

for all u ∈ X and some k ∈
(
0, 12

)
, then T is called a generalized type 4 ϕu0 -contraction.

We prove the following ϕ-fixed circle theorem by means of the number µ. We note that we have

M (u0, u0) = max

{
d(u0, u0), d(u0, Tu0), d(u0, Tu0),

[
d(u0, Tu0) + d(u0, Tu0)

1 + d(u0, Tu0) + d(u0, Tu0)

]
d(u0, u0)

}
= d(u0, Tu0).

Theorem 3. Let (X, d) be a metric space, the number µ be defined as in (3) and T : X → X be a generalized type 4 ϕu0 -contraction with
the point u0 ∈ X and the given function ϕ : X → [0,∞). If u0 ∈ Zϕ and the inequalities

d (Tu, u0) ≤ µ, (7)

ϕ (u) ≤ d (Tu, u)

hold for all u ∈ Cu0,µ, then the circle Cu0,µ is a ϕ-fixed circle of T .

Proof: If d (Tu0, u0) > 0, then using the inequality (6) and the hypothesis u0 ∈ Zϕ, we find

max {d (u0, Tu0) , ϕ (Tu0)}+ ln (ϕ (u0) + 1) ≤ kmax {M (u0, u0) , ϕ (u0)}+ ln (ϕ (u0) + 1)

≤ kM (u0, u0)

= kd(u0, Tu0)

and hence
max {d (u0, Tu0) , ϕ (Tu0)} ≤ kd(u0, Tu0).

This implies d (u0, Tu0) ≤ kd(u0, Tu0), which is a contradiction since k ∈
(
0, 12

)
. Then, we have Tu0 = u0, that is, u0 ∈ Fix (T ).

Therefore, we obtain u0 ∈ Fix (T ) ∩ Zϕ.
If µ = 0, then clearly we find Cu0,µ = {u0} ⊂ Fix (T ) ∩ Zϕ and hence, the circle Cu0,µ is a ϕ-fixed circle of T .
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Let µ > 0. For any u ∈ Cu0,µ with Tu 6= u, we have

max {d (u, Tu) , ϕ (Tu)}+ ln (ϕ (u) + 1) ≤ kmax {M (u, u0) , ϕ (u)} . (8)

If max {M (u, u0) , ϕ (u)} = ϕ (u), we obtain

max {d (u, Tu) , ϕ (Tu)}+ ln (ϕ (u) + 1) ≤ kϕ (u)

and hence d (u, Tu) ≤ kϕ (u) which is a contradiction by the hypothesis k ∈
(
0, 12

)
and ϕ (u) ≤ d (Tu, u).

Let max {M (u, u0) , ϕ (u)} =M (u, u0). Considering the condition (7), we obtain

M(u, u0) = max

{
d(u, u0), d(u, Tu), d(u0, Tu0),

[
d(u, Tu0) + d(u0, Tu)

1 + d(u, Tu) + d(u0, Tu0)

]
d(u, u0)

}
≤ max

{
µ, d(u, Tu), 0,

[
µ+ µ

1 + d(u, Tu)

]
µ

}
= max

{
µ, d(u, Tu), 0,

2µ2

1 + d(u, Tu)

}
.

If max
{
µ, d(u, Tu), 0, 2µ2

1+d(u,Tu)

}
= d(u, Tu) then by (8) we get

max {d (u, Tu) , ϕ (Tu)}+ ln (ϕ (u) + 1) ≤ kd (u, Tu)

and so d (u, Tu) ≤ kd (u, Tu), a contradiction by the hypothesis k ∈
(
0, 12

)
. If M(u, u0) ≤ 2µ2

1+d(u,Tu)
then by the definition of the number

µ we have

max {d (u, Tu) , ϕ (Tu)}+ ln (ϕ (u) + 1) ≤ k
2µ2

1 + d(u, Tu)

≤
2k
(√

d(u, Tu)
)2

1 + d(u, Tu)

< 2kd(u, Tu)

and hence d (u, Tu) < 2k(u, Tu), a contradiction by the hypothesis k ∈
(
0, 12

)
. This implies Tu = u, that is, u ∈ Fix (T ) in all of the

above cases. By the hypothesis ϕ (u) ≤ d (Tu, u), we have ϕ (u) = 0 for all u ∈ Cu0,µ. This implies u ∈ Fix (T ) ∩ Zϕ for all u ∈ Cu0,µ.
Consequently, we deduce that Cu0,µ ⊂ Fix (T ) ∩ Zϕ and hence, the circle Cu0,µ is a ϕ-fixed circle of T . �

Theorem 4. Let (X, d) be a metric space, the number µ be defined as in (3) and T : X → X be a type 4 generalized ϕu0 -contraction with
the point u0 ∈ X and the given function ϕ : X → [0,∞). If u0 ∈ Zϕ and the inequalities

d (Tu, u0) ≤ µ,

ϕ (u) ≤ d (Tu, u)

hold for all u ∈ Du0,µ, then the disc Du0,µ is a ϕ-fixed disc of T .

Proof: The proof is similar to the proof of Theorem 3. �

Now, in the following example, we see a sample of a self-mapping which is not a type 4 ϕu0 -contraction, but is a generalized type 4
ϕu0 -contraction.

Example 2. Let (R, d) be the usual metric space and consider the self-mapping T : X → X defined by

Tu =

{
2u ; u > 4
u ; u ≤ 4

and the function ϕ : R→ [0,∞) defined by

ϕ (u) =

{
0 ; u ≥ −5
|u| ; u < −5 .

We have

ρ = inf {d (Tu, u) : u ∈ X,u 6= Tu}
= inf {|2u− u| : u > 4}
= inf {|u| : u > 4} = 4
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and

µ = inf
{√

d (Tu, u) : u ∈ X,u 6= Tu
}

= inf
{√
|2u− u| : u > 4

}
= inf

{√
|u| : u > 4

}
= 2.

We show that T is not a type 4 ϕu0 -contraction with the point u0 = 0 and any k ∈ (0, 1). Indeed, we have

max {d (u, Tu) , ϕ (Tu)}+ ln (ϕ (u) + 1) = max {|u| , 0}+ ln (0 + 1) = |u|

and
max {d (u, 0) , ϕ (u)}+ ln (ϕ (0) + 1) = max {|u− 0| , 0} = |u| ,

for all u > 4. These implies |u| ≤ k |u| which is a contradiction since k ∈ (0, 1). Therefore, the condition (4) is not satisfied by T .
On the other hand, we have

M(u, 0) = max

{
|u| , |u| , 0,

[
|u|+ |2u|
1 + |u|

]
|u|
}

=
3 |u|

1 + |u| |u| ,

for all u > 4. If we choose k = 5
12 , then (6) is satisfied and so T is a generalized type 4 ϕu0 -contraction with the point u0 = 0.

Observe that
Fix (T ) ∩ Zϕ = (−∞, 4] ∩ [−5,∞)∩ = [−5, 4]

and we get
C0,2 = {−2, 2} ⊂ Fix (T ) ∩ Zϕ.

Hence, the circle C0,2 is a ϕ-fixed circle of T .
Clearly, T also satisfies all conditions of Theorem 4 and the disc D0,2 = [−2, 2] is a ϕ-fixed disc of T .

Now, we give an example of a self-mapping T such that T satisfies all conditions of Theorem 1, Theorem 2, Theorem 3 and Theorem 4.

Example 3. Let X = {−1, 0, 1, 2, 3} with the usual metric and consider the self-mapping T : X → X defined by

Tu =

{
u , u 6= 3
2 ; u = 3

and the function ϕ :X → [0,∞) defined by
ϕ (u) = u3 − u.

We have

ρ = inf {d (Tu, u) : u ∈ X,u 6= Tu}
= |2− 3| = 1

and

µ = inf
{√

d (Tu, u) : u ∈ X,u 6= Tu
}

=
√
1 = 1.

Observe that Fix (T ) = X − {3}, Zϕ = {−1, 0, 1} and Fix (T ) ∩ Zϕ = {−1, 0, 1}.
Now, we show that T is a type 4 ϕu0 -contraction with the point u0 = 0 and k = 1

2 . Indeed, we have

max {1, 6}+ ln (25) = 6 + ln (25) ≤ 1

2
max {|3− 0| , 24} = 12,

for u = 3. Clearly, all conditions of Theorem 1 (resp. Theorem 2) are satisfied by T . We get

C0,1 = {−1, 1} ⊂ Fix (T ) ∩ Zϕ and D0,1 = {−1, 0, 1} ⊂ Fix (T ) ∩ Zϕ.

Hence, the circle C0,1 (resp. the disc D0,1) is a ϕ-fixed circle (resp. ϕ-fixed disc D0,1) of T .
On the other hand, T is a generalized type 4 ϕu0 -contraction with the point u0 = 0 and k = 2

5 . Indeed, we have

M(3, 0) = max

{
d(3, 0), d(3, 2), d(0, 0),

[
d(3, 0) + d(0, 2)

1 + d(3, 2) + d(0,−0)

]
d(3, 0)

}
= max

{
3, 1, 0,

3 + 2

2
.3

}
=

15

2

and so,

max {1, 6}+ ln (25) = 6 + ln (25) ≤ 2

5
max

{
15

2
, 24

}
=

48

5
.

Clearly, T also satisfies all conditions of Theorem 3 (resp. Theorem 4).
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Remark 1. 1) Example 2 shows that the converse statements of Theorem 1 and Theorem 2 are not true everywhen. Notice that the circle C0,4
(resp. the disc D0,4) is a ϕ-fixed circle (resp. a ϕ-fixed disc) of T . But, we have seen that T is not a type 4 ϕu0 -contraction with the point
u0 = 0 and any k ∈ (0, 1).

2) Theorem 1 and Theorem 3 (resp. Theorem 2 and Theorem 4) can generate the same ϕ-fixed circle (resp. ϕ-fixed disc) of T (see Example
3).

3 Conclusion and Future Work

We have given new solutions to the ϕ-fixed circle (resp. ϕ-fixed disc) problem with necessary illustrative examples. To do this, we were inspired
by the definition of the function

F : [0,∞)3 → [0,∞) , F (a, b, c) = max {a, b}+ ln(c+ 1).

As a future work, using the other examples of functions F on page 1 in [6], new ϕ-fixed circle (resp. ϕ-fixed disc) results can be obtained by
similar techniques.
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Abstract: In this paper, considering that the continued fraction Kn(−1/− k) is a Pringsheim fraction, with n = 1, 2, 3, ... for natural
numbers k that are k = 2 and k = 3. The forms of the images of the discs Kn are examined under the linear fractional trans-
formations {Sn} of the complex disc D = {w ∈ C : |w| ≤ 1}. Specially, the relation between Fibonacci numbers and forms of the
images of the Kn are examined for k = 3. The results for these special continued fractions from the images of these discs will also
be compared with the vertex values on the minimal-length paths in the suborbital graphs. Also, an algorithm is created in Python
application language to visually inspect circular discs.

Keywords: Continued fractions, Fibonacci numbers, Pringsheim.

1 Introduction

Let ϕi =

(
−u u2+(−1)ikiu+1

N

−N u+ (−1)iki

)
∈ Γ0(N), i = 1, 2. If (u,N) = 1, then there exist an integer ki, i = 1, 2 such that u2 + (−1)ikiu+

1 ≡ 0 (modN), i = 1, 2. On Fu,N , ϕi, i = 1, 2 is a transformation which joins the vertices to each other by respectively on the infinite path
of minimal length to both directions. We can see the vertices of the minimal length path of suborbital graph Fu,N at Figure 1 [1–3]. Here,

Fig. 1: The vertices on the minimal length path on the suborbital graph Fu,N

every vertices on the minimal-length paths of suborbital graph Fu,N include a continued fraction.It is well known that a continued fraction
may be regarded as a sequence of Möbius maps. We saw that the set M of vertices were obtained by a sequence of Möbius maps. So, there is
naturally a connection between them. We know any continued fraction can be expressed as the symbol b0 + K∞m=1 (am/bm) by [4]. Using the
terminology in [4], the nth numerator An and the nth denominator Bn of a continued fraction b0 + K (am/bm) are defined by the recurrence
relations (second order linear difference equations) [

An

Bn

]
:= bn

[
An−1
Bn−1

]
+ an

[
An−2
Bn−2

]
, (1)

where n = 1, 2, 3, . . .with initial conditionsA−1 := 1, B−1 := 0, A0 := b0, B0 := 1. The modified approximant Sn(zn) can then be written
as Sn(zn) =

An+An−1zn
Bn+Bn−1zn

, where n = 0, 1, 2, 3, . . . and hence for the nth approximant fn we have fn = Sn(0) = An
Bn

, fn−1 = Sn(∞) =
An−1

Bn−1
.
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The continued fraction related the suborbital graphs is K∞n=1

(
−1

−ki

)
, where an = −1, bn = −ki for all n ≥ 0, n ∈ N and i = 1, 2. That

continued fraction is a Pringsheim continued fraction according to Pringsheim theorem [5]. From recurrence relation (1), for this continued
fraction, Bn = −An+1. Then, nth vertex on the path of minimal length in the suborbital graph Fu,N can be given by

u+ (−1)iTn(0)

N
=
u+ (−1)i An

Bn

N
=
An+1u− (−1)iAn

An+1N
, i = 1, 2 (2)

for left and right direction respectively.

Corollary 1. [2] If ki ≥ 2, i = 1, 2, then from the linear equations (1), we have recurrence relation as kiAn+1 +An+2 +An = 0.

Theorem 1. [2] If ki = 2, i = 1, 2, then An = (−1)nn and if ki > 2, then

An = (−1)n21−n
n∑

t=1

(
ki +

√
k2i − 4

)n−t(
ki −

√
k2i − 4

)t−1
. (3)

Corollary 2. [2] If ki = 3, i = 1, 2, then An = (−1)nF2n, where Fn is the nth Fibonacci number.

Corollary 3. If ki = 3, i = 1, 2, then the (n+ 1)th vertex on the path of the minimal length starting with the vertex u
N is F2n−F2n+2u

F2n+2N
and

F2n+F2n+2u
F2n+2N

, respectively, where, for each m ∈ N ∪ {0},

Fm =

 0, if m=0;
1, if m=1;
Fm−1 + Fm−2, if m>1

is the mth Fibonacci number.

2 Main Results

The continued fractions are defined by the value regions Vn and the elements Ωn corresponding to these regions. So, for all 〈an, bn〉 ∈ Ωn

sn(vn) ⊆ Vn−1, n = 1, 2, 3, ... ,

where {Ω} is the sequence of element regions and {Vn} is the sequence of value regions. Here, the sequence of the continued fraction
K(−1/− k) is the sequence {sn}, sn(w) = −1

−k+w of the Mobius maps, where an = −1 and bn = −k. {Sn} is the sequence of the linear
fractional maps produced by {sn}. We can defined the sequence {Sn} by the recurrence relation of the continued fractions;

Sn(w) = s1 ◦ s2 ◦ · · · ◦ sn(w) =
An−1w −An

Bn−1w + bn
, n = 1, 2, 3, ... .

By this way, let take the region Kn = Sn(Vn) for the {Sn} linear maps. It is clear that for w ∈ Vn, Sn(w) ∈ Kn holds. Let take V0 = D̄ =
{w ∈ C : |w| ≤ 1}, where D̄ is unit disc on the set complex numbers. The images Kn corresponding the value region Vn under the linear
fractional maps {Sn} are the discs like Kn = Sn(D̄). The images Kn are determined as follows:

Kn = Sn(w) = s1 ◦ s2 ◦ · · · ◦ sn(w), n = 1, 2, 3, ... .

2.1 The discs Kn of the continued fraction K(−1/− 2)

Let take k = 2 on the continued fraction K(−1/− k). So, the sequence of the continued fraction K(−1/− 2) is Sn(w) = −1
−2+w . From

recurrence relation and An = (−1)nn on Theorem 1, for k = 2, the series of the linear fractional maps {Sn}, which is produced by {sn} is
been written as;

Sn(w) = s1 ◦ s2 ◦ · · · ◦ sn(w) =
(n− 1)w − n
nw − (n+ 1)

, n = 1, 2, 3, ... .

Here, the sequence of the inverse of the maps Sn is

Sn
−1(w) =

(n+ 1)w − n
nw − (n− 1)

.

Since Kn = Sn
(
D̄
)
, that is Sn−1 (Kn) = D̄, for each integer n ≥ 1, Sn−1(un) ∈ D̄ for each un ∈ Kn. Then, the following theorem gives

the place of region Kn for continued fraction K(−1/− k):

Theorem 2. Let K(−1/− k) is a continued fraction and {Sn} is the sequence of the linear fractional maps of the K(−1/− k). Let take the
Kn = Sn

(
D̄
)

for region D̄. So, the images Kn are the discs like

Kn =

{
un ∈ C :

∣∣∣∣un − 2n

2n+ 1

∣∣∣∣ ≤ 1

2n+ 1

}
, n = 1, 2, 3, ...,

where the center Cn =
(

2n
2n+1 , 0

)
and the radius Rn = 1

2n+1 .
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Proof: Proof can be made by mathematical induction method. �

Theorem 3. Let {Sn} is the sequence of the linear fractional maps of the continued fraction K(−1/− 2) and Kn = Sn
(
D̄
)

for region D̄.
Then, the discs Kn are the nested discs ;

D̄ ⊃ K1 ⊃ K2 ⊃ · · · ⊃ Kn.

Proof: The continued fraction K(−1/− 2) is a Prinsheim fraction, since k = 2. So, for the disc D̄ and the sequence {sn} of the linear fraction
maps of the continued fraction K(−1/− 2), we get sn

(
D̄
)
⊂ D̄. In that case,

Kn = Sn
(
D̄
)

= Sn−1
(
sn
(
D̄
))
⊆ Sn−1

(
D̄
)

= Kn−1,

Kn−1 = Sn−1
(
D̄
)

= Sn−2
(
sn−1

(
D̄
))
⊆ Sn−2

(
D̄
)

= Kn−2,

...

K2 = S2
(
D̄
)

= S1
(
s2
(
D̄
))
⊆ S1

(
D̄
)

= K1

holds. Then, we write
Kn ⊂ Kn−1 ⊂ · · · ⊂ K2 ⊂ K1 ⊂ D̄.

�

To examine the closed discs Kn for k = 2 visually, we give the following algorithm on Ptyhon language for first five discs;

Fig. 2

The discs which are drawn with this algorithm, are as the Figure 3. Here, it is seen that, the discs Kn are tangent at point 1. For k = 2, the

Fig. 3

following corollary is about the convergence of the discs;
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Corollary 4. There is a boundary point condition for the sequence {Kn} which is composed by Kn = Sn(D̄) for the continued fraction
K(−1/− 2) and the closed disc D̄. The sequence converges to f = 1.

Proof: Since the discs Kn are the subsets of the closed discs D̄, they are closed discs. Then, the discs Kn are formed by the sequences, for the
radius {Rn} =

{
0, 13 ,

1
5 , . . . ,

1
2n+1

}
and for the center {Cn} =

{
1, 23 ,

4
5 , . . . ,

2n
2n+1

}
. So, the following limits are written;

limRn = lim
n→∞

1

2n+ 1
= 0 and limCn = lim

n→∞
2n

2n+ 1
= 1.

Because of limRn = 0, there is boundary point condition and it converges to limCn = 1.
�

2.2 The discs Kn of the continued fraction K(−1/− 3)

For k = 3 the sequence of the maps of the continued fraction K(−1/− 3) is sn(w) = −1
−3+w . {Sn}, which is produced by {sn} of the disc D̄

is the sequence of linear fractional maps of the linear fractional maps. When we use the equation on Corollary 2, the elements of that sequence
are represented by Fibonacci numbers;

Sn(w) = s1 ◦ s2 ◦ · · · ◦ sn(w) =
−F2n−2w + F2n

−F2nw + F2n+2
, n = 1, 2, 3, ... .

Here, the sequence of the inverse of the maps Sn is

Sn
−1(w) =

F2n+2w − F2n

F2nw − F2n−2
, n = 1, 2, 3, ... .

Theorem 4. Let K(−1/− 3) is a continued fraction and {Sn} is the sequence of the linear fractional maps of the K(−1/− 3). Let take the
Kn = Sn

(
D̄
)

for region D̄. So, the images Kn are the discs like

Kn =

{
vn ∈ C :

∣∣∣∣vn − F4n

F4n+2

∣∣∣∣ ≤ 1

F4n+2

}
, n ≥ 1,

where the center Cn =
(

F4n
F4n+2

, 0
)

and the radius Rn = 1
F4n+2

.

Proof: For the proof, we use mathematical induction method. For n = 1 and v1 ∈ K1, the inverse map S−11 is

S1
−1(v1) =

F4v1 − F2

F2v1 − F0
,

whereK1 = S1(D̄). Since S1−1(v1) ∈ D̄, the place of discK1 is obtained by solving the expression
∣∣∣F4v1−F2
F2v1−F0

∣∣∣ ≤ 1. So, for v1 = x1 + iy1,

∣∣∣∣F4x1 + iF4y1 − F2

F2x1 + iF2y1 − F0

∣∣∣∣ ≤ 1

holds. When we solve the inequality, we get(
F4

2 − F2
2
)
x1

2 − 2x1F2 (f4 − F0) +
(
F4

2 − F2
2
)
y1

2 + F2
2 − F0

2 ≤ 0.

From the identities F2n = FnLn, Fn−1 + Fn+1 = Ln and Fn+2 − Fn−2 = Ln, we write

x1
2 − 2

F4

F6
x1 + y1

2 +
F2

F6
≤ 0.

Therefore, the place of disc K1 is given as follows

(
x1 −

F4

F6

)2

+ y1
2 ≤

(
1

F6

)2

.

So, this gives that K1 is a closed disc with center
(
F4
F6
, 0
)

and radius 1
F6
. Now, let assume the statement is true for Kn. We should show that

the statement is true for Kn+1. We can write

Sn+1(w) = Sn (sn+1(w)) =
−F2nw + F2n+2

−F2n+2w + F2n+4
and Sn+1

−1(w) =
F2n+4w − F2n+2

F2n+2w − F2n
.
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Since, for all vn+1 ∈ Kn+1, Sn+1
−1(vn+1) ∈ D̄ is written, the place of disc K1 is obtained by solving the expression∣∣∣F2n+4vn+1−F2n+2

F2n+2vn+1−F2n

∣∣∣ ≤ 1. So, for vn+1 = xn+1 + iyn+1,

∣∣∣∣F2n+4xn+1 + iF2n+4yn+1 − F2n+2

F2n+2xn+1 + iF2n+2yn+1 − F2n

∣∣∣∣ ≤ 1

holds. When we solve the inequality and use the following identities

F 2
2n+4 − F 2

2n+2 = F4n+6, F2n+2 (F2n+4 − F2n) = F4n+4, F
2
2n+2 − F 2

2n = F4n+2,

we get

x2n+1 − 2
F4n+4

F4n+6
xn+1 + y2n+1 +

F4n+2

F4n+6
≤ 0.

Therefore, the place of disc Kn+1 is given as follows(
xn+1 −

F4(n+1)

F4(n+1)+2

)2

+ y2n+1 ≤

(
1

F4(n+1)+2

)2

.

So, this gives that Kn+1 is a closed disc with center
(

1
F4(n+1)+2

, 0
)

and radius 1
F4(n+1)+2

. Then the proof is done. �

Theorem 5. Let {Sn} is the sequence of the linear fractional maps of the continued fraction K(−1/− 3) and Kn = Sn
(
D̄
)

for region D̄.
Then, the discs Kn are the nested discs ;

D̄ ⊃ K1 ⊃ K2 ⊃ · · · ⊃ Kn.

Proof: The continued fraction K(−1/− 3) is a Prinsheim fraction, since k = 3. So, for the disc D̄ and the sequence {sn} of the linear fraction
maps of the continued fraction K(−1/− 3), we get sn

(
D̄
)
⊂ D̄. In that case,

Kn = Sn
(
D̄
)

= Sn−1
(
sn
(
D̄
))
⊆ Sn−1

(
D̄
)

= Kn−1,

Kn−1 = Sn−1
(
D̄
)

= Sn−2
(
sn−1

(
D̄
))
⊆ Sn−2

(
D̄
)

= Kn−2,

...

K2 = S2
(
D̄
)

= S1
(
s2
(
D̄
))
⊆ S1

(
D̄
)

= K1

holds. Then, we write
Kn ⊂ Kn−1 ⊂ · · · ⊂ K2 ⊂ K1 ⊂ D̄.

�

To examine the closed discs Kn for k = 3 visually, we give the following algorithm on Ptyhon language for first five discs;

Fig. 4

The discs which are drawn with this algorithm, are as the Figure 4. Here, it is seen that, the discs Kn are tangent at point 1. For k = 2, the
following corollary is about the convergence of the discs;

Corollary 5. There is a boundary point condition for the sequence {Kn} which is composed by Kn = Sn(D̄) for the continued fraction
K(−1/− 3) and the closed disc D̄. The sequence converges to f = 3−

√
5

2 .
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Fig. 5

Proof: Since the discs Kn are the subsets of the closed discs D̄, they are closed discs. Then, the discs Kn are formed by the sequences, for the
radius {Rn} =

{
0, 1

F6
, 1
F10

, . . . , 1
F4n+2

}
and for the center {Cn} =

{
1, F4

F6
, F8
F10

, . . . , F4n
F4n+2

}
. So, the following limits are written;

limRn = lim
n→∞

1

F4n+2
= 0 and limCn = lim

n→∞
F4n

F4n+2
= 1− 1

α
=

3−
√

5

2
.

Because of limRn = 0, there is boundary point condition and it converges to limCn = 3−
√
5

2 .
�
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