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Preface 

 

 

Dear Conference Participant, 
 

Welcome to the International Hybrid Conference on Mathematical Development and Applications (ICOMAA-23) we organized the sixth. 
First of all, I would like to start my words by reminding one of G. H. Hardy's words: 

"Mathematics, more than any other art or science, is a young man's game." 
 

This phrase he expressed in his book “A Mathematician's Apology” is quite meaningful. Because Newton discovered his biggest ideas, 
fluxions and the law of gravitation, when he was just 24 years old. He found the 'elliptic orbit' at 37 years old. Also, Galois (at twenty-
one), Abel(twenty-seven), Ramanujan (thirty-three), and Riemann(at forty) had passed away in their youth. 

 

That's why we thought we should continue this series of conferences that brings together exciting and productive young mathematicians. 
So, we aim to bring together scientists and young researchers from all over the world and their work on the fields of mathematics and 
applications of mathematics, to exchange ideas, to collaborate and to add new ideas to mathematics in a discussion environment. With 
this interaction, functional analysis, approach theory, differential equations and partial differential equations and the results of 
applications in the field of Mathematics are discussed with our valuable academics, and in mathematical developments both science and 
young researchers are opened. We are happy to host many prominent experts from different countries who will present the state-of-
the-art in real analysis, complex analysis, harmonic and non-harmonic analysis, operator theory and spectral analysis, applied analysis. 

 
 
I would like to express my gratitude to those who see and appreciate our efforts and innovative steps that we have made to improve 
our conference every year, to our dear invited speakers and to all our participants. I owe a debt of gratitude to the Scientific committee, 
organizing committee, local organizing committee and for their efforts throughout this conference series. 

 
 
The conference brings together about 203 participants and 9 invited speakers from 22 countries (Azerbaijan, India, Algeria, 
Bangladesh, Georgia, Greece, India, Iran, Iraq, Italy, Kazakhstan, Kosovo, Malaysia, Mexico, Morocco, Pakistan, Poland, Saudi Arabia, 
Turkey, United Arab Emirates, Uzbekistan, Yemen). 

 
 

It is also an aim of the conference to encourage opportunities for collaboration and networking between senior academics and graduate 

students to advance their new perspective. Additional emphasis on ICOMAA-23 applies to other areas of science, such as natural sciences, 

economics, computer science, and various engineering sciences, as well as applications in related fields 

 
 
The conference program represents the efforts of many people. I would like to express my gratitude to all membership the scientific 
committee, external reviewers, sponsors and, honorary committee for their continued support to the  ICOMAA. I also thank the 
invited speakers for presenting their talks on current researches. Also, the success of ICOMAA depends on the effort and talent 
of researchers in mathematics and its applications that have written and submitted papers on a variety of topics. So, I would 
like to sincerely thank all participants of ICOMAA-2023 for contributing to this great meeting in many different ways. I believe 
and hope that each of you will get the maximum benefit from the conference. 

 

Prof. Dr. Yusuf ZEREN 

 Chairman 

On behalf of the Organizing Committee 
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Istanbul University, 
TURKEY 

Farman Mammedov 
Azerbaijan National Academy of Science University, 

AZERBAIJAN 

 

Lütfi Akın 
Mardin Artuklu University, 
TURKEY 

Amiran Gogatishvili 
Czech Academy of Sciences University, 

CZECH REPUBLIC
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Abstract:
The main idea of this work is to introduce and investigate a new class of open sets in grill topological spaces, namely open Gα

ω−
sets, which is considered as a strong form of the class of Gα

ω−open sets and it is induced topology by the collection of Gα
ω−open

sets. Next, we study the separation axioms in the collection of Gα
ω−open sets.

Keywords: Grill topological space, induced topology, separation axioms.
AMS Subject Classification 2020: 54A05, 54A20, 54D99.

1 Introduction

Some classes of weak or strong forms of open sets in topological spaces are structured, investigated, and introduced as important studies in
the general topology. In 1963, [19] Levine introduced the class of semi-open sets in topological spaces as a weak form of the class of open
sets. In 1965, Njastad [9] introduced the class of α−open sets in topological spaces as a class stronger than semi-open sets and weaker than
the class of open sets. In 1982, Hdeib [6] introduced the class of ω−open sets as weaker than the class of open sets in topological spaces. In
1982, [8] Mashhour et al., introduced the class of pre-open sets, and the weak form of the class of α−open sets in topological spaces. In 1983,
[2] Abd El-Monsef et al., introduced a weak form of pre-open sets which is called β−open sets. In 2009, [10] T. Noiri et al., introduced the
classes of β − ω−open sets and α− ω−open sets. In 2016, [11] Rajasekaran et al., introduced the classes of semi−ω−open sets, which are
new generalized classes of ω−open sets in topological spaces, such as α− ω−open sets weeker than the class of α−open sets, ω−open sets
and stronger than the class of semi-ω−open sets. The concept of grill on a topological space, [3] given by Choquet. Roy and Mukherjee, [12],
are introduced in 2007, on a typical topology induced by a grill. On the concept of a grill topological space, Hatir, and Jafari, [5] defined and
investigated the notions in this part such as G-pre-open set. Al-Omari and Noiri, [1] introduced the notions of G-semi-open sets, Gα−open sets
such as the class of Gα−open sets, which are week forms of the class of open sets in the topological spaces (X, τ). Also the class of Gα−open
sets strong of the class of α−open sets in the topological spaces and the class of G-semi-open sets in the grill topological spaces. In 2020, [17]
they introduced the class of Gω−open sets in grill topological spaces as a weaker than the class of ω−open sets, and stronger than the class of
β − ω-open sets in the topological spaces.

This work consists of five sections, which are organized as follows:
In the Preliminaries, we recalled some of the basic facts and definitions about topological spaces and grill topological spaces, which will be
used throughout this work.
In the third section, we introduced the concepts of the open Gα

ω− sets and their relationships with the other known concepts of openness. We
next give the notions of the closure operator of open Gα

ω− sets.

In the fourth section the separation axioms are investigated and introduced by the collection of Gα
ω−open sets.

2 Preliminaries

For a topological space (X, τ) and A ⊆ X , throughout this paper, we mean Cl(A) and Int(A) the closure set and the interior set of A,
respectively.

Theorem 1. [7] For a topological space (X, τ) and A,B ⊆ X . If B is an open set in (X, τ), then Cl(A) ∩B ⊆ Cl(A ∩B).

Theorem 2. [7] For a topological space (X, τ),

1. Cl(X −A) = X − Int(A) for all A ⊆ X .
2. Int(X −A) = X − Cl(A) for all A ⊆ X .

© CPOST 2023 1



Definition 1. [9] A subset A in a topological space (X,T ) is called: An α−open set if A ⊆ Int(Cl(Int(A))). The complement of an α−open
set is called an α−closed set. The set of all α−closed sets in (X, τ) is denoted by αC(X) and the set of all α−open sets in (X, τ) is denoted
by αO(X).

Definition 2. [18] A subset A of a topological space (X, τ) is called a regular open (simply r−open) set if A = Int(Cl(A)). The complement
of an r−open set is called a regular closed (simply an r−closed) set.

Theorem 3. [18] A subset A of a topological space (X, τ) is an r−closed set if and only if A = Cl(Int(A)).

Definition 3. [6] A subset A in a topological space (X,T ) is called an ω−open set if for each x ∈ A, there is an open set Ux containing x such
that Ux −A is a countable set. The complement of ω−open set is called an ω−closed set. The set of all ω−closed sets in (X, τ) is denoted by
ωC(X, τ) and the set of all ω−open sets in (X, τ) is denoted by ωO(X). The ω−interior operator of Ais defined as the union of all ω−open
sets which is a contained in A and denotes Intω(A), the ω−closure operator of A is defined as the intersection of all ω−closed sets which
contain A and denotes Clω(A).

Theorem 4. [6] For a topological space (X, τ), every open set is an ω−open set.

Definition 4. [3] A non-null collection G of subsets of a topological spaces (X, τ) is said to be a grill on X if G satisfies the following
conditions:
(i) A ∈ G and A ⊆ B implies that B ∈ G
(ii) A,B ⊆ X and A ∪B ∈ G implies that A ∈ G or B ∈ G.

Definition 5. [13] Let X be a nonempty set and ∅ ≠ A ⊆ X. Then the collection [A] = {B ⊆ X : A ∩B ̸= ∅} is a grill on X and it is called
the principal grill on X generated by A, (easily G[A]) on X.

For a grill topological space (X, τ,G), the operator Φ : P(X) → P(X) from the power set P(X) of X to P(X) was defined in [12] in the
following manner : For any A ∈ P(X),

Φ(A) = {x ∈ X : U ∩A ∈ G, for each open neighborhood U of x}.

This operator is called the operator associated with the grill G and the topology τ .
Then the operator Ψ : P(X) → P(X), given by Ψ(A) = A ∪ Φ(A), for A ∈ P(X), was also shown in [12] to be a Kuratowski closure
operator. So for a grill topological space (X, τ,G) there exists a topology τG on X is defined by

τG = {U ⊆ X : Ψ(X − U) = X − U},

where τ ⊆ τG and for any A ⊆ X , Ψ(A) = ClG(A) such that ClG(A) denotes the set of all G−closure points of A. A point x ∈ X is called
a G−closure point of A if for every open set U in (X, τG) containing x, U ∩A ̸= ∅. A point x ∈ A is called a G−interior point of A if there
is an open set U in (X, τG) such that x ∈ U ⊆ A. The set of all G−interior points of A is denoted by intG(A).

Theorem 5. [12] Let (X, τ,G) be a grill topological space. Then for A,B ⊆ X , the following properties hold:

1. A ⊆ B implies that Φ(A) ⊆ Φ(B);
2. Φ(A ∪B) = Φ(A) ∪ Φ(B);
3. Φ(Φ(A)) ⊆ Φ(A) = Cl(Φ(A)) ⊆ Cl(A);
4. If U ∈ τ then U ∩ Φ(A) ⊆ Φ(U ∩A).

Theorem 6. [12] Every closed set in (X, τ), is a closed set in (X,G, τ).

Definition 6. [17] A subset A of a grill topological space (X, τ,G) is called a Gω−open set if A ⊆ Cl(Intω(Ψ(A))). The complement of
Gω−open set is called a Gω−closed set.

Theorem 7. [17] Every Gω−open set in a grill topological space (X, τ,G) is a βω−open set in the topological space (X, τ).

Definition 7. [14] A subset A of a grill topological space (X, τ,G) is called a Gα
ω−open set if A ⊆ Int(Ψ(Intω(A))). The complement of

Gα
ω−open set is called a Gα

ω−closed set. The set of all Gα
ω−open sets in (X, τ,G) is denoted by Gα

ωO(X) and the set of all Gα
ω−closed sets in

(X, τ,G) is denoted by Gα
ωC(X).

Theorem 8. [14] For any grill topological space (X, τ,G) with a countable set X . Then every Gα
ω−open set in a grill topological space

(X, τ,G) is an ω−open set.

Theorem 9. [14] Every Gα
ω−open set in a grill topological space (X, τ,G) is a Gω−open set in a grill topological space (X, τ,G).

Theorem 10. [14] Every Gα-open set in a grill topological space (X, τ,G) is a Gα
ω−open set in the grill topological space (X, τ,G).

Theorem 11. [14] Let Aµ be any Gα
ω−open set in a grill topological space (X, τ,G), for each µ ∈ I. Then ∪µ∈IAµ is a Gα

ω−open set in the
grill topological space (X, τ,G), where I is an index set.

Definition 8. [15] A function f : (X, τ,G) → (Y, σ) of a grill topological space (X, τ,G) into a space (Y, σ) is called a Gα
ω−continuous

function if f−1(A) is a Gα
ω−open set in (X, τ,G) for every open set A in (Y, σ).
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Definition 9. [15] Let (X, τ,G) be a grill topological space and (Y, σ) be a topological space. Then the function f : (X, τ,G) → (Y, σ) is
called:

• A Gα
ω−closed function if f(U) is a closed set in (Y, σ) for every Gα

ω−closed set U in (X, τ,G).
• A Gα

ω−open function if f(U) is an open set in (Y, σ) for every Gα
ω−open set U in (X, τ,G).

Definition 10. [4] A topological space (X, τ) is called:

1. A T0−space if for two points x ̸= y ∈ X , there is an open set G in (X, τ) such that x ∈ G and y /∈ G.
2. A T1−space if for two points x ̸= y ∈ X , there are two open sets G and U in (X, τ) such that x ∈ G, y /∈ G, y ∈ U and x /∈ U .
3. A T2−space or Hausdorff space if for two points x ̸= y ∈ X , there are two open sets G and U in (X, τ) such that x ∈ G, y ∈ U and
U ∩G = ∅.
4. A regular space if for each closet set F in (X, τ) and each x /∈ F , there are two open sets G and U in (X, τ) such that F ⊆ G, x ∈ U and
U ∩G = ∅. A topological space (X, τ) is called A T3−space if it is a regular space and T1−space.
5. A normal space if for each two disjoint closed sets F and M in (X, τ), there are two open sets G and U in (X, τ) such that F ⊆ G, M ⊆ U
and U ∩G = ∅. A topological space (X, τ) is called a T4−space if it is a normal space and T1−space.

Theorem 12. [18] A topological space (X, τ) is a T1−space if and only if {x} is a closed set in (X, τ) for all x ∈ X .

Theorem 13. [18] A topological space (X, τ) is a regular space if and only if for each x ∈ X and for each open set N in (X, τ) containing x,
there is an open set M in (X, τ) containing x such that Cl(M) ⊆ N .

Theorem 14. [16] Let (X, τ,G) be a grill topological space and A ⊆ X. Then A is not Gα
ω−open set in (X, τ,G) if and only if A ⊈ H ⊆

Ψ(Intω(A)), for each open set H in (X, τ).

Corollary 1. [16] Let (X, τ,G) be a grill topological space, A and B ⊆ X. Then A ∩B is a Gα
ω−open set in (X, τ,G) if and only if there is

an open set H in (X, τ) such that
A ∩B ⊆ H ⊆ Ψ(Intω(A ∩B)).

Theorem 15. [16] Let (X, τ,G) be a grill topological space, A ⊆ X. If A is Gα
ω−open set, then Ψ(A) = Ψ(Intω(A)), in (X, τ,G).

Theorem 16. [16] Let (X, τ,G) be a grill topological space. If (X, τ) is a door space, then every Gα
ω−open set in the grill topological space

(X, τ,G) is an open set in (X, τ).

Theorem 17. [16] Let (X, τ,G) be a grill topological space, A ⊆ X. Then A is Gα
ω−open set if and only if there is an open set H in (X, τ)

such that A ⊆ H ⊆ Ψ(Intω(A)).

From all the previous relationships in the background studied, we have the following figure.

3 Gα
ω−Induced space

n the section, we introduced the concepts of an open Gα
ω− sets and their relationships with the other known concepts of openness. We next give

the notions of the closure operator of an open Gα
ω− sets.

3.1 Open Gα
ω−sets

Definition 11. For a set of all Gα
ω−open sets Gα

ωO(X) in a grill topological space (X, τ,G), and A ⊆ X. A set A is called an open Gα
ω−set, if

for each Gα
ω−open set B there exists an open set H in a topological space (X, τ) such that, A ∩B ⊆ H ⊆ Ψ(Intω(A ∩B)). The complement

of A is called a closed Gα
ω−set in the topological space (X, τ,G). The set of all open Gα

ω−set is denoted by OGα
ω (X), and the set of all closed

Gα
ω−set is denoted by CGα

ω (X).

Theorem 18. Let (X, τ,G) be a grill topological space, and A ⊆ X . Then A is an open Gα
ω−set if and only if A ∩B ∈

Gα
ωO(X) for each Gα

ω−open set B in the grill topological space (X, τ,G).

Proof: Suppose that A is an open Gα
ω−set in (X, τ,G). Let B be a Gα

ω−open set in (X, τ,G), H ∈ (X, τ). Since A ∈ OGα
ω (X), by definition

of open Gα
ω−set, Corollary (1) and for each Gα

ω−open set B, we have A ∩B ∈ Gα
ωO(X).

Conversely, since A ∩B ∈ Gα
ωO(X) for each Gα

ω − open set B in the grill topological space (X, τ,G), by Corollary (1), there is an open set
H in a topological space (X, τ) such that

A ∩B ⊆ H ⊆ Ψ(Intω(A ∩B)), for each Gα
ω − open set B.

Hence A is an open Gα
ω−set in the grill topological space (X, τ,G). □

Corollary 2. Let (X, τ,G) be a grill topological space, A ⊆ X. A set A is not Gα
ω−set in a grill topological space (X, τ,G) if and only if

there is a Gα
ω−open set B such that A ∩B /∈ Gα

ωO(X).

Proof: Let A not be to an open Gα
ω−set and B be a Gα

ω−open set in a grill topological space (X, τ,G). Suppose that A ∩B ∈ Gα
ωO(X) for

each Gα
ω−open set B. Then, by Theorem (18), A is an open Gα

ω−set. This is a contradiction by hypothesis. Hence, A ∩B /∈ Gα
ωO(X).

© CPOST 2023 3
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Fig. 1: Relation for open sets

Conversely, since A ∩B /∈ Gα
ωO(X), by Theorem (14) , wegetA ∩B ⊈ H ⊆ Ψ(Intω(A ∩B)), for each open set H in a topological space

(X, τ). Hence, by Definition (18), we have A is not an open Gα
ω−set in the grill topological space (X, τ,G). □

Theorem 19. Let (X, τ,G) be a grill topological space and A ⊂ X. If A is not a Gα
ω−open set, then A is not an open Gα

ω−set in the grill
topological space (X, τ,G).

Proof: Let A ⊂ X and A /∈ Gα
ωO(X). By Theorem (14), we get

A = A ∩X ⊈ H ⊆ Ψ(Intω(A)) = Ψ(Intω(A ∩X)),

for each open set H in (X, τ). So there is a Gα
ω − open set X such that A ∩X /∈ Gα

ωO(X). Hence A is not an open Gα
ω−set in the topological

space (X, τ,G). □

Corollary 3. Every open Gα
ω−set is a Gα

ω−open set in the grill topological space (X, τ,G).

Proof: Let A ⊂ Xand A be an open Gα
ω−set in (X, τ,G). Suppose that A /∈ Gα

ωO(X). Since by Theorem (19), we have A is not an open
Gα
ω−set in (X, τ,G), by hypothesis, which is a contradiction. Hence every open Gα

ω−set is a Gα
ω−open set in the grill topological space

(X, τ,G). □

The converse of Corollary ( 3) need not be true.

Example 1. Let (X, τ,G) be a grill topological space on the set of X = {1, 2, 3, 4} with τ = {∅, {1, 2, 3}, X} and G = P(X)− {∅}. The
set A = {1, 2, 4} is a Gα

ω−open set, which is not an open Gα
ω−set in the grill topological space (X, τ,G).

Theorem 20. Every open set in a topological space (X, τ), is an open Gα
ω−set in the grill topological space (X, τ,G).

Proof: Let A be any open set in (X, τ) and B ∈ Gα
ωO(X). Since by Theorem (??), A ∩B is a Gα

ω−open set, we get every open set in a
topological space (X, τ) is an open Gα

ω−set in the grill topological space (X, τ,G). □

The converse of Theorem (20) need not be true.

Example 2. Let (X, τ,G) be a grill topological space on the set of X = {1, 2, 3, 4} with τ = {∅, {1, 2, 3}, X} and G = P(X)− {∅}. Then
the set A = {1, 2} is an open Gα

ω−set in the grill topological space (X, τ,G), but it is not an open set in a topological space (X, τ).

Remark 1. Let (X, τ,G) be a grill topological space, A and B be two Gα
ω−open sets. If A ∩B /∈ Gα

ωO(X), then A and B are not Gα
ω−sets

in the grill topological space (X, τ,G).
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Proof: Since A ∩B /∈ Gα
ωO(X), by Theorem (2) for a set A there is at least a Gα

ω−open B such that A ∩B /∈ Gα
ωO(X). Similarly, for a set

B, there is at least a Gα
ω−open A such B ∩A /∈ Gα

ωO(X). Hence A,B /∈ OGα
ω (X). □

Theorem 21. Let (X, τ,G) be a grill topological space and A ⊆ X. Then A is an open Gα
ω−set in a grill topological space (X, τ,G) if and

only if for each Gα
ω − open set B, Gα

ω
Cl(X − (A ∩B)) = X − (A ∩B).

Proof: Suppose that A is an open Gα
ω−set in (X, τ,G). By Theorem (2) A ∩B ∈ OGα

ω (X) for each Gα
ω−open set B, then

X − (A ∩B) = X − Gα
ω
Int(A ∩B) = Gα

ω
Cl(X − (A ∩B))

. Conversely, it is similar to the above argument. □

Theorem 22. For the set of all Gα
ω− open set Gα

ωO(X) in a grill topological space (X, τ,G), there is a topology on X equivalent the set of
all open Gα

ω−sets OGα
ω (X) defined by

τGα
ω
= {A ⊆ X : Gα

ω
Cl(X − (A ∩B)) = (X − (A ∩B)) for each Gα

ω − open set B.}

Proof:

1. If A = X . Then for each a Gα
ω − open set B.

Gα
ω
Cl(X − (X ∩B)) = X − (X ∩B) = Gα

ω
Cl(X −B) = X −B,

Also if A = ∅. Then for each Gα
ω − open set B in (X, τ,G).

Gα
ω
Cl(X − (∅ ∩B)) = X − (∅ ∩B) = Gα

ω
Cl(X − ∅) = X − ∅.

Hence X, ∅ ∈ τGα
ω
.

2. Let A1, A2 ∈ τGα
ω
, this mean that A1, A2 ∈ OGα

ω (X) by Theorem (21). Suppose that A1 ∩A2 /∈ OGα
ω (X). Now by Corollary (3)

A1, A2 ∈ Gα
ωO(X), then A1, A2 /∈ OGα

ω (X), by Remark (1). Therefore this is a contradiction. Hence, A1 ∩A2 ∈ τGα
ω
.

3. Let Ai ∈ τGα
ω

for each i ∈ ∆. Then by Theorem (21) Ai ∈ OGα
ω (X) for each i ∈ ∆. So Ai ∩B ⊆ Ai ∈ Gα

ωO(X) by Theorem (18). Now
for each i ∈ ∆ and for each a Gα

ω − open set B, we get ∪i∈∆(Ai ∩B) ⊆ ∪i∈∆(Ai) ∈ Gα
ωO(X) by Theorem (11). Since

(∪i∈∆Ai) ∩B = ∪i∈∆(Ai ∩B) ∈ Gα
ωO(X).

for each B ∈ Gα
ωO(X). Hence ∪i∈∆Ai ∈ τGα

ω
, for each i ∈ ∆.

From 1, 2, 3 the collection τGα
ω

is a topology on X. □

Remark 2. The triple (X, τ,Gα
ω ), (easily(X, τ, τGα

ω
)) is called a Gα

ω−topological space, if OGα
ω (X) ( easily τGα

ω
) is a topology on X.

Remark 3. The concepts of openness in (X, τGα
ω
) and openness in (X, τG) are independent.

Example 3. Let (X, τ,G) be a grill topological space on the set X = {1, 2, 3, 4} with τ = {∅, {2, 1}, {2}, X}. If G = G[{4,1}], then

τG = {∅, {2, 1}, {2}, {1}, {1, 3, 4}, {1, 4}, {1, 2, 4}, X},

τGα
ω
= Gα

ωO(X) = OGα
ω (X) = {∅, {2, 1}, {2}, {1, 2, 3}, {1, 2, 4}, X}.

Now the set {1, 2, 3} ∈ OGα
ω , but {1, 2, 3} /∈ τG . Also the set {1, 3, 4} ∈ τG , but it is not open in the Gα

ω−topological space (X, τ, τGα
ω
).

3.2 Gα
ωT−space

Definition 12. A grill topological space (X, τ,G) is called a Gα
ωT−space if the intersection of any two arbitrary Gα

ω−open sets A and B is
Gα
ω−open set in the grill topological space (X, τ,G).

Theorem 23. Let (X, τ,G) be the grill topological space, and A be the subset of X. If Cl(A) ⊆ Gα
ω
Cl(A), then the grill topological space

(X, τ,G) is a Gα
ωT−space.

Proof: Let A be any subset of X in the grill topological space (X, τ,G) and Cl(A) ⊆ Gα
ω
Cl(A). Since Gα

ω
Cl(A) ⊆ Cl(A) and by hypothesis

Cl(A) ⊆ Gα
ω
Cl(A), we get Cl(A) = Gα

ω
Cl(A), for any subset A of X.

Now, let G and H be two arbitrary Gα
ω−open sets. Then Gc and Hc are Gα

ω−closed sets. So

Gα
ω
Cl(Gc ∪Hc) = Cl(Gc ∪Hc)

is a closed set in a topological space (X, τ), also Gα
ω
Cl(Gc ∪Hc) is a Gα

ω−closed set in the grill topological space (X, τ,G). Therefore
X − (Gc ∪Hc) = G ∩H is a Gα

ω−open set. Hence the grill topological space (X, τ,G) is a Gα
ωT−space. □
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Theorem 24. Let (X, τ,G) be a grill topological space and (X, τ) be a door space. Then the grill topological space (X, τ,G) is a Gα
ωT−space.

Proof: Let (X, τ) be a door space, A and B be two Gα
ω−open sets in the grill topological space (X, τ,G). Since by Theorem (16 )

Gα
ω
Int(A) = Int(A) = A, Gα

ω
Int(B) = Int(B) = B,

then A ∩B = Int(A ∩B) = Gα
ω
Int(A ∩B) ∈ Gα

ωO(X). Hence the grill topological space (X, τ,G) is a Gα
ωT−space. □

Theorem 25. Let (X, τ,G) be a grill topological space. Then (X, τ,G) is a Gα
ωT−space, if every Gα

ω−open set is a closed set in (X, τ,G).

Proof: Let A,B be two sets which are both Gα
ω−open sets and closed sets in the grill topological space (X, τ,G). Since A = Ψ(A), B = Ψ(B),

we get
A ⊆ Int(A) = Int(Ψ(A)), B ⊆ Int(B) = Int(Ψ(B)).

So
A = Int(A) = Int(Ψ(A)), B = Int(B) = Int(Ψ(B)).

Therefore
A ∩B = Int(A ∩B) = Gα

ω
Int(A ∩B) ∈ Gα

ωO(X).

Hence the grill topological space (X, τ,G) is a Gα
ωT−space. □

Theorem 26. A grill topological space (X, τ,G) is a Gα
ωT−space if and only if the finite union of Gα

ω−closed sets in (X, τ,G), is a Gα
ω−closed

set.

Proof: Suppose that (X, τ,G) is a Gα
ωT−space. Let Bi be arbitrary Gα

ω−open set, i = 1, 2..., n ∈ N, where the set of natural numbers N. Since
by hypothesis

∩n
i (Bi) ∈ Gα

ωO(X), X −Bi ∈ Gα
ωC(X),

then
X − (∩n

i (Bi)) = ∪n
i (X −Bi).

is a Gα
ω−closed set. Hence the finite union of Gα

ω−closed sets in (X, τ,G) is a Gα
ω−closed set. Conversely, similar to the above argument.

□

Theorem 27. A grill topological space (X, τ,G) is a Gα
ωT−space if and only if Gα

ωO(X) = OGα
ω (X).

Proof: Suppose that (X, τ,G) is a Gα
ωT−space. Let A,B be two arbitrary Gα

ω−open sets, Since A ∩B ∈ Gα
ωO(X), for any A,B ∈ Gα

ωO(X)
there is an open set H in (X, τ) such that A ∩B ⊆ H ⊆ Ψ(Intω(A ∩B)). Therefore A,B ∈ OGα

ω (X) by Definition (11). Hence Gα
ωO(X)

⊆ OGα
ω (X). It is well known that OGα

ω (X) ⊆ Gα
ωO(X). Therefore, we obtain that OGα

ω (X) = Gα
ωO(X).

Conversely, let A,B be an arbitrary two Gα
ω−open sets. Since A and B ∈ OGα

ω (X), by Theorem (18). So by hypothesis A ∩B ∈ Gα
ωO(X).

Hence a grill topological space (X, τ,G) is a Gα
ωT−space. □

Theorem 28. A grill topological space (X, τ,G) is a Gα
ωT−space if and only if the set of all Gα

ω−open set Gα
ωO(X) is a topology on X .

Proof: Suppose that (X, τ,G) is a Gα
ωT−space. Now

1. X, ∅ ∈ Gα
ωO(X).

2. Let A and B be two Gα
ω−open sets. We have by hypothesis, (A ∩B) ∈ Gα

ωO(X).
3. Let Ai ∈ Gα

ωO(X) for each i ∈ ∆. Then (∪i∈∆Ai) ∈ Gα
ωO(X), by Theorem (11). From 1, 2, 3, the collection Gα

ωO(X) is a topology on
X.

Conversely, let A and B be two arbitrary Gα
ω−open sets . Since Gα

ωO(X) is a topology on X, then (A ∩B) ∈ Gα
ωO(X). Hence (X, τ,G) is a

Gα
ωT−space. □

3.3 Gα
ω−Induced Operators

Definition 13. Let (X, τ,G) be a grill topological space and x ∈ X, A ⊆ X . The set A is called a Gα
ω−neighborhood ( (easily. Gα

ω − nhd))
of x in the grill topological space (X, τ,G) if there exists a Gα

ω−open set B containing x such that x ∈ B ⊆ A. The set of all Gα
ωnhd of x is

denoted Gα
ω
Nx. The set of all Gα

ω
Nx. is denoted Gα

ω
NX , where Gα

ω
Nx = {A ⊆ X : A is Gα

ω − nhd of x} and Gα
ω
NX = {Gα

ω
Nx : x ∈ X}

Theorem 29. Let (X, τ,G) be a grill topological space , x, y ∈ X, A and B ⊆ X. Then the following hold:

1. For each x ∈ X, Gα
ω
Nx ̸= ∅.

2. If A ∈ Gα
ω
Nx then x ∈ A.

3. If A ∈ Gα
ω
Nx, A ⊆ B then B ∈ Gα

ω
Nx.

4. If A ∈ Gα
ω
Nx, then B ∪A ∈ Gα

ω
Nx.

Proof:
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1. For each x ∈ X, Gα
ω
Nx contains Gα

ω−open set X which is containing x.
2. Since A ∈ Gα

ω
Nx, we get there is a Gα

ω−open set B containing x such that x ∈ B ⊆ A.
3. Since A ∈ Gα

ω
Nx, and A ⊆ B, we obtain that there is a Gα

ω−open set H containing x such that H ⊆ A ⊆ B. Therefor B ∈ Gα
ω
Nx .

4. Since A ∈ Gα
ω
Nx, and A ⊆ B ∪A, we have B ∪A ∈ Gα

ω
Nx.

□

Remark 4. Let (X, τ, τGα
ω
) be a Gα

ω−topological space. If for x in X and for each Gα
ω−open set Bx containing x, then X ∩Bx is a

Gα
ω − nbh of x in a grill topological space (X, τ,G).

Remark 5. Let (X, τ, τGα
ω
) be a Gα

ω−topological space. If for x in X and for each Gα
ω−open set Bx containing x, then ∅ ∩Bx is not

Gα
ω − nbh of x in a grill topological space (X, τ,G).

Theorem 30. Let (X, τ,G) be a grill topological space and A ⊆ X. Then A is a Gα
ω−open set if and only if A is a Gα

ω − nbh of it is points.

Proof: Let x be any point in X and A be a Gα
ω−open set containing x in (X, τ,G). Since by Definition (13), we have for any A is a Gα

ω − nbh
of x. Therefor A is a Gα

ω − nbh of it is points in (X, τ,G).
Conversely, Since A is a Gα

ω − nbh of it is points, we get by Definition (13) a Gα
ω−open set Ax contains x, such that x ∈ Ax ⊆ A. Therefor

∪x∈AAx = A. By Theorem(11), we have A is a Gα
ω−open in (X, τ,G).

□

Definition 14. Let Gα
ω
Nx be a set of all Gα

ω − nbh of a point x ∈ X in the grill topological space (X, τ,G) and (X, τ, τGα
ω
) be a

Gα
ω−topological space.

1. The closure point operator of a subset A of X in (X, τ, τGα
ω
) is denoted by Υ(A) and defined by

Υ(A) = {x ∈ X : ∃ Gα
ω − open set Bx containing x such that Ac ∩Bx /∈ Gα

ω
Nx}.

Theorem 31. Let (X, τ, τGα
ω
) be a Gα

ω−topological space, (X, τ,G) be a grill topological space, A and B ⊆ X . Then the following hold:

1. Υ(A) = ∅ if and only if A = ∅.
2. Υ(X) = X.
3. A ⊆ Υ(A)
4. A ⊆ B then Υ(A) ⊆ Υ(B).
5. Υ(A ∩B) ⊆ Υ(A) ∩Υ(B).
6. Υ(A ∪B) = Υ(A) ∪Υ(B).
7. Υ(A) = Υ(Υ(A))
8. Gα

ω
Cl(A) ⊆ Υ(A).

9. Υ(Gα
ω
Cl(A)) = Υ(A).

10. Gα
ω
Cl(Υ(A)) = Υ(A).

Proof:

1. Since ∅ ⊆ A for every subset A of X , then ∅ ⊆ Υ(∅). Conversely, Since x ∈ Υ(∅), we get there is an Gα
ω−open set Bx containing a point

x such that X ∩Bx /∈ Gα
ω − nhd of x in (X, τ,G), then by Remark (4 ) = ∅. Hence Υ(∅) ⊆ ∅. Therefore ∅ = Υ(∅).

2. Since for every subset of X , we have Υ(X) ⊆ X. Let x be any point in X. Since for x ∈ X∃ Gα
ω−open set Bx containing x such that

X −X = ∅ ∩Bx /∈ Gα
ω − nhd of x in (X, τ,G), then by Definition 14, x ∈ Υ(X). Hence X ⊆ X. Therefore X = Υ(X).

3. Let x be any point in X. Since x /∈ (X −A) ∩Bx for Gα
ω−open set Bx containing x, by Definition 14, we get x ∈ Υ(A). Hence

A ⊆ Υ(A).
4. Let x be any point in X and A ⊆ G ⊆ X. Suppose that x ∈ Υ(A). Since X −G ⊆ (X −A) and (X −A) ∩Bx /∈ Gα

ω − nbh of x, by
part (3) of Theorem (29), we get (X −G) ∩Bx /∈ Gα

ω − nbh of x. Therefore x ∈ Υ(G). Hence Υ(A) ⊆ Υ(G).
5. It is clear that Υ(A ∩B) ⊆ Υ(A) ∩Υ(B), by part(4 ).
6. • It is clear that Υ(A) ∪Υ(B) ⊆ Υ(A ∪B), by part(4 ).
• Let x /∈ Υ(A) ∪Υ(B). Since x ∈ X − (Υ(A) ∪Υ(B)), then x ∈ (Υ(A))c ∩ (Υ(B))c. So x ∈ (Υ(A))c ;x ∈ (Υ(B))c. Therefore there
exist Gα

ω− sets G,H containing x such that G ∩Bx ⊆ Ac ∩Bx, H ∩Bx ⊆ Bc ∩Bx, G and H are Gα
ω − nbh of x for each Gα

ω−open set
Bx. Since x ∈ (G ∩H) ∩Bx ⊆ (Ac ∩Bc) ∩Bx and (G ∩H) ∩Bx is Gα

ω − nbh of it is points, by Definition (14), we have x /∈ Υ(A ∪B).
Hence Υ(A ∪B) = Υ(A) ∪Υ(B).

7. • It is clear that Υ(A) ⊆ Υ(Υ(A)), by part(3 ).
• Let x ∈ Υ(Υ(A)), then x ∈ Υ(A) by Definition (14) and Theorem (??). Therefore Υ(Υ(A)) ⊆ Υ(A)

Hence Υ(A) = Υ(Υ(A))
8. Let x ∈ Gα

ω
Cl(A), then x ∈ A or x ∈ Ac. So x ∈ Ac ∩Bx ̸= ∅. Now if x /∈ Υ(A), then by Theorem (??) and Definition (13), there is a

Gα
ω−open set G ⊆ Ac containing x. Therefore x /∈ Gα

ω
Cl(A). That is contradiction. Hence x ∈ Υ(A) and Gα

ω
Cl(A) ⊆ Υ(A).

9. • It is clear that Υ(A) ⊆ Υ(Gα
ω
Cl(A)), by part(3 ).

• Let x ∈ Υ(Gα
ω
Cl(A)), then Υ(Gα

ω
Cl(A)) ⊆ Υ(Υ(A)) ⊆ Υ(A), by parts (8) and (7).

Hence Υ(Gα
ω
Cl(A)) = Υ(A).

10. • It is clear that Υ(A) ⊆ Gα
ω
Cl(Υ(A)), by Gα

ω−closure operator.
• Let x ∈ Gα

ω
Cl(Υ(A)), then x ∈ Υ(Gα

ω
Cl(Υ(A)) ⊆ Υ(Υ(Υ(A))) ⊆ Υ(Υ(A)) ⊆ Υ(A), by parts (8) and (7). Therefore Υ(Gα

ω
Cl(Υ(A)) ⊆

Υ(A).
Hence Gα

ω
Cl(Υ(A)) = Υ(A).

□
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Corollary 4. Let (X, τ,G) be a grill topological space. Then Υ(A) is Gα
ω−closed set for any subset A of X in (X, τ,G).

Proof: Let A be a subset of X. Since Gα
ω
Cl(Υ(A)) = Υ(A), by last theorem, then Υ(A) is Gα

ω−closed set. □

4 Gα
ω−Separation axioms.

In the section the concepts of the separation axioms are investigated and introduced by the collection of Gα
ω−open sets, as Gα

ωT1−space,
Gα
ωT2−space, Gα

ωT3−space and Gα
ωT4−space. We give their relationships with the other known concepts of separation axioms.

4.1 Gα
ωT1−space and Gα

ωT2−space

Definition 15. A grill topological space (X, τ,G) is called a Gα
ωT1−space if for each two element x ̸= y ∈ X there are two Gα

ω−open sets
H and , G such that x ∈ H, y /∈ G, y ∈ H and x /∈ G.

Definition 16. A grill topological space (X, τ,G) is called a Gα
ωT2−space if for each two element x ̸= y ∈ X there are two Gα

ω−open sets
H and G such that x ∈ H, y ∈ G and G ∩H = ∅.

Theorem 32. For grill topological space (X, τ,G), every Gα
ωT2−space is a Gα

ωT1−space.

Proof: Let (X, τ,G) be a Gα
ωT2−space. Then for each two element x ̸= y ∈ X there are two Gα

ω − open sets H,G such that x ∈ H, y ∈ G and
G ∩H = ∅. Thus there are two sets Gα

ω − open H,G such that x ∈ H, y /∈ H and y ∈ G, x /∈ G, for each two element x ̸= y ∈ X. Therefore
by Definition (15), (X, τ,G) is a Gα

ωT1−space. □

The converse of the Theorem (32) need not be true.

Example 4. Let (X, τ,G) be a grill topological space. If τ is the co- finite topology τcof , withe maximal G = {X}. Then, (X, τ,G) is a
Gα
ωT1−space which is not Gα

ωT2−space.

Theorem 33. A grill topological space (X, τ,G) is a Gα
ωT2− space if and only if for each x ̸= y ∈ X , there is a Gα

ω−open set B in (X, τ,G)
containing x such that y /∈ Gα

ω
Cl(B).

Proof: Suppose that (X, τ,G) is a Gα
ωT2− space. Let x ̸= y ∈ X. Then there are two Gα

ω−open sets G and U in (X, τ,G) such that x ∈ G,
y ∈ U and U ∩G = ∅. Take H = G. Then, H is a Gα

ω−open set in (X, τ,G) containing x and so y /∈ H ⊆ Gα
ω
Cl(H) ⊆ X − U .

Conversely, let x ̸= y ∈ X be any points in (X, τ,G). And by the hypothesis, there is a Gα
ω−open set H in (X, τ,G) containing x such

that y /∈ Gα
ω
Cl(H). Then, X − Gα

ω
Cl(H) is a Gα

ω−open sets in (X, τ,G) containing y such that x ∈ H , y ∈ X − Gα
ω
Cl(H) and H ∩ [X −

Gα
ω
Cl(H)] = ∅. Hence (X, τ,G) is a Gα

ωT2− space. □

Theorem 34. Let f : (X, τ,G) → (Y, σ) be a Gα
ω−continuous injective function from a grill topological space(X, τ,G) to a topological

space (Y, σ) and (Y, σ) be a T1−space. Then, (X, τ,G) is a Gα
ωT1−space.

Proof: Let x ̸= y ∈ X be any points in X and (Y, σ) be a T1−space . Since f is injective, we have f(x) ̸= f(y) ∈ (Y, σ), also there are two
open sets B and H in (Y, σ) such that

f(x) ∈ B, f(y) ∈ H, f(x) /∈ H and f(y) /∈ B.

Then, we obtain:
x ∈ f−1(B), y ∈ f−1(H), x /∈ f−1(H) and y /∈ f−1(B).

Since B and H are open sets in (Y, σ) and f is Gα
ω−continuous, we get f−1(H) and f−1(B) are Gα

ω−open sets in (X, τ,G). Hence (X, τ,G)
is a Gα

ωT1−space. □

Theorem 35. Let f : (X, τ,G) → (Y, σ) be a Gα
ω−continuous injective function from a grill topological space(X, τ,G) to a topological

space (Y, σ) and (Y, σ) be a T2−space. Then, (X, τ,G) is a Gα
ωT2−space.

Proof: Let x ̸= y ∈ X be any points in X and (Y, σ) be a T2−space . Since f is injective, we have f(x) ̸= f(y) ∈ (Y, σ), also there are two
open sets B and H in (Y, σ) such that f(x) ∈ B, f(y) ∈ H and H ∩B = ∅. So

x ∈ f−1(B), y ∈ f−1(H) and f−1(A ∩B) = f−1(B) ∩ f−1(H) = ∅.

Since B and H are open sets in (Y, σ) and f is Gα
ω−continuous, we get: f−1(H), f−1(B) ∈ Gα

ωO(X) in (X, τ,G). Hence (X, τ,G) is a
Gα
ωT2−space. □

4.2 Gα
ωT3−space and Gα

ωT4−space

Definition 17. A grill topological space (X, τ,G) is called a Gα
ω−regular space (Gα

ωr−space ) if for each x ∈ X and each closed set A
in (X, τ) not containing x there are two Gα

ω − open sets H and G such that x ∈ H,A ⊆ G and G ∩H = ∅. If the grill topological space
(X, τ,G) is a Gα

ω−regular space and (X, τ) is a T1−space, then (X, τ,G) is called a Gα
ωT3−space.
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Definition 18. A grill topological space (X, τ,G) is called a Gα
ω−normal space if for each two disjoint closed sets A,B in (X, τ) there are

two Gα
ω − open sets H and G such that A ⊆ G,B ⊆ H and G ∩H = ∅. If the grill topological space (X, τ,G) is a Gα

ω−normal space and
(X, τ) is a T1−space, then (X, τ,G) is called a Gα

ωT4−space.

Theorem 36. If(X, τ) is a regular space, then (X, τ,G) is a Gα
ωr−space for each grill G.

Proof: Let x be any point ∈ X , and (X, τ) be a regular-space . By hypothesis in (X, τ), for each x ∈ X and for each a closed set F
not containing x there are two open sets H and G such that x ∈ H,F ⊆ G and G ∩H = ∅. Since H and G are Gα

ω−open sets in the grill
topological space (X, τ,G), for each x ∈ X and each closed set F in (X, τ) not containing x there are two Gα

ω − open sets H and G such that
x ∈ H,F ⊆ G and G ∩H = ∅. Therefore by Definition (17) (X, τ,G) is a Gα

ωr−space. □

Theorem 37. Every normal space is a Gα
ω−normal space.

Proof: Similar to the proof of the above theorem. □

Theorem 38. Every Ti−space is a Gα
ωTi−space, i = 2, 3 and 4.

Proof: Let (X, τ,G) be a Ti−space, i = 1, 2, 3 and 4. Since every open set in (X, τ) is a Gα
ω−open set in (X, τ,G),by part one of Definition

10 and Definition 16, we have every T1−space is a Gα
ωT2−space, by part two of Definition 10 and Definition 16, we have every T2−space is

a Gα
ωT2−space. By part four of Definition 10 and Definition 17, we get every T3−space is a Gα

ωT−space. And also by part five of Definition
10, and Definition 18, we have every T4−space is a Gα

ωT4−space. □

Theorem 39. A grill topological space (X, τ,G) is a Gα
ωr− space if and only if for each x ∈ X and for each open set A in (X, τ) containing

x, there is a Gα
ω−open set B in (X, τ,G) containing x such that Gα

ω
Cl(B) ⊆ A.

Proof: Suppose that (X, τ,G) is a Gα
ωr−regular space. Let x be any point in X and A be any open set in (X, τ) containing x. Since X −A is

a closed set in (X, τ) and x /∈ (X −A). By hypothesis, there are two Gα
ω−open sets G and B in (X, τ,G) such that (X −A) ⊆ G, x ∈ B

and B ∩G = ∅. Now x ∈ B ∈ Gα
ωO(X) in the grill topological space (X, τ,G) containing x. Then B ⊆ (X −G), that is

Gα
ω
Cl(B) ⊆ Gα

ω
Cl(X −G) ⊆ (X −G) ⊆ A.

Conversely, let x be any point in X and F be any closed set in (X, τ) non containing x. Then x ∈ (X − F ) and (X − F ) is an open
set in (X, τ) containing x. By the hypothesis, for the open set (X − F ) there is a Gα

ω−open set B in (X, τ,G) containing x such that
Gα
ω
Cl(B) ⊆ (X − F ). Then F ⊆ X − Gα

ω
Cl(B) and X − Gα

ω
Cl(B) is a Gα

ω−open set in (X, τ,G). Since B is a Gα
ω−open set in (X, τ,G)

containing x, we have B ∩ [X − Gα
ω
Cl(B)] = ∅. Then (X, τ,G) is a Gα

ω−regular space. □

Theorem 40. Every Gα
ωT3− space is a Gα

ωT2− space.

Proof: Let (X, τ,G) be a Gα
ωT3 space and x ̸= y ∈ X be any points in X . Since (X, τ) is a T1−space, by Theorem (12), {x} is a closed set

in (X, τ) and y /∈ {x}. Since (X, τ,G) is a Gα
ωr−regular space, there are two Gα

ω−open sets G and U in (X, τ,G) such that x ∈ {x} ⊆ G,
y ∈ U and U ∩G = ∅. Hence (X, τ,G) is a Gα

ωT2 space. □

Theorem 41. Every Gα
ωT4− space is a Gα

ωT3 space.

Proof: Let (X, τ,G) be a Gα
ωT4 space. Let F be any closed set in (X, τ) and x /∈ F be any point in X . Since (X, τ) is a T1−space, then by

Theorem (12), {x} is a closed set in (X, τ) and F ∩ {x} = ∅. Since (X, τ,G) is a Gα
ω−normal space, there are two Gα

ω−open sets G and U
in (X, τ,G) such that x ∈ {x} ⊆ G, F ⊆ U and U ∩G = ∅. Hence (X, τ,G) is a Gα

ωT3 space. □

Theorem 42. A grill topological space (X, τ,G) is a Gα
ω−normal space if and only if for each the closed set F in (X, τ) and for each the

open set G in (X, τ) containing F , there is a Gα
ω−open set H in (X, τ,G) containing F such that Gα

ω
Cl(H) ⊆ G.

Proof: Suppose that (X, τ,G) is a Gα
ω−normal space. Let F be any closed set in (X, τ) and G be any open set in (X, τ) containing F .

Then X −G is a closed set in (X, τ) and F ∩ (X −G) = ∅. Since (X, τ,G) is a Gα
ω−normal space, there are two Gα

ω−open sets H and U
in (X, τ,G) such that (X −G) ⊆ U , F ⊆ H and U ∩H = ∅. Take V = H is a Gα

ω−open set in (X, τ,G) containing F . Then V = H ⊆
(X − U), this implies,

Gα
ω
Cl(V ) ⊆ Gα

ω
Cl(X − U) ⊆ (X − U) ⊆ G.

Conversely, let F and H be any two closed sets in (X, τ) such that F ∩H = ∅. Then H ⊆ (X − F ) and X − F is an open set in (X, τ)
containing closed set H . By the hypothesis, there is a Gα

ω−open set V in (X, τ) containing H such that Gα
ω
Cl(V ) ⊆ (X − F ). Then F ⊆

X − Gα
ω
Cl(V ) and X − Gα

ω
Cl(V ) is a Gα

ω−open set in (X, τ,G). Since V is a Gα
ω−open set in (X, τ,G) containing H and V ∩ (X −

Gα
ω
Cl(V )) = ∅, we have (X, τ,G) is a Gα

ω−normal space. □

Theorem 43. Let f : (X, τ,G) → (Y, σ) be Gα
ω−continuous injective function. If (Y, σ) is a regular space and f is a Gα

ω−closed function ,
then the grill topological space (X, τ,G) is a Gα

ω−regular space.

Proof: Suppose that (Y, σ) is a regular space, f is a Gα
ω−closed function, x ∈ X and A is any open set in (X, τ) containing x. Then X −A is

a closed set in (X, τ) and x /∈ (X −A). Take F = (X −A). By hypothesis, f(F ) is a closed set in (Y, σ) not containing f(x), and there are
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two open sets H and B in (Y, σ) such that f(F ) ⊆ H , f(x) ∈ B and H ∩B = ∅. Now since f is Gα
ω−continuous injective, we get: f−1(H)

and f−1(B) are Gα
ω−open sets in (X, τ,G). Also

F ⊆ f−1(H), x ∈ f−1(B)

and
f−1(H) ∩ f−1(B) = f−1(H ∩B) = f−1(∅) = ∅.

Hence by Definition (17), (X, τ,G) is a Gα
ω−regular space. □

Theorem 44. Let f : (X, τ,G) → (Y, σ) be Gα
ω−continuous injective function. If (Y, σ) is a regular space and f is a Gα

ω−open function ,
then the grill topological space (X, τ,G) is a Gα

ω−regular space.

Proof: The proof is similar to that of the above theorem. □

Theorem 45. Let f : (X, τ,G) → (Y, σ) be Gα
ω−continuous injective function from the grill topological space (X, τ,G) to a regular space

(Y, σ). If f is a Gα
ω−closed function and (X, τ) is a T1−space, then (X, τ,G) is a Gα

ωT3−space.

Proof: Since (Y, σ) is a regular space and f is a Gα
ω−closed function, we have (X, τ,G) is a Gα

ω−regular space by Theorem (43). Since (X, τ)
is a T1−space, we get (X, τ,G) is a Gα

ωT3−space, by Definition (17). □

Theorem 46. Let f : (X, τ,G) → (Y, σ) be Gα
ω−continuous injective function from the grill topological space (X, τ,G) to a normal space

(Y, σ). If f is a Gα
ω−closed and (X, τ) is a T1−space, then (X, τ,G) is a Gα

ωT4−space.

Proof: The proof is similar to that of Theorem (45). □

5 CONCLUSIONS

From this work, we have the following conclusions:

• On openness properties.
1. For a grill topological space (X, τ,G) the concept of openness of open Gα

ω− set is a strong form of the concept of openness of open Gα
ω−

set, but it is an independent form of openness of a topology τG .
2. The concept of openness of open Gα

ω− set is week form of the concept of openness of open set in (X, τ).
• On Gα

ω− space induced property.
1. The set of all open Gα

ω− set OGα
ω (X) is form topology on a set X.

2. The concept of Gα
ωT−space is strong form of Gω−induced space.

• On separation axioms properties.
1. The concept of Gα

ωTi−space, is strong form of the concept of Gα
ωTi+1−space, i = 1, 2, 3.

2. The concept of Gα
ωTi−space, is week form of the concept of Ti−space, i = 1, 2, 3, 4.
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Abstract: The paper considers the space of generalized fractional-maximal function, constructed on the basis of a rearrangement-
invariant space. Two types of cones generated by a nonincreasing rearrangement of a generalized fractional-maximal function and
equipped with positive homogeneous functionals are constructed. The question of embedding the space of generalized fractional-
maximal function in a rearrangement-invariant space is investigated. This question reduces to the embedding of the considered
cone in the corresponding rearrangement-invariant spaces. In addition, conditions for covering a cone generated by generalized
fractional-maximal function by the cone generated by generalized Riesz potentials are given. Cones from non-increasing rear-
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and others.
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1 Introduction

In this work introduced two types of cones of non-negative monotonically non-increasing functions on the positive semiaxis generated by
generalized fractional maximal functions and equipped with corresponding positively homogeneous functionals. We give the conditions on the
function Φ, under which there are pointwise mutual covering of these cones.

In the work of Hakim D.I., Nakai E., Savano Y. [1], Mustafaev R., Bilgicli N. [2], Kuchukaslan A. [3], Gogatishvili A. [4] a generalized
fractional-maximal functions of another type were defined, a particular case of which is the classical fractional-maximal function.

It is known that the maximal function is a very important operator in the theory of functions. With their help, many important issues of the
theory of function and harmonic analysis are solved. The generalized fractional-maximal functions are also closely related to the generalized
Riesz potentials, considered in the works of Goldman M.L. [5-7] (see also [8-10]).

The study of various properties of operators using a generalized fractional-maximal function is sometimes easier than the study of such
operators using a generalized potential.

In this paper, we aim to determine the cones of non-negative measurable functions generated by a generalized fractional-maximal function
and to investigate the properties of such cones.

2 Definitions, notation and auxiliary statements

Let (S,Σ, µ) be space with a measure. Here is Σ is σ-algebra of subsets of the set S, on which is determined a non-negative σ- finite, σ−
additive measure µ. By L0 = L0(S,Σ, µ) denotes the set of µ-measurable real-valued functions f : S → R, and by L+

0 a subset of the set L0
consisting of non-negative functions:

L+
0 = {f ∈ L0 : f ≥ 0}.

By L+
0 (0,∞; ↓) we denote the set of all non-increasing functions belonging to L+

0 .

Definition 1. [11] A mapping ρ : L+
0 → [0,∞] is called a functional norm (short: FN), if the next conditions are met for all f, g, fn ∈

L+
0 , n ∈ N :
(P1) ρ(f) = 0 ⇒ f = 0, µ− almost everywhere (briefly: µ− a.e.);

ρ(αf) = αρ(f), α ≥ 0; ρ(f + g) ≤ ρ(f) + ρ(g) (properties of the norm);
(P2) f ≤ g, (µ− a.e.) ⇒ ρ(f) ≤ ρ(g) (monotony of the norm);
(P3) fn ↑ f ⇒ ρ(fn) → ρ(f)(n → ∞) (the Fatou property);
(P4) 0 < µ(σ) < ∞ ⇒

∫
σ
fdµ ≤ cσρ(f), f ∈ L+

0 . (Local integrability);

(P5) 0 < µ(σ) < ∞ ⇒ ρ(χσ) < ∞ (finiteness of the FN for characteristic functions (χσ) of sets of finite measure).
Here fn ↑ f means that fn ≤ fn+1, lim

n→∞
fn = f (µ− a.e.)
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Definition 2. Let ρ be a functional norm. The set of functions X = X(ρ) from L0, for which ρ(|f |) < ∞ is called a Banach function space
(briefly: BFS), generated by the FN ρ. For f ∈ X we assume

∥f∥X = ρ(|f |).

Let L0 = L0(R
n) be the set of all Lebesgue measurable functions f : Rn → C; L̇0 = L̇0(R

n) be the set of functions f ∈ L0, for which
the non-increasing rearrangement of the f∗ is not identical to infinity. Non-increasing rearrangement f∗ is defined by the equality:

f∗(t) = inf{y ∈ [0;∞) : λf (y) ≤ t}, t ∈ R+ = (0;∞),

where
λf (y) = µn

{
x ∈ Rn : |f(x)| > y

}
, y ∈ [0,∞)

is the Lebesgue distribution function. It is known that f∗ is a non-negative, non-increasing and right-continuous function on R+; f∗ is
equimeasurable with |f |, i.e.

µ1
{
t ∈ R+ : f∗(t) > y

}
= µn

{
x ∈ Rn : |f(x)| > y

}
,

here µ is the Lebesgue measure (on Rn or on R+, respectively, see [1]).
Let f# : Rn → Rn denote a symmetric rearrangement of f , i.e. a radially symmetric non-negative non-increasing right continuous function

(as a function of r = |x|, x ∈ Rn) that is equimeasurable with f . That is

f#(r) = f∗(vnr
n); f∗(t) = f#

(( t

vn

) 1
n

)
, r, t ∈ R+,

here vn is the volume of the n-dimensional unit ball.
The function f∗∗ : (0,∞) → [0,∞] is defined as

f∗∗(t) =
1

t

t∫
0

f∗(τ)dτ ; t ∈ R+.

It is clear that f∗∗ is an a non-increasing function on R+.
Really, let t1 ≤ t2, then

f∗∗(t2) =
1

t2

t2∫
0

f∗(τ)dτ =
1

t2

t1∫
0

f∗(τ)dτ +
1

t2

t2∫
t1

f∗(τ)dτ ≤ 1

t2

t1∫
0

f∗(τ)dτ + f∗(t1) ·
t2 − t1

t2
.

Hence, we have

f∗∗(t2) ≤
1

t2

t1∫
0

f∗(τ)dτ +
t2 − t1
t2t1

t1∫
0

f∗(τ)dτ ≤
(

1

t2
+

t2 − t1
t2t1

) t1∫
0

f∗(τ)dτ =
1

t1

t1∫
0

f∗(τ)dτ = f∗∗(t1)

Definition 3. A functional norm ρ is said to be rearrangement-invariant if

f∗ ≤ g∗ ⇒ ρ(f) ≤ ρ(g).

Banach function space X = X(ρ), generated by a rearrangement invariant functional norm ρ will be called a rearrangement invariant space
(in short: RIS).

Example 1. Let S = Rn, µ ≡ µn be the Lebesgue measure in Rn, 1 ≤ p ≤ ∞; u ∈ L0(R
n), 0 < u < ∞, (µ-a.e.); u ∈ Lloc

p (Rn), 1
u ∈

Lloc
p′ (Rn), 1

p + 1
p′ = 1.

The space X = Lp,u(R
n) with a norm fX = fLp,u

i.e.:

∥f∥X =

( ∫
Rn

|fu|pdµ
) 1

p

, 1 ≤ p < ∞; ∥f∥X = ∥fu∥L∞ , p = ∞

is a BFS. Associated space:

X
′
= Lp′ , 1u

(Rn).

Everywhere in this work, we denote rearrangement invariant space (in short: RIS) by E = E(Rn), and by E
′
= E

′
(Rn) the associated

rearrangement-invariant space and Ẽ = Ẽ(R+), Ẽ
′
= Ẽ

′
(R+) their Luxembourg representation, i.e. such RIS that

∥f∥E = ∥f∗∥Ẽ , ∥g∥E′ = ∥g∗∥Ẽ′ , (1)

Let Ω0 be a set of all nonnegative, finite on R+, decreasing and right continuous functions:

Ω0 = {g : R+ → [0;∞); g ↓, g(t+ 0) = g(t), t ∈ R+}.
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Definition 4. A function f : R+ → R+ is called quasi-decreasing and is denoted by f ↓ (quasi-increasing and is denoted by f ↑) if there
exists C > 1, such that

f(t2) < Cf(t1) ift1 < t2.

(f(t1) < Cf(t2) ift1 < t2)

Throughout this work we will denote by C, C1, C2 positive constants, generally speaking, different in different places.
By the notation f(x) ∼= g(x) we mean that there are constants C1 > 0, C2 > 0 such that

C1f(t) ≤ g(t) ≤ C2f(t), t ∈ R+.

Definition 5. Let n ∈ N and R ∈ (0;∞]. We say that a function Φ : (0;R) → R+ belongs to the class An(R) if:
(1) Φ is non-increasing and continuous on (0;R);
(2) the function Φ(r)rn is quasi-increasing on (0, R).
For example, Φ(t) = t−α ∈ An(∞), 0 < α < n.

Definition 6. [12] Let n ∈ N and R ∈ (0;∞]. A function Φ : (0;R) → R+ belongs to the class Bn(R) if the following conditions hold:
(1) Φ is non-increasing and continuous on (0;R);
(2) there exists C > 0 such that

r∫
0

Φ(ρ)ρn−1dρ ≤ CΦ(r)rn, r ∈ (0, R). (2)

For example,

Φ(ρ) = ρα−n ∈ Bn(∞) (0 < α < n); Φ(ρ) = ln
eR

ρ
∈ Bn(R), R ∈ R+.

For Φ ∈ Bn(R) the following estimate also holds

r∫
0

Φ(ρ)ρn−1dρ ≥ n−1Φ(r)rn, r ∈ (0, R).

Therefore
r∫
0

Φ(ρ)ρn−1dρ ∼= Φ(r)rn, r ∈ (0, R), (3)

Φ ∈ Bn(R) ⇒ {0 ≤ Φ ↓; Φ(r)rn. ↑, r ∈ (0, R)}. (4)

Definition 7. Let Φ ∈ An(∞). The generalized fractional-maximal function MΦf is defined for the function f ∈ L1
loc(R

n) by

(MΦf)(x) = sup
r>0

Φ(r)

∫
B(x,r)

|f(y)|dy,

where B(x, r) is a ball with the center at the point x and radius r. That is, consider the operator MΦ: L1
loc(R

n) → L̇0(R
n).

In the case Φ(r) = rα−n, α ∈ (0;n) we obtain the classical fractional maximal function Mαf :

(Mαf)(x) = sup
r>0

1

rn−α

∫
B(x,r)

|f(y)|dy.

We denote by MΦ
E = MΦ

E (Rn) the set of the functions u, for which there is a function f ∈ E(Rn) such that

u(x) = (MΦf)(x),

∥u∥MΦ
E

= inf{∥f∥E : f ∈ E(Rn), MΦf = u} (5)

such a space MΦ
E will be called an space of generalized fractional-maximal function.
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Note that in the works of Goldman M.L., Bakhtigareeva E.G [4-5], the generalized Riesz potential was considered using the convolution
operator:

A : E1(R
n) → L̇0(R

n),

Af(x) = (G ∗ f)(x) = 2π−n/2
∫
Rn

G(x− y)f(y)dy,

where the kernel G(x) satisfies the conditions:
G(x) ∼= Φ(|x|), x ∈ Rn (6)

Φ ∈ Bn(∞); ∃c ∈ R+.

The kernel of the classical Riesz potential has the form

G(x) = |x|α−n, α ∈ (0;n).

Note that, unlike the operator A the operator MΦ is not linear.

Definition 8. Define ℑT = {K(T )} for T ∈ (0,∞] as a set of cones considering from measurable non-negative functions on (0, T ), equipped
with positive homogeneous functionals ρKM(T ) : K(T ) → [0,∞) with properties:

(1) h ∈ K(T ), α ≥ 0 ⇒ αh ∈ K(T ), ρK(T )(αh) = αρK(T )(h);
(2) ρK(T )(h) = 0 ⇒ h = 0 almost everywhere on (0, T ).

Definition 9. [5] Let K(T ),M(T ) ∈ ℑT . The cone K(T ) covers the cone M(T ) (notation: M(T ) ≺ K(T )) if there exist C0 = C0(T ) ∈
R+, and C1 = C1(T ) ∈ [0,∞) with C1(∞) = 0 such that for each h1 ∈ M(T ) there is h2 ∈ K(T ) satisfying

ρK(T )(h2) ≤ C0ρM(T )(h1), h1(t) ≤ h2(t) + C1ρM(T )(h1), t ∈ (0, T ).

The equivalence of the cones means mutual covering:

M(T ) ≈ K(T ) ⇔ M(T ) ≺ K(T ) ≺ M(T ).

Let E is rearrangement-invariant space (briefly: RIS). We consider the following two cones of decreasing rearrangements of generalized
fractional maximal function equipped with homogeneous functionals, respectively:

K1 ≡ KMΦ
E := {h ∈ L+(R+) : h(t) = u∗(t), t ∈ R+, u ∈ MΦ

E},

ρK1
(h) = inf{∥u∥MΦ

E
: u ∈ MΦ

E ; u∗(t) = h(t), t ∈ R+}; (7)

K2 ≡ KM̃Φ
E := {h : h(t) = u∗∗(t), t ∈ R+, u ∈ MΦ

E},

ρK2
(h) = inf{∥u∥MΦ

E
: u ∈ MΦ

E ; u∗∗(t) = h(t), t ∈ R+}. (8)

This means that the cones K1 and K2 consist of non-increasing rearrangements of generalized fractional maximal functions.
Note that in the works of Goldman M.L. [5], Bokayev N.A., Goldman M.L., Karshygina G.Zh. [9-10] cones generated by generalized

potentials are considered. They study the space of potentials HG
E ≡ HG

E (Rn) in n-dimensional Euclidean space:

HG
E (Rn) = {u = G ∗ f : f ∈ E(Rn)},

where E(Rn) is an rearrangement invariant space (RIS).

∥u∥HG
E

= inf{∥f∥E : f ∈ E(Rn);G ∗ f = u},

M(T ) ≡ KMG
E (T ) = {h(t) = u∗(t), t ∈ (0;T ), u ∈ HG

E },

ρM(T )(h) = inf{∥u∥HG
E

: u ∈ HG
E ;u∗(t) = h(t), t ∈ (0;T )};

M̃(T ) ≡ KM̃G
E (T ) = {h(t) = u∗∗(t), t ∈ (0;T ) : u ∈ HG

E },

ρ
M̃
(h) = inf{∥u∥HG

E
: u ∈ HG

E ;u∗∗(t) = h(t)), t ∈ (0;T )}.

In the following Theorem 1 [13] gives the estimate for a non-increasing rearrangement of a generalized fractional maximal function (MΦf)
by non-increasing rearrangement of the function f .
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Theorem 1. Let Φ ∈ An(∞). Then there exist a positive constant C, depending from n ∈ N such that

(MΦf)
∗(t) ≤ C sup

t<s<∞
sΦ(s1/n)f∗∗(s), t ∈ (0,∞),

for every f ∈ L1
loc(R

n).

In the following theorem we give the compares of the cone generated by a generalized fractional-maximal function and the cone generated
by the generalized Riesz potential.

Theorem 2. Let Φ ∈ Bn(∞) and kernel G(x) satisfies the condition (6). Then cone generated by the generalized potential covers the cone
generated by the generalized maximal function, i.e. KMΦ

E ≺ KMG
E .

Lemma 1. The following covering takes place
K1 ≺ K2.

Theorem 3. Let Φ ∈ Bn(∞). The embedding

MΦ
E (Rn) ↪→ X(Rn) (9)

is equivalence to the next embedding

K1M
Φ
E (R+) 7→ X̃(R+) (10)

3 Conclusion

In this paper, we considered the space of generalized fractional maximal functions and investigated the various cones generated by nonincreasing
rearrangement of generalized fractional maximal function. Equivalent descriptions of such cones and conditions for their mutual covering
are given. Then these cones are used to construct a criterion for embedding the space of generalized fractional maximal functions in the
rearrangement invariant spaces (RIS).
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Abstract:
Locally coherent modules play a central role in algebraic geometry, as they provide a framework for studying the structure of vari-
eties and schemes. Their dual counterparts, locally co-coherent modules, are less well-known, but they are nonetheless important
in a variety of mathematical contexts. In the seminal paper [19], the authors introduced the notion of a locally coherent module
and studied its properties. In this work, we introduce a dual notion, which we call a locally co-coherent module, and investigate
its fundamental characteristics. Furthermore, we provide a comprehensive and rigorous study of locally co-coherent modules. We
begin by introducing the definition and basic properties of these modules. We then examine their relationship to locally coherent
modules and other algebraic objects. Finally, we discuss some of the applications of locally co-coherent modules in other areas of
mathematics.

Keywords: finitely cogenerated module, finitely copresented module, co-coherent module, and locally co-coherent module.
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1 Introduction

The theoretical foundations and notation employed in the current investigation are informed by seminal contributions delineated in refer-
ences [1], [2], [3], [4], [5], [6], [7], [8], [9], and [10]. Specifically, these sources provide foundational descriptions and formalizations of the
key concepts studied herein, including coherent functors [2], locally coherent modules [3], Cohen-Macaulay modules [4], and the relation-
ship between coherent functors and Gorenstein categories [10]. Moreover, they establish structural typologies, categorical frameworks, and
mathematical properties germane to properly contextualizing the study’s analytical objectives and modeling approach. By drawing upon these
scholarly works, the requisite terminology, structural postulates, and problem conceptualizations are delineated for systematically interrogating
the impact of graph operations on relational transformations and attendant complexity shifts. In summation, the cited literature furnishes the
theoretical apparatus and notational conventions underscoring the methodology and interpretation of results within the present investigation.
Firas and Karim [11] delineate properties of local modules, an important construct in the study of coherent structures. Meanwhile, Nam, Tri,
and Dong [12] examine properties of generalized local cohomology modules with respect to ideal pairs, shedding light on their categorical
properties and behaviors. By drawing upon the formalizations and examinations of such algebraic notions presented in these sources, the req-
uisite terminology, structural postulates, and analytical objectives employed herein are properly defined and contextualized. This prior work
therefore establishes the theoretical foundations and notational conventions underpinning the methodology and interpretation of findings within
the present research.

Throughout this paper, R means a ring with an identity element and all modules are unital R-modules. In [19] R-MOD denote a category of
unital right R-modules and σ[M ] is a subcategory of R-MOD and its objects are submodules of M-cogenerated is studied. Similarly to ’finitely
presented’, ’finitely copresented’ also depends on the category referred to (σ[M ], R-MOD) see [19].

The notion of locally coherent modules was introduced and studied in [19], such that it is defined as the following : Let M be an R-module.
A module N ∈ σ[M ] is called a coherent module in σ[M ] if it is finitely generated and every finitely generated submodule of N is a finitely
presented in σ[M ]. If all finitely generated submodules of a module N ∈ σ[M ] are coherents, then N in σ[M ] is called a locally coherent
module.
In this paper, we introduce and study the dual notion of the locally coherent module which is called a locally co-coherent module in σ[M ] and
is defined as the flowing: Let M be an R-module. A module N ∈ σ[M ] is called a co-coherent module if it is finitely cogenerated and every
finitely cogenerated factor module of N is finitely copresented in σ[M ]. If all finitely cogenerated factors modules of module N ∈ σ[M ] are
co-coherents, then N is called a locally co-coherent module in σ[M ].

In (Lemma 1.) gives characterization of locally co-coherent module ∈ σ[M ] such that A module T is called locally co-coherent module in
σ[M ] if and only if it is finitely cogenerated and every finitely cogenerated factor module of T is finitely copresented in σ[M ]).

In (Proposition 1.) explain that every finitely cogenerated submodule of a locally co-coherent module is locally co-coherent in σ[M ].
In (Theorem 1.) We study some properties and behavior of the notion of locally co-coherent module ∈ σ[M ] on short exact sequences such

that if R is a ring and let 0 → X → K → L → 0 be a short exact sequence of modules, then we have:

• If K is locally co-coherent and L is finitely cogenerated, then X is locally co-coherent in σ[M ].
• If X and L are locally co-coherents, then K is locally co-coherent in σ[M ].
• If K = X

⊕
L, then K is locally co-coherent in σ[M ] if and only if X and L are locally co-coherent in σ[M ].

• If K is locally co-coherent in σ[M ] and N,H are finitely cogenerated submodules of K, then N
⋂

H is finitely cogenerated.
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See also the duality of this theorem in [17] As a conseqance of (Theorem 1.) we get (Corollary 2.) such that if N1, N2......, Nn are submodules
of N in σ[M ], then

⊕n
i=1 Ni is locally co-coherent module if and only if N1, N2......, Nn are locally co-coherent submodules of N in σ[M ].

Also in (Proposition 2.) if f : L −→ N is a homomorphism between locally co-coherent modules L,N in σ[M ], then we proved that
Kerf, Imf, andCokef are locally co-coherent modules.
In (Proposition 3.) Let X to be locally co-coherent and Y,Z to be finitely cogenerated factor modules of X . If

X
g−−−−−→ Y

f

y yf ′

Z
g′

−−−−−→ P

is a pushout diagram, then we proved that P is finitely cogenerated.

In section 5 we study Properties such that if M be an R-module, U finitely copresented module in σ[M ] and N ∈ σ[M ]. If every submodule
of N is U -cogenerated, then the following is proved:

N is locally co-coherent in σ[M ] if and only if for every f ∈ Hom(N,Uk), k ∈ N, the submodule Kerf is finitely cogenerated (Imf is
finitely copresented) if and only if (1) for any f ∈ Hom(N,U), the submodule Kerf is finitely cogenerated and (2) the intersection of any
two finitely cogenerated submodules of N is finitely cogenerated.
In section 6 we study Characterizations of locally co-coherent modules in R−MOD where For an R-module N the following is proved:
N is locally co-coherent in σ[M ] if and only if for every f ∈ Hom(N,Uk), k ∈ N, the submodule Kerf is finitely cogenerated (Imf is
finitely copresented); if and only if (i) for any f ∈ Hom(N,U), the submodule Kerf is finitely cogenerated, and (ii) the intersection of any
two finitely cogenerated submodules of N is finitely cogenerated.

Recall some important definitions which are basic in this work. An R-module M is called finitely generated, if for any family (Mi)i∈I of
submodules of M with

∑
i∈I Mi = 0, there is a finite subset J of I such that

∑
j∈J Mj = 0 (see [13, 18, 19]).

As in the classical case, finitely presented module M is defined as a module that is finitely generated such that, for every short exact sequence
0 −→ K −→ L −→ M −→ 0, if L is finitely generated, then K is also finitely generated (see [18, 19]).

Dually and similarly, for a ring R, an R-module M is called finitely cogenerated if for every family {Mi}i∈I of submodules of M with⋂
i∈I Mi = 0, there is a finite subset J ⊂ I such that

⋂
i∈J Ni = 0.

A module M is said to be finitely copresented if it is finitely cogenerated and for every short exact sequence 0 −→ M −→ L −→ K −→ 0,
with L is finitely cogenerated, then also K is finitely cogenerated (see [19], pages 248-249).

2 Locally co-coherent modules

Definition 1. Let M be an R-module. A module N ∈ σ[M ] is called co-coherent module if it is finitely cogenerated and every finitely
cogenerated factor module of N is finitely copresented in σ[M ]. If all finitely cogenerated factors modules of the module N ∈ σ[M ] are
co-coherents, then N in σ[M ] is called a locally co-coherent module.

The following result gives a characterization of a locally co-coherent modules.

Lemma 1. Let M be an R-module. A module T ∈ σ[M ] then the following tow conditions are equivalents:

1. T is locally co-coherent module in σ[M ].
2. T is finitely cogenerated module in σ[M ] and every finitely cogenerated factor module of T is finitely copresented in σ[M ] that is meaning
For every short exact sequence 0 −→ N = T/H −→ L −→ K −→ 0, in σ[M ] with L is finitely cogenerated, then K is finitely cogenerated.

Proof: (1) ⇒ (2) Suppose that T is locally co-coherent, then it is finitely cogenerated and every factor module of T is also finitely cogenerated
and there exists an exact sequence 0 −→ N = T/H −→ L −→ K −→ 0 with, L is finitely cogenerated, then K is finitely cogenerated in
σ[M ]) where H is a submodule of T .
(2) ⇒ (1) is seen dually to the proof of 25.1 in[19]: Suppose that T is finitely cogenerated module in σ[M ] and let 0 −→ N −→ B −→
c −→ 0 be a short exact sequence with B is finitely cogenerated we obtain with a pushout the commutative exact diagram :

0 0
↓ ↓

0 −→ N = T/H −→ L −→ K −→ 0
↓ ↓ ∥

0 −→ B −→ D −→ K −→ 0
↓ ↓
C == C
↓ ↓
0 0

If B is finitely cogenerated, then D and C are finitely cogenerated, then N = T/H is finitely copresented in σ[M ] and T is a locally co-coherent
module in σ[M ]. □

Proposition 1. Every finitely cogenerated submodule of a locally co-coherent module is locally co-coherent in σ[M ]

Proof: : Let N be a locally co-coherent module, then it is finitely cogenerated, and let L be a submodule of N so L is finitely cogenerated and
N⧸L is finitely copresented ( because N locally co-coherent module in σ[M ] ) and therefore it is finitely cogenerated. let K be a submodule
of L
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so L⧸K is finitely cogenerated and it is a submodule of N⧸L so L⧸K is finitely copresented module and hence L is locally co-coherent
module. □

Now we study in the following theorem some properties and behavior of a locally co-coherent module in σ[M ] on a short exact sequence;
see more [16, 17, 19]

Theorem 1. Let R be a ring and let M be a R-module. Let 0 −→ X −→ K −→ L −→ 0 be a short exact sequence of modules in σ[M ].
Then we have the following.

1. If K is locally co-coherent and L is finitely cogenerated then X is locally co-coherent in σ[M ].
2. If X and L are locally co-coherent if and only if K is locally co-coherent in σ[M ].
3. If K = X

⊕
L, then K is locally co-coherent in σ[M ] if and only if X and L are locally co-coherent in σ[M ].

4. If K is locally co-coherent in σ[M ] and N,H are finitely cogenerated submodules of K, then N
⋂

H is finitely cogenerated.

Proof: :(1) Suppose that K is locally co-coherent and L is finitely co-generated in σ[M ]. Let X −→ Y be (epic, i.e., homomorphism surjective)
and Y be finitely cogenerated. Forming a pushout, we obtain the commutative exact diagram

0 → X → K L → 0
↓ ↓ ∥

0 −→ Y → D → L −→ 0

we have Y and L are finitely cogenerated, then D is finitely cogenerated and – by assumption finitely copresented and from 30.2, (1) in [19]
Y is also finitely copresented, hence X is locally co-coherent module in σ[M ].

(2) Suppose that X and L are locally co-coherents in σ[M ]. Let K −→ Z be epic and Z finitely cogenerated. By forming a pushout, we
get the exact commutative diagram

0 → X → K → L → 0
↓ ↓ ↓

0 → Y → Z → H → 0
↓ ↓
↓ ↓
0 0

Here K is finitely copresented and H is finitely cogenerated, hence finitely copresented and Z is also finitely copresented, K is locally
co-coherent module in σ[M ].

(3) This follows immediately from (2) in 1 and From 1.
(4) Under the given assumptions, K = N + L is locally co-coherent in σ[M ], then K/N and K/L are co-coherents and from 2 K/N ⊕

K/L, then there is an exact sequence 0 −→ K/N ⊕K/L −→ K −→ N ∩ L −→ 0 and hence N ∩ L has to be finitely cogenerated in
σ[M ]. □

Corollary 1. Let M be an R-module. A module N ∈ σ[M ] and Let N1, N2......, Nn are submodules of N in σ[M ], then
⊕n

i=1 Ni is locally
co-coherent module if and only if N1, N2......, Nn are locally co-coherent submodules of N in σ[M ].

Proof: Let N1, N2......, Nn be locally co-coherent submodules of N in σ[M ]. We have a short exact sequence

0 → Nn →
n⊕

i=1

Ni −→
n−1⊕
i=1

Ni −→ 0

and by induction if n = 2, then we get

0 → N2 →
2⊕

i=1

Ni −→ N1 −→ 0

from 1 (4) the asseration is true. Now we suppose that N1, N2......, Nn are locally co-coherents if and only if
⊕n

i=1 Ni is locally co-coherent
module and we prove it when n+1. The short exact

0 → Nn+1 →
n+1⊕
i=1

Ni −→ N1 −→ 0

and from 1 (2) implies that Mn+1 is locally co-coherent module (because N1 is locally co-coherent). We have also

0 → Nn+1 →
n+1⊕
i=1

Ni −→
n⊕

i=1

Ni −→ 0

, then from 1 (3)
⊕n+1

i=1 Ni is locally co-coherent module and it follows that N1, N2......, Nn are locally co-coherents if and only if
⊕n

i=1 Ni
is locally co-coherent module for every n in σ[M ]. □

Corollary 2. Let M be an R-module. A module N ∈ σ[M ] and N1, N2......, Nn are modules. If N1, N2......, Nn are locally co-coherent
modules in σ[M ], then

⋂n
i=1 Ni is locally co-coherent modules in σ[M ].
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Proof: : Where
⋂n

i=1 Ni is a submodule of Ni for i = 1, 2, ......, n which are locally co-coherent modules in σ[M ] , then by 1
⋂n

i=1 Ni is
locally co-coherent modules in σ[M ] . □

Proposition 2. If f : L −→ N is a homormorphism between locally co-coherent modules L,N in σ[M ], then Kerf, Imf and Cokef are
also locally co-coherent modules.

Proof: : Since f is homomorphism between locally co-coherent modules L,N implies that kerf is a submodule of L and Imf also a submodule
of N , then, Kerf and Imf are finitely cogenerated modules in σ[M ] and by 1 implies that Kerf and Imf are locally co-coherent modules
in σ[M ]. And we know that cokerf = N/Imf so there is a short exact 0 −→ Imf −→ N −→ cokerf = N/Imf −→ 0, then cokerf is
finitely cogenerated module and it is finitey copresented, hence by 1 cokerf is locally co-coherent modules in σ[M ]. □

Proposition 3. Assume X to be locally co-coherent and Y,Z are finitely co-generated factor modules of X . If

X −−−−−→ Yy y
Z −−−−−→ P

is a pushout diagram, then P is finitely cogenerated.

Proof: : The given diagram can be extended to the commutative exact diagram

0 → K → X → Y → 0
↓ ↓ ↓

0 → L → Z → P → 0
↓ ↓ ↓
↓ ↓ ↓
0 0 0

and X is locally co-coherent and Y is finitely cogenerated, then K is locally co-coherent by (1) from 1, and hence L is finitely copresented.
Therefore, P is finitely cogenerated. □

2.1 Properties of locally co-coherent M in σ[M ]

Theorem 2. Assume the R-module M to be locally co-coherent in σ[M ]. Then

1. Every module in σ[M ] is finitely cogenerated by co-coherent modules.
2. Every finitely copresented module is co-coherent in σ[M ].

Proof: : (1) By 26.1, in [19] as a dially MN is locally co-coherent and the finitely co-generated submodules form a set of cogenerators of
co-coherent modules in σ[M ].

(2) If N is finitely copresented, then it is finitely cogenerated and by (see [19], pages 248-249) , there is an exact sequence

0 −→ N −→
⊕
i≤k

Ui −→ K −→ 0

and also the central expression co-coherent and K is finitely cogenerated, then, by 1 1 N it is locally co-coherent and it is co-coherent in
σ[M ]. □

2.2 Finitely copresented cogenerators and co-coherent modules

Theorem 3. Let M be an R-module, U a finitely copresented module in σ[M ] and N ∈ σ[M ]. If every submodule of N is U -cogenerated,
then the following assertions are equivalent:

1. N is locally co-coherent in σ[M ];
2. For every f ∈ Hom(N,Uk), k ∈ N, the submodule Kerf is finitely cogenerated (Imf is finitely copresented);
3. (a)For any f ∈ Hom(N,U), the submodule Kerf is finitely cogenerated and
(b)The intersection of any two finitely cogenerated submodules of N is finitely cogenerated.

Proof: :

• (1) ⇔ (2) Under the given assumptions, for every finitely cogenerated submodule K ⊂ Uk, as a dually of 26.3 there is an epimorphism
f : N −→ K, for some k ∈ N.

• (1) ⇒ (3) follows from 1,(4) and 2.

• (3) ⇒ (2) We prove this by induction on k ∈ N. The case k = 1 is given by (a).
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Assume that, for k ∈ N, all homomorphic images of N in Uk are finitely copresented, and consider g ∈ Hom(N,Uk). In the exact sequence

0 −→ g(N) −→ g(N)
⊕

g(L) −→ g(L) ∩ g(N) −→ 0

(where L is a submodule of N ) the central expression is finitely copresented by assumption and g(N) ∩ g(L) is finitely cogenerated because
of (b) hence Imf is finitely copresented and Kerf is finitely cogenerated.

□

2.3 Characterizations of locally co-coherent modules in R−MOD

Theorem 4. For an R-module N the following assertions are equivalent:

1. N is locally co-coherent in R-MOD;
2. For every f ∈ Hom(N,Rk), k ∈ N, the submodule Kerf is finitely cogenerated (Imf is finitely copresented);
3. (a)For any f ∈ Hom(N,U), the submodule Kerf is finitely cogenerated and
(b)The intersection of any two finitely cogenerated submodules of N is finitely cogenerated.

Proof: : For locally co-coherence in R−MOD we obtain from the proof of 3. □

Conclusion

This study sought to introduce and explore the concept of locally co-coherent modules, a novel dual notion. Initially, the definition and basic
properties of locally co-coherent modules were established. Their relationship to locally coherent modules and other algebraic structures was
then investigated. Specifically, connections were drawn between locally co-coherent modules and previously established concepts. A rigorous
examination of the fundamental characteristics of locally co-coherent modules was undertaken. In sum, the foundational aspects and theoretical
significance of locally co-coherent modules were delineated through a comprehensive theoretical analysis. While requiring further empirical
validation, this work provides a conceptual framework for advancing the understanding and utility of this dual algebraic notion.
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Abstract: In our study, which is based on the lack of applications and problems in the literature, the aim is to develop different
methods by approaching 7 different analytical geometry problems using the particle swarm optimization method. Besides its strong
theoretical structure, a method has been designed that can be used in many real-life applications. It has been demonstrated that
effective solutions can be generated in a short time in architectural, landscaping, cadastral and land-sharing, urban planning, water
distribution, and other design-oriented areas through the software.The method used in our study can be transformed into a design
that can be used in complex systems and problems containing many variables. Mathematical expressions are then converted into
functions to which Particle Swarm Optimization is applied, allowing integration of any problem that can be written as a function of
multiple variables. The theoretical solutions have been tested and proven accurate. At the same time, from the generated graphics,
it has been demonstrated how important the number of iterations is to approach the correct solution.

Keywords: Area problems, Analytical geometry, Particle Swarm Optimization

1 Introduction

Particle Swarm Optimization (PSO) represents an optimization technique devised by Kennedy and Eberhart (1995), drawing inspiration
from the collective movement of fish and insects in swarms. It serves as a fundamentally swarm intelligence-based algorithm, capitalizing on
the observation that random movements exhibited by animals within swarms, particularly in contexts involving food and safety, enhance their
ability to achieve objectives.

In the context of Particle Swarm Optimization, individual problem-solving entities are referred to as "particles," and collectively, they form
the "population." To begin, the swarm members designated to search for the solution and the essential parameters are initially determined.
A fitness function is utilized to evaluate the proximity of each particle to the sought-after solution. Subsequently, a change rate function
guides each particle’s movement towards a closer solution. The process iterates, repeatedly evaluating proximity to the solution with the fitness
function, until the desired outcomes are attained. It is widely applied to target tracking, positioning and navigation, mode identification etc. by
virtue of its advantages of simple concept, ease in actualization, fewer parameters, and effectiveness in solving complicated optimization and
so on.[2] With an increasing number of iterations, the solution set’s elements progressively approach the actual values of the solution. Given an
infinite number of iterations, the optimization converges towards these ideal values.

2 Materials and Methods

The main methodology in this paper is forming proper equations for each problem by using basic analytic geometry knowledge, as it was
used for creating the equation of lines, finding the intersection points of lines, calculating the area of polygons with known coordinates, creating
parabolas, and using definite integral for parabolic area calculations. In the software part of our study, the particle swarm optimization method
was implemented using Python. The "matplotlib" library was utilized to create necessary graphics, and GeoGebra was used for testing solutions
and visualising problems.

2.1 Calculating the Area of a Triangle or Quadrilateral in Analytical Plane

In the analytical plane, the area of the triangle ABC, defined by the coordinates of its edges as A(xa, ya), B (xb, yb), and C(xc, yc), can
be calculated as follows:

A(ABC) =
1

2
|(xayb + xbyc + xcya)− (xbya + xcyb + xayc)| (1)
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Similarly, by selecting the edges in a counterclockwise direction, the area of the quadrilateral ABCD, defined by the coordinates of its
vertices as A(xa, ya) ,B (xb, yb) ,C(xc, yc), D(xd, yd) can be calculated as follows:

A(ABCD) =
1

2
| (xayb + xbyc + xcyd + xdya)− (xbya + xcyb + xdyc+ xayd) | (2)

3 Problems

3.1 Problem 1

For which values of m and n, the division of the ABC triangle into three equal-area parts by the [BD and [BE rays satisfies the equality
S1 = S2 = S3?

Fig. 1: Problem 1 Model

For the solution, we start by finding the equation of the BC line:

y − yc =
ya − yc
xa − xc

(x− xc) (3)

yd − yc =
ya − yc
xa − xc

(xd − xc) (4)

mxd − yc =
ya − yc
xa − xc

(xd − xc) (5)

(xa − xc)mxd − yc(xa − xc) = (ya − yc)xd − xcya + xcyc (6)

(mxa −mxc − ya + yc)xd = ycxa − ycxc − xcya + xcyc (7)

xd =
ycxa − xcya

mxa −mxc − ya + yc
(8) ye = m(

ycxa − xcya
mxa −mxc − ya + yc

) (9)

The point E (xe, ye) is also on the line BC and on the line y = nx, so we can express the coordinates of point E as the intersection of these
two lines.

xe =
ycxa − xcya

xa − nxc − ya + yc
(10) ye = n(

ycxa − xcya
xa − nxc − ya + yc

) (11)

We can calculate the area of triangle ABC using the equation numbered as S (1), as shown below.

A(ABC) = S =
1

2
|(xayb + xbyc + xcya)− (xbya + xcyb + xayc)| (12)

S =
1

2
|(xcya)− (xayc)| (13)
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For the areas of the other three smaller triangles to be equal, satisfying the equation S1 = S2 = S3, each of their areas must be S
3 . We can

also calculate the areas of triangles ABD, DBE, and EBC as shown below.

A(ABD) = S1 =
1

2
|(xayb + xbyd + xdya)− (xbya + xdyb + xayd)| (14)

A(DBE) = S2 =
1

2
|(xdyb + xbye + xeyd)− (xbyd + xeyb + xdye)| (15)

A(EBC) = S3 =
1

2
|(xeyb + xbyc + xcye)− (xbye + xcyb + xeyc)| (16)

S1 =
1

2
|(xdya)− (xayd)| =

S

3
(17) S2 =

1

2
|(xeyd)− (xdye)| =

S

3
(18)

S3 =
1

2
|(xcye)− (xeyc)| =

S

3
(19)

After obtaining these equations, we can define the function F1(m,n).

F1(m,n) =

∣∣∣∣S1 − S

3

∣∣∣∣+ ∣∣∣∣S2 − S

3

∣∣∣∣+ ∣∣∣∣S3 − S

3

∣∣∣∣ (20)

Using particle swarm optimization, we can solve for the values of m and n that make our function equal to 0. This way, we can find the
values of m and n that satisfy previous equations.

F1(m,n) −→ 0 (21)

When solving this problem with the values A(0, 4) and C(4.47, 0) using our software, we obtained the following graph and solution set
below.

For the key (m, n), we obtain the values (1.789, 0.447). We also observe that as the iteration count increases, the solution gets closer.

(Used code for the problem 1 can be found in subsection 4.2)

3.2 Problem 2

For the ABC triangle with the side |BC| lying on the x-axis, which values of m and xe allow the division of the triangle into four equal-area
parts by two perpendicular lines, one with the equation y = mx and the other intersecting the x-axis at point xe ?

Fig. 2: Problem 2 Model

In this problem, firstly, we should find the slope of the line GE. Since it is perpendicular to the line DB, its slope can be calculated as −1
m .

Knowing that it passes through point E, we can express the equation of the line as follows:

y − ye =
− (x− xe)

m
(22) E (xe, 0) , y =

xe − x

m
(23)

To find the coordinates of point D(xd, yd), we should examine the intersection of lines AC and BD. For this purpose, based on equation
(4), we can express it as shown below:

yd − yc =
ya − yc
xa − xc

(xd − xc) (24)

xd =
xcya

(mxc + ya −mxai)
(25) yd = m

(
xcya

(mxc + ya −mxa)

)
(26)

To find the coordinates of point G(xg, yg), we should examine the intersection of lines BA and GE. For this purpose, if we start from
equations (4) and (23), we can express it as follows:
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yg − yb =
ya − yb
xa − xb

(xg − xb) (27) yg =
xe − xg

m
(28)

for B(0, 0), yg =
ya
xa

xg (29)

xe − xg
m

=
ye
xa

xg (30)

xg =
xkxa

(mya + xa)
(31) yg =

xeya
(mya + xa)

(32)

To be able to calculate the areas that are formed, finally, we can find the coordinates of point F
(
xf , yf

)
as the intersection of lines BD and

GE.

yf =
xe − xf

m
(33) yf = mxf (34)

mxf =
xe − xf

m
(35)

m2xf = xe − xf (36)

xf =
xe

(m2 + 1)
(37) yf =

mxe
(m2 + 1)

(38)

We can calculate the area of triangle ABC as shown below.

A(ABC) = S =
1

2
|(xayb + xbyc + xcya)− (xbya + xcyb + xayc)| (39)

A(ABC) = S =
1

2
|xcya| (40)

The areas of triangles GBF and FBE, with coordinates B(0, 0),E (xe, 0) ,F
(
xf , yf

)
, and G(xg, yg), can be calculated as below.

A(GBF) = S1 =
1

2

∣∣(xgyb + xbyf + xfyg
)
−
(
xbyg + xfyb + xgyf

)∣∣ (41)

S1 =
1

2

∣∣(xfyg)− (xgyf )∣∣ (42)

S1 =
1

2

∣∣∣∣( xe
(m2 + 1)

xeya
(mye + xa)

)
−
(

xexa
(mya + xe)

mxe
(m2 + 1)

)∣∣∣∣ (43)

A(FBE) = S2 =
1

2

∣∣(xfyb + xbye + xeyf
)
−
(
xbyf + xeyb + xfye

)∣∣ (44)

S2 =
1

2

∣∣(xeyf )∣∣ (45)

S2 =
1

2

∣∣∣∣(xe mxe
(m2 + 1)

)∣∣∣∣ (46)

The areas of quadrilaterals AGFD and DFEC, with coordinates A(xa, ya) ,C(xc, yc) ,D(xd, yd) ,E (xe, 0) ,F
(
xf , yf

)
, and

G(xg, yg), can be calculated using equation (2) as shown below.

A(AGFD) = S3 =
1

2

∣∣(xayg + xgyf + xfyd + xdya
)
−
(
xgya + xfyg + xdyf + xayd

)∣∣ (47)

A(DFEC) = S4 =
1

2

∣∣(xdyf + xfye + xeyc + xcyd
)
−
(
xfyd + xeyf + xcye + xdyc

)∣∣ (48)

S3 =
1

2
| xa

xeya
mya + xa

+
xaxa

mya + xa

mxc
m2 + 1

+
xe

m2 + 1

mxcya
mxc + ya −mxa

+
xcya

mxc + ya −mxa
ya)−

xaxa
mya + xa

ya +
xe

m2 + 1

xeya
mya + xa

+
xcya

mxc + ya −mxa

mxc
m2 + 1

+ xamxcya(mxc + ya −mxa) | (49)

S4 =
1

2
| xcya
mxc + ya −mxa

mxc
m2 + 1

+ xcm
xcya

mxc + ya −mxa
)− xe

m2 + 1
m

xcya
mxc + ya −mxa

+ xe
mxc
(m

)| (50)

After obtaining these equations, we can define the function F2 (m,xe). Since it’s desired that all areas are equal, each region’s area should
be S

4 . We can define this function as shown below and solve the problem using the particle swarm optimization method to find values where
the function approaches 0+.

F2 (m,xe) =
∣∣∣S1 − s

4

∣∣∣+ ∣∣∣S2 − s

4

∣∣∣+ ∣∣∣S3 − s

4

∣∣∣+ ∣∣∣S4 − s

4

∣∣∣ (51)

F2 (m,xe) −→ 0 (52)

(Used code for the problem 2 can be found in subsection 4.3)
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3.3 Problem 3

For the ABC triangle with point B at the origin, which values of m, xh, and xi allow the division of the triangle into four equal-area parts
by two perpendicular lines: one with slope m and intersecting the x-axis at point xh, and the other intersecting the x-axis at point xi ? (The
case 0 < xh < xc will be examined.)

Fig. 3: Problem 3 Model

Similar to Problem 2, by considering that the slopes of the known perpendicular lines DH and GI must multiply to -1, we can deduce that
the slope of line GI is −1

m . The equation of line GI can be expressed as follows:

y − yi =
− (x− xi)

m
(53) for I(xi, 0) y =

xi − x

m
(54)

To find the coordinates of point D(xd, yd), we need to examine the intersection of lines AC and HD. Deriving from equation (4), we can
express it as follows:

yd − yc =
ya − yc
xa − xc

(xd − xc) (4) yd = m(xd − xh) (55)

xd =
mxh (xa − xc) + xayc − xcya

m (xa − xc)− ya + yc
(56) yd = m(

xayc − xcya + xhye − xbyc
m(xa − xc)− ya + yc

) (57)

To find the coordinates of point G(xg, yg), we should examine the intersection of lines BA and GI. By starting from equations (27) and
(54), we have the following expression:

yg − yb =
ya − yb
xa − xb

(xg − xb) (27) yg =
xi − xg

m
(54)

for B(0, 0) yg =
ya
xa

xg (58)

xi − xg
m

=
ya
xa

xg (59)

xg =
xixa

(mya + xe)
(60) yg =

xjya

(mya + xa)
(61)

To find the coordinates of point J
(
xj , yj

)
, we need to examine the intersection of lines BC and DH:

yj − yb =
yc − yb
xc − xb

(
xj − xb

)
(62) yj = m

(
xj − xk

)
(63)

for B(0, 0) yj =
yc
xc

xj (64)

m
(
xj − xh

)
=

yc
xc

xj (65)

mxcxj −mxcxh = ycxj (66)

xj =
mxhxc

mxc − yc
(67) yj =

mxhyc
mxc − yc

(68)

To find the coordinates of point E (xe, ye), we need to examine the intersection of lines BC and GI. By using equations (62) and (54), we
can express it as follows:
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ye − yb =
yc − yb
xc − xb

(xe − xb) (69) ye =
xi − xe

m
(70)

for B(0, 0) ye =
yc
xc

xe (71)

xi − xe
m

=
yc
xc

xe (72)

xe =
xixc

myc + xc
(73) ye =

xiyc
myc + xc

(74)

To calculate areas, we can find the coordinates of point F
(
xf , yf

)
as the intersection of lines DH and GI:

Line GI : yf =
xi − xf

m
(75) Line DH : yf = m

(
xf − xh

)
(76)

xi − xf
m

= m
(
xf − xh

)
(77)

xi − xf = m2xf −m2xh (78)

xf =
m2xh + xi
(m2 + 1)

(79) yf =
mxi −mxh
(m2 + 1)

(80)

We can calculate the area of triangle ABC using equation (1) as shown below.

A(ABC) = S =
1

2
|(xayb + xbyc + xcya)− (xbya + xcyb + xayc)| (1)

S =
1

2
| xcya − xayc | (81)

The area of triangle JEF with coordinates J
(
xj , xj

)
,F
(
xf , yf

)
, and E (xe, ye) can be calculated as shown below.

A(JEF) = S2 =
1

2

∣∣(xjye + xeyf + xfyj
)
−
(
xeyj + xfye + xjyf

)∣∣ (82)

S2 =
1

2
|
(

mxhxc
mxc − yc

xiyc
myc + xc

+
xixc

myc + xc

mxi −mxh
(m2 + 1)

+
m2xh + xi
(m2 + 1)

mxhyc
mxc − yc

)
−(

xixc
myc + xc

mxkyc
mxc − yc

+
m2xh + xc
(m2 + 1)

x1yc
myc + xc

+
mxbxc

mxc − yc

mx1 −mxh
(m2 + 1)

)
| (83)

The areas of quadrilaterals AGFD, DFEC, and GBJF with coordinates A(xa, ya) ,B(0, 0),C(xc, yc) ,D(xd, yd) ,E (xe, ye) ,
F
(
xf , yf

)
, and G(xg, yg) , J

(
xj , yj

)
can be calculated using equation (2) as shown below:

A(GBJF ) = S1 =
1

2

∣∣(xgyb + xbyj + xjyf + xfyg
)
−
(
xbyg + xjyb + xfyj + xgyf

)∣∣ (84)

S1 =
1

2

∣∣∣∣∣
(

mxhxc
mxc − yc

mxi −mxh
(m2 + 1)

+
m2xh + xi
(m2 + 1)

xjya

(mya + xa)

)
−

(
m2xb + xj
(m2 + 1)

mxhyc
mxc − yc

+
xxa

(mya + xa)

mxi −mxk
(m2 + 1)

)∣∣∣∣∣ (85)

A(DFEC) = S3 =
1

2

∣∣(xdyf + xfye + xeyc + xcyd
)
−
(
xfyd + xeyf + xcye + xdyc

)∣∣ (86)

S3 =
1

2
|

(
mxh (xe − xc) + xeyc − xcye

m (xa − xc)− ya + yc)

mxi −mxk
(m2 + 1)

+
m2xh + xj
(m2 + 1)

xiyc
myc + xc

+
xjxc

myc + xc
yc + xcm

(
xayc − xcya + xhya − xkyc

m (xa − xc)− ya + yc)

))
−

(
m2xk + xi
(m2 + 1)

m

(
xayc − xcya + xhye − xbyc

m (xa − xc)− ye + yc)

)
+

xixc
myc + xc

mxi −mxh
(m2 + 1)

+ xc
xdyc

myc + xc
+

mxh (xe − xc) + xeyc − xcye
m (xa − xc)− ya + yc)

yc

)
| (87)

A(AGFD) = S4 =
1

2

∣∣(xayg + xgyf + xfya + xdya
)
−
(
xgya + xfyg + xdyf + xayd

)∣∣ (88)

S4 =
1

2
|
(
xa

xaya
(mya + xa)

+
xixa

(mya + xa)

mxi −mxh
(m2 + 1)

+
m2xh + xi
(m2 + 1)

m

(
xayc − xcya + xhya − xbyc

m (xa − xc)− ya + yc)

)
+

mxh (xa − xc) + xayc − xcya
m (xa − xc)− ya + yc)

)
−(

xixa
(mya + xa)

ya +
m2xb + xi
(m2 + 1)

xjya

(mya + xa)
+

mxk (xa − xc) + xayc − xcya
m (xa − xc)− ya + yc

mxh
(m2 + 1)

+ xam

(
xayc − xcya + xbya − xhyc

m (xa − xc)− ya + yc

))
| (89)

After obtaining these equations, we can define the function F3 (m,xi, xh). Since it’s desired that all areas are equal, each region’s area
should be S

4 . We can define this function as shown below and solve the problem using the particle swarm optimization method to find values
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where the function approaches 0.

F3 (m,xi, xh) =
∣∣∣S1 − s

4

∣∣∣+ ∣∣∣S2 − s

4

∣∣∣+ ∣∣∣S3 − s

4

∣∣∣+ ∣∣∣S4 − s

4

∣∣∣ (90)
F3 (m,xi, xh) −→ 0 (91)

(Used code for the problem 3 can be found in subsection 4.4)

3.4 Problem 4

For the trapezoid ABCD with point B at the origin and side |BC| lying on the x-axis, which values of xh, xf , and m allow the division of
the trapezoid into four equal parts by a line with slope m intersecting the x-axis at point xe and a line perpendicular to it intersecting the y-axis
at point yf ?

Fig. 4: Problem 4 Model

Similar to Problem 2, by considering that the slopes of the known perpendicular lines EJ and FI must multiply to -1, we can deduce that
the slope of line FI is −1

m . The equation of line FI can be expressed as follows:

y − yf =
−
(
x− xf

)
m

(92)

for F
(
0, yf

)
y =

−x

m
+ yf (93)

We can calculate the equations of the lines AD, BA, and DC as follows in the figure:

line BA y − yb =
ya − yb
xa − xb

(x− xb) for B(0, 0)y =
ya
xa

x (94)

line DC y − yc =
yd − yc
xd − xc

(x− xc) , for C (xc, 0) y =
yd

xd − xc
(x− xc) (95) line AD y − ya =

ya − yd
xa − xd

(x− xa) (96)

The coordinates of point H(xh, yh) can be found as the intersection of lines EJ and FI .

line FI yh =
−xh
m

+ yf (97) line EJ yh = m (xh − xe) (98)

−xh
m

+ yf = m (xh − xe) (99)

−xh +myf = m2xh −m2xe (100)

m2xe +myf = m2xh + xh (101)

xh =
m2xe +myf
(m2 + 1)

(102) yh =
m2yf −mxe

(m2 + 1)
(103)

© CPOST 2023 27



To find the coordinates of point J (xd, yd), we need to examine the intersection of lines AD and EJ . By deriving from equation (96), we
can express it as follows:

yj − ya =
ya − yd
xa − xd

(
xj − xa

)
(104) yj = m(xj − xe) (105)

ya − yd
xa − xd

(
xj − xa

)
+ ya = m

(
xj − xe

)
(106)

xj =
yaxd − xaxd−mxe (xa − xd)

ya − yd −mxa +mxd
(107) yj = m

(
yexdd − xaxd − xeya + xeyd

ya − yd −mxa +mxd

)
(108)

To find the coordinates of point G(xg, yg), we need to examine the intersection of lines BA and FI . By deriving from equation (94), we
can express it as follows:

yg =
ya
xa

xg (109) yg =
−xg
m

+ yf (110)

ya
xa

xg =
−xg
m

+ yf (111)

myaxg + xaxg = mxayf (112)

xg =
mxayf

mya + xa
(113) yg =

myayf
mya + xa

(114)

To find the coordinates of point I (xi, yi), we need to examine the intersection of lines DC and FI . By deriving from equation (95), we can
express it as follows:

yi =
yd

xd − xc
(xi − xc) (115) yi =

−xi
m

+ yf (116)

−xi
m

+ yf =
yd

xd − xc
(xi − xc) (117)

(xd − xc)
(
myf − xi

)
= myd (xi − xc) (118)

xi (xc − xd) + xdmyf −mxcyf = mydxi −mydxc (119)

xi =
mxcyf − xdmyf −mydx

(xc − xd −myd)
(120) yi =

ydxc −mydyf
(xc − xd −myd)

(121)

The area of the trapezoid ABCD can be calculated using equation (2) as shown below.

A(ABCD) =S =
1

2
|(xayb + xbyc + xcyd + xdya)− (xbya + xcyb + xdyc + xayd)| (2)

S =
1

2
|(xcyd + xdya)− (xayd)| (122)

The areas of the quadrilaterals GBEH , HECI , JHID, and AGHJ with coordinates A(xa, ya) ,B(0, 0),C(xc, 0) ,D(xd, yd) ,E (xe, 0) ,
F
(
0, yf

)
,G(xg, yg) ,H(xh, yh) , I (xi, yi) , and J

(
xj , yj

)
can be calculated using equation (2) as shown below:

A(GBEH) = S1 =
1

2
|(xgyb + xbye + xeyh + xhyg)− (xbyg + xeyb + xhye + xgyh)| (123)

S1 =
1

2

∣∣∣∣∣
(
xe

m2yf −mxe

(m2 + 1)
+

m2xe +myf
(m2 + 1)

myayf
mya + xa

)
−

(
mxayf

mya + xa

m2yf −mxe

(m2 + 1)

)∣∣∣∣∣ (124)

A(HECI) = S2 =
1

2
|(xhye + xeyc + xcyi + xiyh)− (xeyh + xcye + xiyc + xhyi)| (125)

S2 =
1

2

∣∣∣∣∣
(
xc

ydxc −mydyf
(xc − xd −myd)

+
mxcyf − xdmyf −mydxc

(xc − xd −myd)

m2yf −mxe

(m2 + 1)

)
−

(
xe

m2yf −mxe

(m2 + 1)
+

m2xe +myf
(m2 + 1)

ydxc −mydyf
(xc − xd −myd)

)∣∣∣∣∣ (126)
A(JHID) = S3 =

1

2

∣∣(xjyh + xhyi + xiyd + xdyj
)
−
(
xhyj + xiyh + xdyi + xjyd

)∣∣ (127)

S3 =
1

2
|

(
yaxd − xaxd− −mxe (xa − xd)

ya − yd −mxa +mxd

m2yf −mxe

(m2 + 1)
+

m2xe +myf
(m2 + 1)

ydxc −mydyf
(xc − xd −myd)

+
mxcyf − xdmyf −mydxc

(xc − xd −myd)
yd+

xdm

(
yaxd − xaxd − xeya + xeyd

ya − yd −mxa +mxd

))
−

(
m2xe +myf
(m2 + 1)

m

(
yaxd − xaxd − xeya + xeyd

ya − yd −mxa +mxd

)
+

mxcyf − xdmyf −mydxc(
xc − xd −myf

) mxe
(m2 + 1)

+

xd
ydxc −mydyf

(xc − xd −myd)
+

yaxd − xaxd −mxe (xa − xd)

ya − yd −mxa +mxd
yd

)
| (128)
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A(AGHJ) = S4 =
1

2

∣∣(xayg + xgyh + xhyj + xjya
)
−
(
xgya + xhyg + xjyh + xayj

)∣∣ (129)

S4 =
1

2
| xa

myayf
mya + xa

+
mxayf

mya + xa

m2yf −mxe

m2 + 1
+

m2xe +myf
m2 + 1

m

(
yaxd − xaxd − xeya + xeyd

ya − yd −mxa +mxd

)
+

yaxd − xaxd−mxe(xa − xd)

ya − yd −mxa +mxd
ya −

mxayf
mya + xa

ya −
m2xe +myf

m2 + 1

myayf
mya + xa

− yaxd − xaxd −mxe (xa − xd)

ya − yd −mxa +mxd

mf −mxe

m2 + 1
−

xam

(
yaxd − xaxd − xeya + xeyd

ya − yd −mxa +mxd

)
| (130)

After obtaining these equations, we can define the function F4
(
m,xe, yf

)
. Since it’s desired that all areas are equal, each region’s area

should be S
4 . We can define this function as shown below and solve the problem using the particle swarm optimization method to find values

where the function equals 0.

F4
(
m,xe, yf

)
=

∣∣∣∣S1 − S

4

∣∣∣∣+ ∣∣∣∣S2 − S

4

∣∣∣∣+ ∣∣∣S3 − s

4

∣∣∣+ ∣∣∣S4 − s

4

∣∣∣ (131)

F4
(
m,xe, yf

)
−→ 0 (132)

(Used code for the problem 4 can be found in subsection 4.5)

If we examine the case where ABCD is a right trapezoid and calculate the values of points H, J, I, and G when we have
A(0, 2),B(0, 0),C(6, 0),D(4, 2).

Fig. 5: ABCD right trapezoid

xg =
mxayf

mya + xa
= 0 xj =

yaxd − xaxd−mxe(xa − xd

)
ya − yd −mxa +mxd

=
2 +mxe

m
xi =

2myf − 12m

(2− 2m)
xh =

m2xe +myf
(m2 + 1)

yg =
myayf

mya + xa
= yf yj = m

(
yaxd − xaxd − xeya + xeyd

ya − yd −mxa +mxd

)
= 2m yi =

12− 2myf
(2− 2m)

yh =
m2yf −mxe

(m2 + 1)

The total area of the trapezoid ABCD can be calculated as shown below.

A(ABCD) = S =
1

2
|+xcyd + xdya| =

1

2
|12 + 8| = 10

The areas of the four regions can be calculated as shown below.

A(GBEH) = S1 =
1

2

∣∣∣∣∣
(
xe

m2yf −mxe

(m2 + 1)
+

m2xe +myf
(m2 + 1)

yf

)∣∣∣∣∣
A(HECI) = S2 =

1

2

∣∣∣∣∣
(
6
12− 2myf
(2− 2m)

+
2myf − 12m

(2− 2m)

m2yf −mxe

(m2 + 1)

)
−

(
xe

m2yf −mxe

(m2 + 1)
+

m2xe +myf
(m2 + 1)

12− 2myf
(2− 2m)

)∣∣∣∣∣
A(JHID) = S3 =

1

2
|

(
2 +mxe

m

m2yf −mxe

(m2 + 1)
+

m2xe +myf
(m2 + 1)

12− 2myf
(2− 2m)

+ 2
2myf − 12m

(2− 2m)
+ 8m

)

−

(
m2xe +myf
(m2 + 1)

2m+
2myf − 12m

(2− 2m)

m2yf −mxe

(m2 + 1)
+ 4

12− 2myf
(2− 2m)

+ 2
2 +mxe

m

)
|

A(AGHJ) = S4 =
1

2

∣∣∣∣∣
(
m2xe +myf
(m2 + 1)

2m+ 2
2 +mxe

m

)
−

(
m2xe +myf
(m2 + 1)

yf +
2 +mxe

m

m2yf −mxe

(m2 + 1)

)∣∣∣∣∣
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3.5 Problem 5

For the pentagon ABCDJ with point B at the origin, side |AB| lying on the y-axis, and side |BC| lying on the x-axis, which values of xe,
xf , and m allow the division of the pentagon into four equal parts by a line with slope m intersecting the |JD| side and the x-axis at point xe,
and a line perpendicular to it intersecting the |AJ | side and the x-axis at point xf ?

Fig. 6: Problem 5 Model

The slope of the line FG can be determined as −1
m by considering that it intersects perpendicular to known lines EI and FG in a manner

similar to Problem 2, where the product of their slopes should be -1. The equation of the line FG can be expressed as follows:

y − yf =
−
(
x− xf

)
m

(133)

As F
(
xf , 0

)
y =

xf − x

m
(134)

We can calculate the equations of the lines AJ , JD, and DC as below:

line DC y − yc =
yd − yc
xd − xc

(x− xc) for C (xc, 0) y =
yd

xd − xc
(x− xc) (135)

line AJ y − ya =
yj − ya

xj − xa
(x− xa) for A (0, ya) y =

yj − ya

xi
x+ ya (136)

line JD y − yj =
yj − yd
xi − xd

(
x− xj

)
(137)

We can find the coordinates of point H(xh, yh) as the intersection of the lines EI and FG.

line FG : yh =
xf − xh

m
(138) line EI : yh = m (xh − xe) (139)

−xh
m

+ yf = m (xh − xe) (140)

−xh + xf = m2xh −m2xe (141)

m12xe + xf = m2xh + xh (142)

xh =
m2xe + xf
(m2 + 1)

(143) yh =
m
(
xf − xe

)
(m2 + 1)

(144)

To find the coordinates of point G(xg, yg), we should examine the intersection of the lines AJ and FG. By using equation (135) as a
starting point, we can express it as shown below:

yg =
yj − ya

xj
xg + ya (145) yg =

xf − xg

m
(146)

yj − ya

xj
xg + ya =

xf − xg

m
(147)

mxg
(
yj − ya

)
+myaxj = xfxj − xgxj (148)

xg
(
myj −mya + xj

)
= xj

(
xf −mya

)
(149)

xg =
xj
(
xf −mya

)(
myj −mya + xj

) (150) yg =
xfyj − xfya − xjya(
myj −mya + xj

) (151)
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To find the coordinates of point I (xi, yi), we need to consider the intersection of the lines DC and EI . By using equation (136) as a starting
point, we can express it as shown below:

yi − yj =
yj − yd
xj − xd

(
xi − xj

)
(152) yi = m (xi − xe) (153)

yj − yd
xj − xd

(
xi − xj

)
+ yj = m (xi − xe) (154)

xi
(
yj − yd −mxj +mxd

)
= mxexd −mxexj + yjxd − ydxj (155)

xi =
mxexd −mxexj + yjxd − ydxj(

yj − yd −mxj +mxd
) (156) yi = m

(
xeyd − xeyj + yjxd − ydxj(

yj − yd −mxj +mxd
) )

(157)

The area of the pentagon ABCDJ can be calculated using equations (1) and (2), expressing it as the sum of the areas of triangle JAD and
quadrilateral ABCD, as shown below:

A(ABCD) = Sa =
1

2
|(xayb + xbyc + xcyd + xdya)− (xbya + xcyb + xdyc + xayd)| (158)

Sa =
1

2
|(xcyd + xdya)| (159)

A(JAD) = Sb =
1

2

∣∣(xjya + xaya + xdyj
)
−
(
xayj + xdya + xjyd

)∣∣ (160)

Sb =
1

2

∣∣(xjya + xdyj
)
−
(
xdya + xjyd

)∣∣ (161)

A(ABCDJ) = S = Sa + Sb =
1

2
|(xcyd + xdya)|+

1

2

∣∣(xjya + xdyj
)
−
(
xdya + xjyd

)∣∣ (162)

The area of the pentagon GABEH can be calculated using equations (1) and (2), expressing it as the sum of the areas of triangle GAH and
quadrilateral ABEH , as shown below:

A(ABEH) = S1a =
1

2
|(xayb + xbye + xeyh + xhya)− (xbya + xeyb + xhye + xayh)| (163)

S1a =
1

2

∣∣∣∣∣
(
xe

m
(
xf − xe

)
(m2 + 1)

+
m2xe + xf
(m2 + 1)

ya

)∣∣∣∣∣ (164)

A(GAH) = S1b =
1

2
|(xgya + xayh + xhyg)− (xayg + xhya + xgyh)| (165)

S1b =
1

2
|

(
xj
(
xf −mya

)(
myj −mya + xj

)ya +
m2xe + xf
(m2 + 1)

xfyj − xfya − xjya(
myj −mya + xj

) )−

(
m2xe + xf
(m2 + 1)

ya+
xj
(
xf −mya

)(
myj −mya + xj

)m (xf − xe
)

(m2 + 1)

)
(166)

A( GABEH ) = S1 = S1a + S1b =
1

2

∣∣∣∣∣
(
xe

m
(
xf − xe

)
(m2 + 1)

+
m2xe + xf
(m2 + 1)

ya

)∣∣∣∣∣+ 1

2
|

(
xj
(
xf −mya

)(
myj −mya + xj

)ya+
m2xe + xf
(m2 + 1)

xfyj − xfya − xjya(
myj −mya + xj

) )−

(
m2xe + xf
(m2 + 1)

ya +
xj
(
xf −mya

)(
myj −mya + xj

)m (xf − xe
)

(m2 + 1)

)
| (167)

The area of triangle HEF can be calculated as shown below:

A(HEF) =S2 =
1

2

∣∣(xhye + xeyf + xfyh
)
−
(
xeyh + xfye + xhyf

)∣∣ (168)

S2 =
1

2

∣∣(xfyh)− (xeyh)
∣∣ = 1

2

∣∣∣∣∣m
(
xf − xe

)
(m2 + 1)

(
xf − xe

)∣∣∣∣∣ (169)

The area of the pentagon IHFCD can be calculated using equations (1) and (2), expressing it as the sum of the areas of triangle IHD and
quadrilateral HFCD, as shown below:

A(HFCD) = S3a =
1

2

∣∣(xhyf + xfyc + xcyd + xdyh
)
−
(
xfyh + xcyf + xdyc + xhyd

)∣∣ (170)

S3a =
1

2

∣∣∣∣∣
(
xcyd + xd

m
(
xf − xe

)
(m2 + 1)

)
−

(
xf

m
(
xf − xe

)
(m2 + 1)

+
m2xe + xf
(m2 + 1)

yd

)∣∣∣∣∣ (171)
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A(IHD) = S3b =
1

2
|(xiyh + xhyd + xdyi)− (xhyi + xdyh + xiyd)| (172)

S3b =
1

2
|

(
mxexd −mxexj + yjxd − ydxj(

yj − yd −mxj +mxd
) m

(
xf − xe

)
(m2 + 1)

+
m2xe + xf
(m2 + 1)

yd + xdm

(
xeyd − xeyj + yjxd − ydxj(

yj − yd −mxj +mxd
) ))

−(
m2xe + xf
(m2 + 1)

m

(
xeyd − xeyj + yjxd − ydxj(

yj − yd −mxj +mxd
) )

+ xd
m
(
xf − xe

)
(m2 + 1)

+
mxexd −mxexj + yjxd − ydxj(

yj − yd −mxj +mxd
) yd

)
| (173)

A(IHFCD) = S3 = S3a + S3b =
1

2

∣∣∣∣∣
(
xcyd + xd

m
(
xf − xe

)
(m2 + 1)

)
−

(
xf

m
(
xf − xe

)
(m2 + 1)

+
m2xe + xf
(m2 + 1)

yd

)∣∣∣∣∣+
1

2
|

(
mxexd −mxexj + yjxd − ydxj(

yj − yd −mxj +mxd
) m

(
xf − xe

)
(m2 + 1)

+
m2xe + xf
(m2 + 1)

yd + xdm

(
meyd − xeyj + yjxd − ydxj(

yj − yd −mxj +mxd
) ))

−(
m2xe + xf
(m2 + 1)

m

(
xeyd − xeyj + yjxd − ydxj(

yj − yd −mxj +mxd
) )

+ xd
m
(
xf − xe

)
(m2 + 1)

+
mxexd −mxexj + yjxd − ydxj(

yj − yd −mxj +mxd
) yd

)
| (174)

The area of the quadrilateral JGHI can be calculated using equation (2), as shown below:

A(JGH) = S4 =
1

2

∣∣(xjyg + xgyh + xhyi + xiyj
)
−
(
xgyj + xhyg + xiyh + xjyi

)∣∣ (175)

S4 =
1

2
|

(
xj

xfyj − xfya − xjya(
myj −mya + xj

) +
xj
(
xf −mya

)(
myj −mya + xj

)m (xf − xe
)

(m2 + 1)
+

m2xe + xf
(m2 + 1)

m

(
xeyd − xeyj + yjxd − ydxj(

yj − yd −mxj +mxd
) )

+

mxexd −mxexj + yjxd − ydxj(
yj − yd −mLxj +mxd

) yj

)
−

(
xj
(
xf −mya

)(
myj −mya + xj

)yj + m2xe + xf
(m2 + 1)

xfyj − xfya − xjya(
myj −mya + xj

) +

mxexdd −mxexj + yjxdd − ydxj(
yj − yd −mxj +mxd

) m
(
xf − xe

)
(m2 + 1)

+ xjm

(
xeyd − xeyj + yjxd − ydxj(

yj − yd −mxj +mxd
) ))

| (176)

After obtaining these equations, we can define the function FS

(
m,xe, xf

)
. Since it is desired that all areas are equal, each region’s area

should be S
4 . We can define this function as follows and then solve the problem using the particle swarm optimization method to find the values

where the function equals 0:

F5
(
m,xe, xf

)
=
∣∣∣S1 − s

4

∣∣∣+ ∣∣∣S2 − s

4

∣∣∣+ ∣∣∣S3 − s

4

∣∣∣+ ∣∣∣S4 − s

4

∣∣∣ (177)

F5
(
m,xe, xf

)
−→ 0 (178)

(Used code for the problem 5 can be found in subsection 4.6)

3.6 Problem 6

Which values of m, xf , and xg allow the division of the area between the y-axis and the parabolic curve y = a2 − x2 into four parts
proportional to the numbers 1, 2, 3, and 12 by two perpendicular lines: one with positive slope m intersecting the x-axis at point xf , and the
other intersecting the x-axis at point xg?

Fig. 7: Problem 6 Model
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By considering that the slopes of the intersecting lines DF and GE should have a product of -1, we can deduce that the slope of the line
GE is −1

m . The equation of the line GE can be represented as follows:

y − yg =
− (x− xg)

m
(179)

As G(xg, 0) y =
xg − x

m
(180)

To find the coordinates of point D(xd, yd), we need to look at the intersection of the parabola y = a2 − x2 and the line DF .

yd = m
(
xd − xf

)
(181) yd = a2 − x2d (182)

mxd −mxf = a2 − x2d (183) x2d +mxd −mxf − a2 = 0 (184)

xd =
−m±

√(
m2 + 4

(
xf + a2

)
2

(185)

Taking into account that the value of m is positive and considering that the point D is in the first quadrant, we can express xd as follows:

xd =
−m+

√(
m2 + 4

(
mxf + a2

)
2

(186)

yd = m

−m+
√(

m2 + 4
(
mxf + a2

)
2

− xf

 (187)

The point E (xe, ye) can be calculated as the intersection of the ordinate and the line GE, as shown below:

ye =
− (xe − xg)

m
(188) E (0, ye) ye =

xg
m

(189)

We can find the coordinates of point H(xh, yh) as the intersection of the DF and GE lines.

line GE : yh =
xg − xh

m
(190) line DH yh = m

(
xh − xf

)
(191)

xg − xh
m

= m
(
xh − xf

)
(192)

xg − xh = m2xh −m2xf (193)

xh =
m2xf + xg

(m2 + 1)
(194) yh =

m
(
xg − xf

)
(m2 + 1)

(195)

We can calculate the total area surrounded by the parabola (S) as shown below:

S =

∫xc

xb

(
a2 − x2

)
dx (196)

S =

∫a
0

(
a2 − x2

)
dx (197)

S =

(
a2x− x3

3

)∣∣∣∣a
0

=
2a3

3
(198)

We can calculate the areas S1 and S2 as shown below:

A(EBFH) = S1 =
1

2

∣∣(xeyb + xbye + xfyh + xhye
)
−
(
xbye + xfyb + xhyf + xeyh

)∣∣ (199)

S1 =
1

2

∣∣∣∣∣
(
xf

m
(
xg − xf

)
(m2 + 1)

+
m2xf + xg

(m2 + 1)

xg
m

)∣∣∣∣∣ (200)

A(HFG) = S2 =
1

2

∣∣(xhyf + xfyg + xgyh
)
−
(
xfyh + xgyf + xhyg

)∣∣ (201)

S2 =
1

2

∣∣∣∣∣
(
xg

m
(
xg − xf

)
(m2 + 1)

)
−

(
xf

m
(
xg − xf

)
(m2 + 1)

)∣∣∣∣∣ = 1

2

∣∣∣∣∣m
(
xg − xf

)2
(m2 + 1)

∣∣∣∣∣ (202)

To calculate the area S3, we can compute it in two parts: by calculating the area of the quadrilateral DHGC formed by connecting points
D and C (S3a), and through an integral calculation (S3b), as shown below:

© CPOST 2023 33



Fig. 8: S3a and S3b

S3 = S3a + S3b (203)

S3a = A(DHGC) =
1

2
| (xdyh + xhyg + xgyc + xcyd)− (xhyd + xgyh + xcyg + xdyc) | (204)

S3a =
1

2
|

−m+
√(

m2 + 4
(
mxf + a2

)
2

m
(
xg − xf

)
(m2 + 1)

+ma

−m+
√(

m2 + 4
(
mxf + a2

)
2

− xf

−

m2xf + xg

(m2 + 1)
m

−m+
√(

m2 + 4
(
mxf + a2

)
2

− xf

+ xg
m
(
xg − xf

)
(m2 + 1)

 | (205)

S3b =

∫xc

xd

(
a2 − x2

)
dx− (xc − xd) yd

2
=

(
a2x− x3

3

)∣∣∣∣a
xd

− (a− xd) yd
2

(206)

S3b =
2a3

3
− a2

−m+
√(

m2 + 4
(
mxf + a2

)
2

+

(
−m+

√
(m2+4(mxf+a2)

2

)3

3
−ma

−m+
√(

m2 + 4
(
mxf + a2

)
2

− xf

+

m

(
−m+

√
(m2+4(mxf+a2)

2 − xf

)(
−m+

√
(m2+4(mxf+a2)

2

)
2

(207)

To calculate the area S4, we can compute it in two parts: by calculating the area of the quadrilateral AEHD formed by connecting points
A and D (S4a), and through an integral calculation (S4b), as shown below:

S4 = S4a + S4b (208)

Fig. 9: S4a and S4b
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S4a =A(AEHD) =
1

2
|(xaye + xeyh + xhyd + xdya)− (xeya + xhye + xdyh + xayd)| (209)

S4a =
1

2
|

m2xf + xg

(m2 + 1)
m

−m+
√(

m2 + 4
(
mxf + a2

)
2

− xf

+
−m+

√(
m2 + 4

(
xf + a2

)
2

a2

−

(
m2xf + xg

(m2 + 1)

xg
m

+
−m+

√(
m2 + 4

(
xf + a2

)
2

m
(
xg − xf

)
(m2 + 1)

 | (210)

S4b =

∫xd

xa

(
a2 − x2

)
dx− (ya + yd)xd

2
=

(
a2x− x3

3

)∣∣∣∣xd

0

−

(
a2 + yd

)
xd

2
=

(
a2xd − xd

3

3

)
−

(
a2 + yd

)
xd

2
(211)

S4b =

a2
−m+

√(
m2 + 4

(
mxf + a2

)
2

−

(
−m+

√
(m2+4(mxf+a2)

2

)
3

−

(
a2 +m

(
−m+

√
(m2+4(mxf+a2)

2 − xf

))
−m+

√
(m2+4(mxf+a2)

2

2
(212)

After obtaining these equations, we can define the function F6
(
m,xf , xg

)
. In order for the areas to be proportional to 1, 2, 3, and 12, we

can define this function as shown below, and then solve the problem using the particle swarm optimization method to find the values where the
function equals 0:

F6
(
m,xf , xfg

)
=

∣∣∣∣S1 − S

18

∣∣∣∣+ ∣∣∣∣S2 − S

9

∣∣∣∣+ ∣∣∣∣S3 − S

6

∣∣∣∣+ ∣∣∣∣S4 − 2S

3

∣∣∣∣ (213)

F6
(
m,xf , xfg

)
−→ 0 (214)

(Used code for the problem 6 can be found in subsection 4.7)

3.7 Problem 7

What values of m, xf , and xg ensure the division of the area between the circular function y =
√
r2 − x2 and the x-axis into four equal parts

using two perpendicular lines that intersect each other; one line being negatively sloped with an intersection at the point xc on this function,
and the other intersecting the same function at point xd?

Fig. 10: Problem 7 Model

By considering that the slopes of the intersecting lines AD and BC should have a product of -1, we can deduce that the slope of the line
AD is −1

m . The equation for the line AD is as follows:

y − yd =
− (x− xd)

m
(215)

As D
(
xd,
√

r2 − x2d

)
y =

xd − x

m
+
√

r2 − x2d (216)
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To find the coordinates of point E (xe, ye), we need to look at the intersection of lines AD and BC.

ye =
xd − xe

m
+
√

r2 − x2d (217) ye = m (xe − xc) +
√

r2 − x2c (218)

xd − xe
m

+
√

r2 − x2d = m (xe − xc) +
√

r2 − x2c (219)

xe

(
m2 + 1

m

)
= mxc +

xd
m

+
√

r2 − x2d −
√

r2 − x2c (220)

xe =
m2xc + xd +m

√
r2 − x2d −

√
r2 − x2c

m2 + 1
(221) ye = m

xd − xc +m
√

r2 − x2d −
√

r2 − x2c

m2 + 1
+
√

r2 − x2c (222)

The point A(xa, 0) can be calculated as the intersection of the x-axis and the line AD, as shown below:

ya =
xd − xa

m
+
√

r2 − x2d (223) A (xa, 0) 0 =
xd − xa

m
+
√

r2 − x2d (224)

xa = m
√

r2 − x2d + xd (225)

The point B (xb, 0) can be calculated as the intersection of the x-axis and the line BC, as shown below:

yb = m (xb − xc) +
√

r2 − x2c (226) B (xb, 0) 0 = m (xb − xc) +
√

r2 − x2c (227)

xb =
−
√

r2 − x2c
m

+ xc (228)

The total area of the circular region (S) can be calculated as shown below:

S =
πr2

2
(229)

A(AEB) = S1 =
1

2
|xaye + xeyb + xbya − xeya + xbye + xayb| (230)

The area of triangle A(AEB) = S1 can be calculated using equation (1) as shown below:

S1 =
1

2
|(xaye)− (xbye)| (231)

To calculate the area S2, we can compute it in two parts: by calculating the area of the quadrilateral DEBG formed by connecting points
D and C (S2a), and through an integral calculation (S2b), as shown below:

S2 = S2a + S2b (232)

S2a = A(DEBG) =
1

2
| (xdye + xeyb + xbyg + xgyd)− (xeyd + xbye + xgyb + xdyg) | (233)

S2a =
1

2
|

xdm

xd − xc +m
(√

r2 − x2d −
√

r2 − x2c

)
m2 + 1

+
√

r2 − x2c + r
√

r2 − x2d

− (
m2xc + xd +m

(√
r2 − x2d −

√
r2 − x2c

)
m2 + 1

√
r2 − x2d +

(
−
√

r2 − x2c
m

+ xc

)
m

xd − xc +m
(√

r2 − x2d −
√

r2 − x2c

)
m2 + 1

+
√

r2 − x2c) | (234)

S2b = I − (xg − xd) yd
2

=

∫xg

xd

√
(r2 − x2)dx− (xg − xd) yd

2
(235)

By substituting x with x = r cos(t) in the integral equal to I , our expression becomes as shown below:

x = r cos t dx = −r sin t.dt (236)

I =

∫0
arccos( x

r )

√
r2 − r2 cos2 t(−r sin t)dt (237)

I = r2
∫arccos( x

r )

0

√
1− cos2 t sin tdt (238)

I = r2
∫arccos( xd

r )

0
sin2 tdt (232) sin2 t =

1− cos2 t

2
(239)

I = r2
∫arccos( xd

r )

0

1− cos2 t

2
dt = r2

(
t

2
− sin 2t

4

)∣∣∣∣arccos(
xd
r )

0

(240)
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S2 =
1

2
|

xdm

xd − xc +m
(√

r2 − x2d −
√

r2 − x2c

)
m2 + 1

+
√

r2 − x2c + r
√

r2 − x2d

− (
m2xc + xd +m

(√
r2 − x2d −

√
r2 − x2c

)
m2 + 1

√
r2 − x2d +

(
−
√

r2 − x2c
m

+ xc

)
m

xd − xc +m
(√

r2 − x2d −
√

r2 − x2c

)
m2 + 1

+
√

r2 − x2c) | +r2
(
arccos

(xd
r

)
2

−
sin 2 arccos

(xd
r

)
4

)

− (xg − xd) yd
2

(241)

To calculate the area S3, we can divide it into two parts: calculating the area of the triangle DEC formed by connecting points D and C
(S3a), and through an integral calculation (S3b), as shown below:

S3 = S3a + S3b (242)

S3a = A(DEC) =
1

2
| (xdye + xeyc + xcyd)− (xeyd + xcye + xdyc) | (243)

S3a = A(DEC) =
1

2
| xdm

xd − xc +m
(√

r2 − x2d −
√

r2 − x2c

)
m2 + 1

+
√

r2 − x2c +
m2xc + xd +m

(√
r2 − x2d −

√
r2 − x2c

)
m2 + 1

√
r2 − x2c + xc

√
r2 − x2d −

m2xc + xd +m
(√

r2 − x2d −
√

r2 − x2c

)
m2 + 1

√
r2 − x2d − xcm

xd − xc +m
(√

r2 − x2d −
√

r2 − x2c

)
m2 + 1


−
√

r2 − x2c − xd
√

r2 − x2c | (244)

By examining the steps in equation (236) and simplifying the integral, we obtain the expression below. This time, by subtracting the area of
the trapezoid below the CD line segment from the integral over the interval, we define the region:

S3b = I ′ − (yc + yd) (xb − xa)

2
=

∫xd

xc

√
(r2 − x2)dx− (yc + yd) (xb − xa)

2
(245)

S3b = r2
(
t

2
− sin 2t

4

)∣∣∣∣arccos(
xd
r )

arccos( xc
r )

− (yc + yd) (xb − xa)

2
(246)

S3 =
1

2
| xdm

xd − xc +m
(√

r2 − x2d −
√

r2 − x2c

)
m2 + 1

+
√

r2 − x2c +
m2xc + xd +m

(√
r2 − x2d −

√
r2 − x2c

)
m2 + 1

√
r2 − x2c+

xc

√
r2 − x2d −

m2xc + xd +m
(√

r2 − x2d −
√

r2 − x2c

)
m2 + 1

√
r2 − x2d − xcm

xd − xc +m
(√

r2 − x2d −
√

r2 − x2c

)
m2 + 1

−
√

r2 − x2c

−xd
√

r2 − x2c | +r2
(
arccos

(xd
r

)
− arccos

(xc
r

)
2

−
sin 2 arccos

(xd
r

)
− arccos

(xc
r

)
4

)
−

(√
r2 − x2c +

√
r2 − x2d

)
(xb − xa)

2
(247)

To calculate the area S4, we can compute it in two parts: by calculating the area of the quadrilateral CFAE formed by connecting points F
and C (S4a), and through an integral calculation (S4b), as shown below:

S4 = S4a + S4b (248)

S4a = A(CFAE) =
1

2
|
(
xcyf + xfya + xaye + xeyc

)
−
(
xfyc + xayf + xeya + xcye

)
| (249)

S4a =
1

2
| m
√

r2 − x2d + xdm

xd − xc +m
(√

r2 − x2d −
√

r2 − x2c

)
m2 + 1

+
√

r2 − x2c +
m2xc + xd +m

(√
r2 − x2d −

√
r2 − x2c

)
m2 + 1

√
r2 − x2c −

r
√

r2 − x2c + xcm

xd − xc +m
(√

r2 − x2d −
√

r2 − x2c

)
m2 + 1

+
√

r2 − x2c

 | (250)
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S4b =I ′′ − yc (xc −−r)

2
=

∫xc

xf

√
(r2 − x2)dx−

√
r2 − x2c (xc + r)

2
(251)

S4b = r2
(
t

2
− sin 2t

4

)∣∣∣∣arccos
(

xc)
r

)
π

−
√

r2 − x2c (xc + r)

2
(252)

S4 =
1

2
| m
√

r2 − x2d + xdm(
xd − xc +m

√
r2 − x2d −

√
r2 − x2c)

m2 + 1
) +

√
r2 − x2c +

m2xc + xd +m(
√

r2 − x2d −
√

r2 − x2c)

m2 + 1

√
r2 − x2c )− (r

√
r2 − x2c + xcm

xd − xc +m(
√

r2 − x2d −
√

r2 − x2c)

m2 + 1
) +

√
r2 − x2c) |

+ r2(
arccos(xc

r )− π

2
−

sin 2 arccos(xc
r )

4
)−

√
r2 − x2c(xc + r)

2
(253)

After deriving these equations, we can define the function F7 (m,xc, xd). In order for the areas to be equal, we can define this function as
shown below, and then solve the problem using the particle swarm optimization method to find the values where the function equals 0:

F7 (m,xc, xd) =

∣∣∣∣S1 − S

4

∣∣∣∣+ ∣∣∣∣S2 − S

4

∣∣∣∣+ ∣∣∣∣S3 − S

4

∣∣∣∣+ ∣∣∣∣S4 − S

4

∣∣∣∣ (254)

F7 (m,xc, xd) −→ 0 (255)

(Used code for the problem 7 can be found in subsection 4.8)

4 Solution Codes

4.1 Code for PSO

import random
import time
import matplotlib.pyplot as plt
# ------------------------------------------------------------------------------
a: float = 6
b: float = 7
c: float = 10
def problem2(X):

global a, b, c
u = X[0]
m = X[1]
xd = (c * b) / (m * c + b - m * a)
yd = m * xd
xg = u * a / (m * b + a)
yg = u * b / (m * b + a)
xf = u / (m**2 + 1)

yf = m * xf
s = abs(c * b) / 2
s1 = abs(xf * yg - xg * yf) / 2
s2 = abs(u * yf) / 2
s3 = abs((a * yg + xg * yf + xf * yd + xd * b) - (xg * b + xf * yg + xd * yf + a * yd)) / 2
s4 = abs((xd * yf + c * yd) - (xf * yd + u * yf)) / 2
q = s / 4
return abs(s1 - q) + abs(s2 - q) + abs(s3 - q) + abs(s4 - q)

bounds = [(-20,20), (-20,20)] # upper and lower bounds of variables
nv = 2 # number of variables
mm = -1 # if minimization problem, mm = -1; if maximization problem, mm = 1

# PARAMETERS OF PSO
particle_size = 120 # number of particles
iterations = 200 # max number of iterations
w = 0.8 # inertia constant
c1 = 1 # cognative constant
c2 = 2 # social constant

# Visualization
fig = plt.figure()
ax = fig.add_subplot()
fig.show()
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plt.title(’Fonksiyonumuzun değerinin iterasyonla \verbdeğişimi’)|
plt.xlabel("İterasyon")
plt.ylabel("Fonksiyonumuz")
# ---------------------------------------------------------
class Particle:

def __init__(self, bounds):
self.particle_position = [] # particle position
self.particle_velocity = [] # particle velocity
self.local_best_particle_position = [] # best position of the particle
self.fitness_local_best_particle_position = inital_fitness
self.fitness_particle_position = inital_fitness
for i in range(nv):
self.particle_position.append(random.uniform(bounds[1][0], bounds[i][1]))

self.particle_velocity.append(random.uniform(-1,1))
def evaluate(self, objective_function):
self.fitness_particle_position = objective_function(self.particle_position)
if mm == -1:
if self.fitness_particle_position < self.fitness_local_best_particle_position:
self.local_best_particle_position = self.particle_position # update the local best
self.fitness_local_best_particle_position = self.fitness_particle_position
# update the fitness of the local best

if mm == 1:
if self.fitness_particle_position > self.fitness_local_best_particle_position:
self.local_best_particle_position = self.particle_position # update the local best
self.fitness_local_best_particle_position = self.fitness_particle_position
# update the fitness of the local best

def update_velocity(self, global_best_particle_position):
for i in range(nv):
r1 = random.random()
r2 = random.random()
cognitive_velocity = c1 * r1 * (self.local_best_particle_position[i] - self.particle_position[i])
social_velocity = c2 * r2 * (global_best_particle_position[i] - self.particle_position[i])
self.particle_velocity[i] = w * self.particle_velocity[i] + cognitive_velocity + social_velocity

def update_position(self, bounds):
for i in range(nv):

self.particle_position[i] = self.particle_position[i] +
self.particle_velocity[i]
# check and repair to satisfy the upper bounds

if self.particle_position[i] > bounds[i][1]:
self.particle_position[i] = bounds[i][1]
# check and repair to satisfy the lower bounds
if self.particle_position[i] < bounds[i][0]:
self.particle_position[i] = bounds[i][0]

class PSO:
def __init__(self, objective_function, bounds, particle_size, iterations):
fitness_global_best_particle_position = inital_fitness
global_best_particle_position = []
swarm_particle = []
for i in range(particle_size):
swarm_particle.append(Particle(bounds))

A = []
for i in range (iterations):
for j in range(particle_size):
swarm_particle[j].evaluate(objective_function)
if mm == -1:
if swarm_particle[j].fitness_particle_position < fitness_global_best_particle_position:
global_best_particle_position = list(swarm_particle[j].particle_position)
fitness_global_best_particle_position = float(swarm_particle[j].fitness_particle_position)

if mm == 1:
if swarm_particle[j].fitness_particle_position > fitness_global_best_particle_position:
global_best_particle_position = list(swarm_particle[j].particle_position)
fitness_global_best_particle_position = float(swarm_particle[j].fitness_particle_position)

for j in range(particle_size):
swarm_particle[j].update_velocity(global_best_particle_position)
swarm_particle[j].update_position(bounds)
A.append(fitness_global_best_particle_position)
ax.plot(A, color="r")
fig.canvas.draw()
ax.set_xlim(left=max(0, i-iterations), right=i+3)
time.sleep(0.01)

print("Result:")
print("Optimal Solution", global_best_particle_position)
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print("Objective function value:", fitness_global_best_particle_position)
if mm == -1:

inital_fitness = float("inf")
if mm == 1:
inital_fitness = -float("inf")

PSO(problem2,bounds,particle_size,iterations)
plt.show()

4.2 Problem 1

import ParticleSwarm as ps
# corner coordinates
a: float = 0
b: float = 4
c: float = 4.4723317897697
d: float = 0
def problem1(X):
global a, b, c, d
x1 = (-b * c + c * d + a * d + b * d) / (X[0] * a - X[0] * c - b + d)
y1 = X[0] * x1
x2 = (c * (d - b) + d * (a - c)) / (X[1] * a - X[1] * c + d - b)
y2 = X[1] * x2
s = abs(a * d - b * c) / 2
s1 = abs(a * y1 - b * x1) / 2
s2 = abs(x1 * y2 - x2 * y1) / 2
s3 = abs(d * x2 - c * y2) / 2
return abs(s1 - s / 3) + abs(s2 - s / 3) + abs(s3 - s / 3)

dimensions=2
dimension_bounds=[-6,6]
bounds=[0]*dimensions #creating 5 dimensional bounds
for i in range(dimensions):
bounds[i]=dimension_bounds

#creates bounds [[x1,x2],[x3,x4],[x5,x6]....]

p=60 #shouldn’t really change
vmax=(dimension_bounds[1]-dimension_bounds[0])*0.75
c1=2.8 #shouldn’t really change
c2=1.3 #shouldn’t really change
tol=0.00000000000001
ps.particleswarm(problem1, bounds,p,c1,c2,vmax,tol)

4.3 Problem 2

import ParticleSwarm as ps
a: float = 6
b: float = 7
c: float = 10
def problem2(X):

global a, b, c
m = X[0]
u = X[1]
xd = (c * b) / (m * c + b - m * a)
yd = m * xd
xg = u * a / (m * b + a)
yg = u * b / (m * b + a)
xf = u / (m**2 + 1)
yf = m * xf
s = abs(c * b) / 2
s1 = abs(xf * yg - xg * yf) / 2
s2 = abs(u * yf) / 2
s3 = abs((a * yg + xg * yf + xf * yd + xd * b) - (xg * b + xf * yg + xd * yf + a * yd)) / 2
s4 = abs((xd * yf + c * yd) - (xf * yd + u * yf)) / 2
q = s / 4
return abs(s1 - q) + abs(s2 - q) + abs(s3 - q) + abs(s4 - q)

4.4 Problem 3

import ParticleSwarm as ps
a: float = 5
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b: float = 7
c: float = 8
d: float = 3
def problem3(X):
global a, b, c,d
u = X[0]
v = X[1]
m = X[2]
x1 = (m**2 * u + v) / (m**2 + 1)
y1 = m * (x1 - u)
x2 = v * a / (b * m + a)
y2 = x2 * (b / a**2)
x3 = ((a - c) * (m * u + d) + c * (d - b)) / (m + d - b)
y3 = m * (x3 - u)
x4 = -m * u / (d / c - m)
y4 = -d * m * u / (d - c * m)
x5 = v * c / (d + c * m)
y5 = d / c * x5
s = (b * c - a * d) / 2
s1 = abs(x4 * y1 + x1 * y2 - x2 * y1 - x1 * y4) / 2
s2 = ((x1 * y4 + x4 * y5 + x5 * y1) - (x1 * y5 + x5 * y4 + x4 * y1)) / 2
s3 = abs(x3 * y1 + x1 * y5 + x5 * d + c * y3 - x3 * d - c * y5 - x5 * y1 - x1 * y3) / 2
s4 = abs(a * y2 + x2 * y1 + x1 * y3 + x3 * b - a * y3 - x3 * y1 - x1 * y2 - x2 * b) / 2
q = s / 4
return abs(s1 - q) + abs(s2 - q) + abs(s3 - q) + abs(s4 - q)

dimensions=3
dimension_bounds=[-6,6]
bounds=[0]*dimensions #creating 5 dimensional bounds
for i in range(dimensions):

bounds[i]=dimension_bounds
#creates bounds [[x1,x2],[x3,x4],[x5,x6]....]
p=60 #shouldn’t really change
vmax=(dimension_bounds[1]-dimension_bounds[0])*0.75
c1=2.8 #shouldn’t really change
c2=1.3 #shouldn’t really change
tol=0.00000000000001
ps.particleswarm(problem3, bounds,p,c1,c2,vmax,tol)

4.5 Problem 4

import ParticleSwarm as ps
a: float = 3
b: float = 5
c: float = 7
d: float = 4
e: float = 10
def problem4(X):
u = X[0]
v = X[1]
m = X[2]
global a, b, c, d, e
x1 = (m**2 * u + m * v) / (m**2 + 1)
y1 = m * (x1 - u)
x2 = m * a * v / (b * m + a)
y2 = (b / a) * x2
x3 = ((c - a) * (-m * v - b) + a*d - a*b) / (d - b - m*c + m*a)
y3 = m * (x3 - u)
x4 = m * (v * c - e * v + e * d) / (d * m + c - e)
y4 = d / (c-e) * (x4 - e)
s = abs(e * d + b * c - a * d) / 2
s1 = abs(a * y2 + x2 * y1 + x1 * y3 + x3 * b - a * y3 - x3 * y1 - x1 * y2 - x2 * b) / 2
s2 = abs(u * y1 + x1 * y2 - x2 * y1) / 2
s3 = abs(c * y4 + x4 * y1 - x1 * y4 - u * y1) / 2
s4 = abs(x3 * y1 + x1 * y4 + x4 * d + c * y3 - x3 * d - c * y4 - x4 * y1 - x1 * y3) / 2
q = s / 4
return abs(s1 - q) + abs(s2 - q) + abs(s3 - q) + abs(s4 - q)
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4.6 Problem 5

import ParticleSwarm as ps
xa: float = 0
ya: float = 2
xb: float = 0
yb: float = 0
xc: float = 3
yc: float = 0
xd: float = 2
yd: float = 2
yj: float = 3.2
xj: float = 1.5
xh: float = 1.2
def problem5(X):
xe=X[0]
xf=X[1]
m=X[2]
global xa, ya, xb,yb, xc,yc, xd, yd, yj, xj
yh=(m*(xf-xe)) / (m**2 +1)
yi=m*((xe*yd-xe*yj+yj*xd-yd*xj) / (yj-yd-m*xj+m*xd))
xi=(m*xe*xd-m*xe*xj+yj*xd-yd*xj)/(yj-yd-m*xj+m*xd)
xg=(xj*(xf-m*ya) / (m*yj-m*ya+xj))
yg=((xf*yj-xf*ya-xj*ya) / (m*yj-m*ya+xj))
sa=abs((xa*yb+xb*yc+xc*yd+xd*ya) -(xb*ya+xc*yb+xd*yc+xa*yd))/2
sb=abs((xj*ya+xd*yj) - (xd*ya+xj*yd)) / 2
s=sa+sb
s1a=abs(xe*(m*(xf-xe)/(m**2+1))+ (m**2 * xe + xf) / (m**2+1)* ya) / 2
s1b=(abs((xj*(xf-m*ya))/(m*yj-m*ya+xj)*ya + ((m**2 * xe + xf)/(m**2 +1)) * (xf*yj-xf*ya-xj*ya)

/(m*yj-m*ya+xj)-(m**2 * xe + xf)/(m**2 + 1) * ya +(xj*(xf-m*ya))/(m*yj-m*ya+xj) * (m*(xf-xe))/
(m**2 + 1)) / 2)

s1 = s1a+s1b
s2=abs((m*(xf-xe))/(m**2 + 1) * (xf-xe)) / 2
s3a=(abs(xc*yd + (xd*(m*(xf-xe) / (m**2 + 1))) - (xf* (m*(xf-xe) / (m**2 + 1))) + (m**2 * xf - xe) /

(m**2 + 1) * yd) / 2)
s3b=abs((xi*yh + xh*yd + xd*yi) - (xh*yi + xd*yh + xi*yd))/2
s3=s3a+s3b
s4=abs(xj*yg + xg*yh + xh*yi + xi*yj) - (xg*yj+xh*yg+xi*yh+xj*yi) / 2
return abs(s1-(s/4)) + abs(s2-(s/4)) + abs(s3-(s/4)) + abs(s4-(s/4))

4.7 Problem 6

import ParticleSwarm as ps
a: float = 3
b: float = 0
c: float = 3
def problem6(X):
m = X[0]
xf = X[1]
xg = X[2]
global a, b, c
xd= -m+sqrt((m**2+4(m*xf+a**2)))/2
yd= m*xd/2
ye= xg/m
xh=((m**2)*xf+xg)/((m**2)+1)
yh=(m(xg-xf))/(m**2+1)
s = 2* (a**3) / 3
s1=abs((xf*(m*(xg-xf)/(m**2 + 1))) + (m**2 * xf + xg)/(m**2 + 1)*(xg/m))/2
s2=abs((xg* (m(xg-xf))/(m**2+1)) - (xf * (m(xg-xf)/(m**2+1))))/2
s3a=(abs((((-m+sqrt(m**2+(4*(m*xf+a**2))))/2)* (m*(xg-xf)) / (m**2+1) + (m*a*(-m+sqrt(m**2 + 4 *

(m*xf + a**2)))/2 - xf)) - (((m**2 * xf + xg) / (m**2+1)) * m * (-m * sqrt((m**2+ 4 *
(m * xf + a**2)))/ 2 - xf)) + xg * (m*(xg-xf)/(m**2+1))))

s3b=(2*(a**3)/3 - (a**2 * (-m + sqrt(m**2 + 4 * (m*xf + a**2))) / 2 + ((-m + sqrt(m**2 + 4*(m*xf+ a**2))) / 2)
/ 3) - m * a((-m + sqrt(m**2+4*(m*xf+a**2))) / 2 -xf) + (m * ((-m+sqrt(m**2 + 4*(m*xf+ a**2))) / 2 - xf) *
((-m+sqrt(m**2+4*(m*xf+a**2)))/2))/2)

s3=s3a+s3b
s4a=(abs((m**2 * xf + xg)/ (m**2+1) * m *( (-m + sqrt(m**2 + 4 * (m * xf + a ** 2))) / 2 - xf) +

(-m + sqrt(m**2 + 4 * (xf+ a**2)))/ 2* a**2 - ((m**2 * xf + xg)/ (m**2+1) * (xg/m) +
((-m+sqrt(m**2+4*(xf+a**2)))/2 * (m * (xg-xf)) / (m**2+1)))))

s4b=(a**2 * (-m+sqrt(m**2+ 4 * (m*xf+a**2)))/2 - (((-m+(sqrt(m**2+ 4 * (m*xf+a**2)))) / 2) / 3) ) -
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(((a**2+m * (-m+sqrt(m**2+ 4 *(m * xf + a**2))) / 2 - xf)) * ((-m+sqrt(m**2+4*(m*xf+a**2))) / 2)/2)
s4=s4a+s4b
return abs(s1-(s/18)) + abs(s2-(s/9)) + abs(s3-(s/6)) + abs(s4-(2*s/3))

4.8 Problem 7

import ParticleSwarm as ps
import numpy
import math
r = 5
def problem7(X):
m = X[0]
xc = X[1]
xd = X[2]
yc = -(math.sqrt(r**2 - xc**2))
yd = math.sqrt(r**2 - xd**2)
xe = (m**2 * xc + xd + m * (math.sqrt(r**2 - xd**2) - math.sqrt(r**2 - xc**2))) / (m**2 + 1)
ye = (m * ((xd - xc + m * (math.sqrt(r**2 - xd**2) - math.sqrt(r**2 - xc**2))) / (m**2 + 1)) +

math.sqrt(r**2 - xc**2))
xa = m * math.sqrt(r**2 - xd**2) + xd
xb = -(math.sqrt(r**2 - xc**2)) / m + xc
s1 = abs(xa * ye - xb * ye) / 2
s2a = abs((xd * ye + r * yd) - (xe * yd + xb * ye)) / 2
s2b = r**2 * (numpy.arccos(xd / r) / 2 - math.sin(2) * numpy.arccos(xd / r) / 4) - yd * (r - xd) / 2
s2 = s2a + s2b
s3a = abs(xc * ye + xe * yd + xd * yc - (xe * yc + xd * ye + xc * yd)) / 2
s3b = (r**2 * ((numpy.arccos(xb / r) - numpy.arccos(xa/ r)) / 2 - math.sin(2) * (numpy.arccos(xb / r) -

math.sin(2) * numpy.arccos(xa / r)) / 4) - (math.sqrt(r**2 - xc**2) + math.sqrt(r**2 - xd**2)) /
2 * (xb - xa))

s3 = s3a + s3b
s4a = abs(((math.sqrt(r**2 - xd**2) + xd) * ye + xe * yc) * (r * yc + xc * ye)) / 2
s4b = r**2 * ((numpy.arccos(xc / r) - math.pi) / 2 - math.sin(2) * numpy.arccos(xc / r) / 4) -

math.sqrt(r**2 -xc**2) * (xc + r) / 2
s4 = s4a + s4b
q = math.pi * r**2 / 8
return abs(s1 - q) + abs(s2 - q) + abs(s3 - q) + abs(s4 + q)
bounds = [(-10,0), (-r + 0.01, -0.01), (0.01, r - 0.01)]
# upper and lower bounds of variables

nv = 3

5 Conclusion

The problems we have tackled in our study can be developed further and adapted to address any kind of problem that requires optimization
of different variables. The initial values in the 3rd, 4th, and 5th problems can be refined for different sets of values. The parabolic function in the
6th problem can be solved for different equations or adapted to other problems requiring integral calculations. Investigating the initial values in
these problems across different ranges will alter both the resulting geometric pattern and the equations required for the solution. Similarly, in
physics or engineering problems, after defining variables and equations, solutions can be found using appropriate function definitions.

As seen in sections 7 and 6, since the application of shapes requiring integration is quite practical, it can be attempted for various irregular
shapes with known equations.

Additionally, it has been demonstrated that the number of iterations plays a crucial role in approaching an accurate solution The method
employed in our study has been transformed into a design applicable not only in these fields but also in complex systems and problems involving
multiple variables.In essence, the approach used in our study can be extended and applied to a wide range of scenarios that involve optimization,
equation solving, and pattern generation across different fields.
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Abstract: Formative assessments help teachers identify concepts that students are struggling to understand, skills they are hav-
ing difficulty acquiring, or learning standards they have not yet achieved so that adjustments can be made to lessons, instructional
techniques, and academic support. This paper focuses on a study at the American University of Sharjah, Mathematics Depart-
ment of integrating the use of technology with formative assessments in order to identify students who are struggling and focus
on specific points prior to exams rather that doing a general review. More specifically, the study was conducted over two different
semesters. The first semester (before the pandemic), classroom response systems with Poll Everywhere was used while in the
second semester (after the pandemic), ILearn Formative Feedback was used. The uniqueness of this research study is the inte-
gration of formative assessments and feedback with technology in the delivery of Mathematics Subjects in Higher Education. Both
quantitative and qualitative results were collected and there was evident and significant improvements in students’ performance
when the proposed formative feedback prior to exams was used. It was also apparent that after the pandemic, the use of Ilearn
formative feedback was very beneficial for the students and helped improve their performances significantly in Mathematics.

Keywords: Formative Assessments, Formative Feedback, Ilearn, Learning Objectives, Lecture Capture, LMS, Mathematics
Teaching, Poll Everywhere, Technology in Education

1 INTRODUCTION

During the last decade, researchers and academics have shown a great prerequisite to reengineer mathematics education to move away from the
lecture-homework format to a more technology centric innovative approach focused on student needs. When developing technological services
to support students in higher education, it is crucial to account for flexibility, diversity, and time-saving in options. Lecture Capture (LC)
encompasses these criteria, and many institutions around the globe are currently using it [4]; a lot of research is ongoing about its present-day
use and growth [3]. Such research led towards the latest, innovative advancement in LC which mainly includes interaction. Although there are
many recognized pros for LC [1–4], it does not replace physically attending a lecture; it could only be a supplementary learning aid to students.
To overcome the limitation of the requirement of students to attend class to participate in activities that can only be administered there, the new,
interactive advancement in LC allows student participation via captured lectures similarly to classroom interaction. A major disadvantage in
using video lectures is the lack of customized feedback or focus review sessions. There is an evident need in order to combine video lectures
with customized focused material based on student feedback.

LC is a hardware/software process that involves recording classroom sessions and storing the recordings digitally to make them available
electronically for students to watch the entire lecture, and LC is becoming increasingly popular in universities around the world. However,
merely recording an entire lecture and uploading it is not a precisely effective learning method [4]. The current era is more student oriented and
demands a greater focus on students by having them constantly engaged during class. To have LC in classrooms comply accordingly, students
are able to see lecturer notes and explanations on a captured video, to answer lecturers’ quizzes and questions relevant to a video, to search
for keywords that will refer to a part of the given recorded lecture, and to access the published lectures anywhere from any device. This paper
explores the impact and effects on students’ academic performance of innovative teaching techniques that combines online review sample
exams prior to the course exams with customized focused in-class recorded review sessions based on students results in the online sample
exams.

Our proposed teaching methodology bridges the gap between live lectures and current, non-interactive video lectures. Because current LC is
widely supported and proven extremely effective, customized review video sessions based on student results has magnified the positive effects
in a directly proportional manner. These positive effects are showcased in this paper. More specifically, this paper reports on the results of a one
semester study in a second year Mathematics subject (Quantitative Methods) in which a traditional lecture course (TC) was used in one section
of the course and a traditional lecture combined with customized pre-exam review video lectures based student results from and online sample
exam (CC).

The research objectives of the study were the following:
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1. To analyze students acceptance of the proposed teaching methodologies

2. To evaluate how CC affects student understanding of course material and their respective performance compared to traditional TC systems.

2 RELATED WORK

LC technology is becoming a more integral part of the digital classroom. To improve this aspect of digitalized education, a certain set of criteria
has to be met. Essentially, in basic terms, LC is a technological setup where lecturers record a lecture and upload it online for students to access
anytime, anywhere for review. This means that LC is for both students who have attended the corresponding in-class lecture and students
who have not attended that class; it serves as a supplement to attending class while providing the flexibility of missing a class sometimes by
blending with the lecturers’ workflows combining learning and LC. A pronounced LC system should have a feedback method with analytical
capabilities for lecturers to examine how students use the uploaded content to determine the motive behind students repeatedly watching a
particular video: interesting video or struggle to comprehend a concept. This method is similar to how a lecturer can assess student reactions
through body language, hands raised, etc. and by conducting surveys [2]. Moreover, when integrating an LC system in an institution, it should
be of maximum compatibility with the existing technology in that institution, by making use of the apparatus and software already available
instead of investing in additional equipment, to lessen capital expenditures. Compatibility is also important when regarding the platform through
which a student would view the video; an LC recording should be available on all operating systems and computers/tablets/mobiles [3]. The
innovative LC discussed in this paper fulfills all the aforementioned criteria of a distinct LC system.

A web seminar at the Seattle Pacific University discusses innovative ways of using LC relative to the LC system discussed in this paper.
One lecturer highlighted several aspects that Seattle Pacific focused on to capture lecture content: an LC software, namely Camtasia, is used
to record the lectures; the faculty personnel administering LC are familiar with it; LC recordings resolve the issue of absences by students and
lecturers: students who could not attend a class are able to watch LC videos and lecturer absences can be substituted for by giving students
access to previously recorded videos of the same lecture; LC recordings facilitate lecturer and student time management. Another lecturer has
stated the importance of LC in providing a one-to-one experience in addition to uploading 20 minute videos. A third lecturer pinpointed further
uses of an LC platform: quizzes can be taken online; communication takes place in a medium students of the technology age are quite familiar
with. The LC used in this study uses Screencast instead of Camtasia, so it requires minimal, readily accessible resources making the technology
with marginal technical support facets; it is also used by personnel familiar with the technology, resolves any absences, and enhances time
management. Instead of 20 minute segments, LC uploads have an auxiliary add-on to the video that allow students to traverse to any point in
the lecture-length videos using a tag or a keyword. Students can also take quizzes administered online [4].

Other currently available LC systems allow the option of lecturers customizing the library of LC recordings available to students in the same
way the LC system used in this study has a library of LC recordings in addition to a search option. Besides the search option, the LC system
has a tagging aspect to facilitate locating any second through a video lecture as opposed to the use of short videos to explain a concept used
in other LC systems, none of which have the aforementioned tagging option. Also, similarly to how Eastern New Mexico University arranged
for foreign students LC videos, to learn English, that they can access and study from before attending university, the LC system used in this
study can be accessed anytime from any platform using any device and operating system enabling students to study the LC material if they are
abroad [1].

A research at Queen’s University Belfast [5] presented a number of figures to prove that LC is operative in supplementing the learning
experience in a university. Contrary to the popular misconception that providing students with LC videos would decrease lecture attendance,
only 27% of the surveyed agreed. Also, 98% of the students said that viewing those videos is integral prior to assessments. Another report [6]
stated that the purpose of LC from a student point of view is to make up for missed lectures and to review lectures as a preparation for
assessments along with the possibility of aid for students with learning disabilities; students also preferred a mixture of LC, live lectures,
course materials, and additional classes. Yet, a third research [7] ascertained that LC generally accompanies better test scores, it is effective in
fact-focused courses that do not involve discussions, and it provides an overall heightened learning comprehension of the course material.

In recorded lectures viewing, students usually follow one of four types of viewing strategies [8]: Linear Watch where students would watch
everything in one uninterrupted pass; Elaboration Watch which would come after an initial linear pass; Maintenance rehearsal where selected
sections are watched repeatedly; and Zapping where student would skip through the lecture and watch short sections only. Students usually use
a combination of those viewing behaviors in order to grasp the concepts. This is problematic in many cases as the student might get bored or
demotivated after several passes looking for particular concepts he had difficulty understanding. Some researchers have tried to use a hybrid
approach and introduced the idea of a Flipped (or inverted) Classroom [9] which is the practice of recording lectures and distributing them
electronically to students to watch at their convenience before contact time. More recently, the authors in [10] also investigated the effects of
in-video quizzes on a flipped classroom environment. There are evident benefits of this approach is that contact time can be used for something
more interactive than content delivery however such approaches are not applicable to all subject deliveries which require in-class physical
interaction with the lecturer with hands on exercises. The inability for students to receive feedback while viewing the recorded lectures or
search for a particular concept and get instant results (without zapping multiple times over a set of video lectures) remains a key limitation of
using video delivery.

In order to enrich the learning experience provided by video lectures [11], the authors decided to trial the use of the in-video quiz approach.
The approach involved presenting automatically assessed quiz questions within electronically recorded lectures and programming demonstra-
tions. An intended benefit of making videos interactive in this way is that knowledge acquisition is no longer passive, but an active process,
with an opportunity for students to test their understanding and get feedback periodically during consumption of the content. They distinguish
in-video quiz questions from a post video quiz in a number of ways. In-video quiz questions: are designed to appear, and be answered, during
normal video playback, with the video automatically pausing for the student to answer the question. It is clear that the technique of using
in-video quizzes is not novel since they are used by some of the larger MOOC platforms such as Coursera [12] and have been trialled as part
of other flipped classroom style investigations [13]. To the best of our knowledge, there is no academic work focusing on the combination of
online sample exams prior to the real exams and providing customized in-class recorded review sessions that are based on the results of the
online sample. The ability to focus only on the concepts that were not fully understandable by the students as evident from the online sample
exam provides a number of benefits. One of the most important of these is the ability to quickly deliver feedback to students. This allows
students to take some form of corrective action if necessary to support the learning process. The data available after students have engaged with
the lecture material are also used to improve support for individuals in face-to face sessions, or indeed, to identify common issues that can be
addressed in later video sessions. Adding to that, students will have the motivation to watch the customized recorded video sessions as they
focus only on their mistakes and they do not have to waste any time on concepts they already knew.
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Fig. 1: Flowchart depicting our research methodology

3 RESEARCH METHODOLOGY

To prove the positive impact of our proposed teaching and learning methodology, a class of 120 students was sampled in 2018/2019 in the
Mathematics Department at the American University of Sharjah (AUS), UAE and another set of 2 classes of 80 students were sampled in
spring 2023 in the Mathematics Department at the American University of Sharjah (AUS), UAE. The subject under study was Math001. This
course emphasizes the basic algebraic skills and techniques. Topics included were real and complex numbers, basic arithmetic, equations
and inequalities, study of functions, polynomial and rational functions, exponential and logarithmic functions, trigonometric functions, and
introduction to limits.

More specifically, upon completion of the course, students will be able to:

1. Develop the basic properties of real and complex numbers.
2. Solve, rational, radical equations and polynomial inequalities.
3. Define the basic concepts of functions, the concepts of domain and range, and composition of functions and sketch functions by
transformation.
4. Find the inverse of a function, if exists, and use it to define and sketch the graph of logarithmic and exponential functions and solve equations
with exponential and logarithmic expressions.
5. Sketch trigonometric functions and identify domain, periods, amplitudes, and define some basic trigonometric identities

The learning objectives above are a major part of the whole design of course delivery based on the proposed techniques. The class was
equipped with lecture capture technology that allows the lecturer to record lectures when needed combining the lecture slides with audio/video
recordings. Throughout one semester, student behavior and performance as well as technology stability were monitored, and data was collected.
In addition, a survey of the lecture content and lecturer delivery was conducted to receive 60 student reviews. The collected data was cleared
of blank records and exported to SPSS to perform statistical analysis to determine the statistical significance of the data by finding associations
among different items of the survey and the criteria that pertains to overall satisfaction with the technology when they are tabulated against each
other. There were a total of four sections (of 30 students each) and half of the students were taught using tradition course deliveries (PowerPoint,
in-class exercises, uploaded notes) while the other half started up till Exam1 using traditional course delivery and shifted to customized course
delivery after Exam 1 using our proposed delivery model that encompasses the use of online sample exams prior to a focused recorded review
lecture on students weakness. Our research framework is presented in Fig.1. To conduct the online sample exam, Poll Everywhere software
was used. It is an online service for classroom response and audience response systems and has many interactive features that were used by the
instructor to analyze student feedback.

Also, to prove the positive impact of Sample Exams introduction, 2 classes of 80 students were sampled in spring 2023 in the Mathematics
Department at the American University of Sharjah (AUS), UAE. The subject under study was also Math001. A sample exam was posted on
ilearn about the material for exam 2. The sample exam had 17 questions with a limited time period of 75 minutes same as the time of the real
exam 2. A recorded review class was done focusing on students’ mistakes. 40 students out of 80 students did the sample exam and the results
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(a)

(b)

Fig. 2: (a) Views per day and (b) Viewer Engagement

were collected. A recorded review class was delivered in class for the whole 80 students. The review session focused on the mistakes done in
the sample exam.

4 RESULTS AND STATISTICS

This new, innovative method of CC has been largely perceived as a useful method to aid students’ understanding of lectures for a given course
and its assessments prior to exams as noted by the students. A main feature is that students can revise the exam content at their own pace
focusing only on the mistakes they had in the sample review exam which helps enhance revision skills. The following highlight some of
the results of our proposed methodology in terms of usability, student acceptance, and finally effects on student performance compared to a
traditional course delivery.

4.1 Usability & Viewer Engagement

To evaluate the usability of the online sample exam and corresponding video review lectures uploaded online, students were tracked online to
identify how many viewed the material. At the end of the semester, the results showed that although students generally missed a few face-to-
face lectures, the review video lectures online were accessed a total number of more than 100 sessions throughout the course of the semester.
It can be concluded that students used the online review material to further understand concepts they were lectured about and more specifically
material they had difficulty in as the review sessions were very focused on student mistakes and were not general. Also, 45/60 (75%) of the
students conducted the sample Exam 2 online using poll-everywhere while 38/60 (64%) conducted the online sample final exam review.

Regarding the recorder review sessions and viewer engagement, it can be noted from Fig. 2. that there was a peak viewership just before
the exams on 12/9/2018 and also a very interesting observation can be noted in Fig. 2 (b) which indicates the number of views per minute of
video decreased significantly indicating that students only watch parts of the video they find interesting and also shorter (2-3 minutes) videos
per learning objective is more efficient compared to a one hour recorded video.

4.2 Student Acceptance

A survey was conducted to evaluate student perception of the proposed methodology and it was evident that most students who were involved
in the customized sessions and online sample exam were satisfied. More specifically, as shown in Fig 3, most students strongly agree that the
proposed methodologies had too much effect on their understanding of the subject in both Exam 2, and Final Exam. More than 80% of the
students believed that the customized delivery of the sample review exam combined with the in class review had either too much or medium
effect on their understanding and performance in the subject under study.

Also, when asked which mode of delivery they preferred, 92% of the students indicated that they preferred the customized review sessions
combined with online sample exam compared to the traditional mode of delivery.
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Fig. 3: Students’ perception of the proposed methodologies

Fig. 4: Comparison between TC and CC in terms of student exam performance

4.3 Effect on Student Performance (1)

Student grades were monitored in all of Exam 1, Exam 2 and Final Exam for both sections (one with a traditional way of teaching (TC), and
one with the proposed delivery (CC)) and the average student grades are shown in Fig 4.

As can be noted from Fig. 4, the average exam grades from Exam1, Exam 2 and Final Exam using our proposed methodologies outperformed
the traditional mode of delivery performance although based on prior student GPA before they enrolled in the subject both groups showed
similar averages and standard deviations. Also, a significant observation is the performance of the same group of students in Exam 1 compared
to Exam 2 where in Exam 1, traditional techniques were used while in Exam 2, the customized methodologies were used. It is evident that
students performed better in Exam 2 considering the added value the proposed methodologies had to offer allowing both students and teachers
to focus only on their mistakes in the online sample exam.

Student qualitative feedback regarding the effects the proposed techniques had on their improvements was also collected in a survey at the
end of the semester and some notable comments included:

• “It was good and gave me more experience and confidence to solve the exam.”
• “It is a great way to test your readiness before entering the exam hall and learning from your own mistakes.”
• “It helped me practice an exam style questions focusing only on what I don’t know. This improved my overall grade.”
• “Practice made it perfect. It helped me understand more.”
• “The one in class helped a lot, unlike the one at home.”
• “It helped me in solving difficult equations.”

4.4 Effect on Student Performance (2) – Sample Exam

The introduction of sample exams with follow up sessions focusing on students mistakes was investigated during Spring 2023 on a sample of
80 students with 40 students taking part in the sample exam and the results are discussed below.

A sample of three questions in both the sample exam and similar questions in the real exam are shown below followed by the correct answer
and the percentage of Students with Correct Answers.

4.4.1 Sample Exam Performance:

1. Find the inverse of f(x) = x−9
x−6 ?

Correct answer: f−1(x) = 9−6x
1−x

© CPOST 2023 49



Fig. 5: Effects on Student Performance after the introduction of Sample Exam Formative Feedback.

% of Students with correct answers: 28%

2. f(x) = 3
x2 , (x) =

√
x− 19, find the domain of fog(x)?

Correct answer: x > 19

% of Students with correct answers: 64%

3. f(x) = log(x− 2) + log3(11− x), find the domain of f(x)?

Correct answer: (2, 11)

% of Students with correct answers: 69%

4.4.2 Real Exam 2 Performance:

1. Find the inverse of f(x) = ex−2 + 1?

Correct answer: f−1(x) = ln(x− 1) + 2

% of Students with correct answers: 79%

2. f(x) =
√
x2 − 5, (x) =

√
x, find the domain of fog(x)?

Correct answer: [0, 5]

% of Students with correct answers: 82%

3. f(x) = log2(x− 3), g(x) =
√
x, find the domain of f(x) + g(x)?

Correct answer: (3,∞)

% of Students with correct answers: 82%

It is evident that student’s performance was improved significantly on the three question types after going through the formative assessment
stage as summarized in Fig. 5.

Comparing the performance of students, who did the sample exam with those who did not, also validates the effectiveness of the introduction
of formative assessments in the form of sample exams on improving students’ performance as shown in Fig. 6. The Exam 1, Exam 2 and Final
average for students who did the sample exam was 62%, 70%, and 60% while the Exam 1, Exam 2 and Final average for all students was 53%,
62%, and 53% which was lower in all three exams. This highlights the fact that the students who did the sample exam performed significantly
better than those who did not.

5 Conclusion

In conclusion, several observations are made from this study. Technology has invaded our education space in different ways and educators need
to utilize technology to suit their own teaching styles. Also, students tend to accept technology if it is simple to use, more direct and gives them
an incentive. This paper discusses the positive effects the use of technology had in a Mathematics Subject for Engineers. More specifically, the
use of online polling systems as a sample home exam with time constraints allowed the instructor to gather insights regarding concepts students
had difficulty with prior to the exam itself. Those insights were used to conduct an in-class recorded review session that focused on student
mistakes. Both the video and the solutions were uploaded for the students. This methodology showed significant improvements in student
performance in corresponding exams and show great promise for a wider deployment across all subjects. Also, a significant observation is the
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Fig. 6: The exam average of students who did the Sample Exam compare to the whole class in Exam 1, Exam 2, and Final.

length of the recorded videos as many students did not make it towards the end of the video and skipped though different sessions. Future work
need to explore the use of shorter 1-2 minutes videos focusing only on specific learning objectives.
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Abstract: A conformal transformation of a static or stationary spacetime by a time dependent conformal scale factor S(τ)2 is one of
the methods of producing a cosmological spacetime. Using this knowledge and Brans-Dicke (BD) field equations, we investigate
two time dependent metrics, including Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime and conformally transformed
Kerr-Newman black hole, and we obtain solutions that allow different expansion rates for each geometry. These expansion rates
depend on the matter content of the conformally transformed geometry. We state that the BD scalar field yields accelerated
expansion of the conformal spacetime if the original metric has vacuum geometry, and no acceleration if the original spacetime
has some curvature or matter content in it.
Keywords: Cosmology, FLRW spacetime, Kerr-Newman black hole, Scalar tensor theories.

1 Introduction

The expansion of universe was observed by Hubble in 1920s and also recently discovered that the universe is not only expanding but also
accelerating [1, 2]. Observational evidence, coming from the type Ia Supernova explosion, implies that the correct spacetime geometry must
be nonstatic both in astrophysics and cosmology. Since gravitational interactions can be well described in the General Theory of Relativity,
to understand the structure and behavior of the universe, we use the General Relativistic formulations and pseudo-Riemannian geometry as a
mathematical tool. On sub-galactic regions like the Solar system, the effects of gravity are not strong enough and spacetime can be characterized
as nearly flat. In these scales, the General Theory of Relativity (GR) has been accurately tested and verified [3–8]. However, when we use GR
in cosmology especially at the large scale structures or for the evolving universe in time, we need some new phenomena which we have not
understood and explained theoretically and observationally yet, for example, dark matter and dark energy [9, 10]. Also, black holes provide
strong gravitational fields and there are large deviations from GR at high field strength [11–14]. This means that, for a more general theory
of gravitation, we need to understand the strong gravitational regimes and the large scale structure of the universe [15–17]. Brans-Dicke (BD)
scalar tensor theory is a well known scenario of gravitational field [18–21], and in general, it is considered as an alternative theory to GR.
In our sense, this is not an alternative to GR but a more general theory of gravity and it can be related with the f(R) theory [22–24], string
theory [25–27] and Kaluza Klein theory [28, 29] in the appropriate limits. Also, BD theory involves Mach’s principle which says that all of the
matter in the universe affects each other, hence a universe, filled with a scalar field, might be a reasonable candidate for this interaction of the
masses. Therefore, motivated to find the solutions for an accurate cosmological model and also a theory for highly gravitating cosmological
environment, it might be convenient to study BD theory of gravity.

In general, the cosmological expansion in time has been defined by a time dependent scale factor in front of the spatial part of the metric
components as in the FLRW metric. For more general cases, we do not restrict ourselves with the FLRW case, we can also include Kerr-Newman
black hole. Using the method of conformal transformation by rescaling static or stationary spacetime, we try to produce a cosmological model
for asymptotically non-flat cosmological black holes. In this context, conformal transformation of Kerr-Newman black hole also provide to
obtain inhomogeneities in the FLRW backgrounds. BD scalar tensor theory adds the system a scalar degree of freedom which is represented
by a scalar field ϕ. Using this property, we find a relation between the BD scalar field ϕ and the conformal scale factor S(τ) in which the
transformed spacetime has the stress-energy tensor for a perfect fluid. This means that the stress-energy tensor arises from the curvature
and matter content of spacetime, and also that the expansion parameter is closely related to the scalar field ϕ. Also, in reference [30], the
author works on the scalar field and perfect fluid and concludes that the scalar field and a perfect fluid are not equivalent but a convenient
correspondence for the formal purposes.

A stationary/static submanifold can be embedded in a cosmological background by a scale factor of S(τ) as,

g̃ab = S(τ)2gab. (1)

This expression is a conformal transformation of a metric tensor with a conformal factor S(τ)2. In the rest of the paper, the metric gab will
be called as original metric or submanifold M and chosen as static or stationary spacetime, and the transformed metric g̃ab will be named as
conformally rescaled frame or cosmological background M̃, which describes a spacetime evolving in time. Depending on the properties of the
chosen original frame, the g̃ab may characterize a cosmological spacetime or a dynamical object. In the rest of the paper, all of the geometric
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quantities in this conformally rescaled cosmological frame will be denoted by a “tilde”. In this work, we will first start with the vacuum case
of original frame in which Gab= 0. Next, we will consider other contents of matter sources such as Gab=TEM

ab and for the more general case
Gab = Tab, where TEM

ab is Maxwell stress-energy tensor and Tab represents the energy-momentum tensor of a perfect fluid.
The conformal transformation rules (1) in GR frame require Einstein tensor to be [31–34],

Gab = G̃ab + 3g̃ab
∇̃cS∇̃cS

S2
+

2

S
(∇̃a∇̃bS − g̃ab□̃S), (2)

where, Gab = Rab − 1
2gabR is the Einstein tensor for the static/stationary submanifold and G̃ab = R̃ab − 1

2 g̃abR̃ is the Einstein tensor for
the conformally rescaled space-time, the covariant dervative ∇̃a and d’Alembertian □̃ are taken with respect to the metric g̃ab. This equation
shows that even if there is no matter in the untilted manifold (Gab = 0), under the conformal transformation (1), the transformed spacetime
geometry may contain any form of matter which may be responsible for the expansion of the universe in time. In this work, we suppose that,
the spacetime geometry g̃ab, obtained by the conformal transformation (1) of a static or stationary spacetime, would be a cosmological solution
of Brans-Dicke theory in the Jordan frame and we can find a relation between the conformal factor S(τ) and the BD scalar scalar field ϕ. In
other word, the scalar field would be responsible for the expansion of the spacetime. Hence, we will use BD scalar tensor theory, and its action
in the conformally transformed frame as,

SBD =

∫
d4x

√
−g̃

{
ϕ̃R̃− ω

ϕ̃
g̃ab∇̃aϕ̃∇̃bϕ̃− L̃m

}
, (3)

which also includes matter Lagrangian L̃m. Here, ϕ̃ is called as BD scalar field might be a function of both time and spatial coordinates, and
ω is a free dimensionless BD parameter. The variation of the BD action (3) with respect to g̃ab gives the field equations as,

G̃ab −
ω

ϕ̃2

(
∇̃aϕ̃∇̃bϕ̃− 1

2
g̃abg̃

cd∇̃cϕ̃∇dϕ̃

)
− 1

ϕ̃

(
∇̃a∇̃bϕ̃− g̃ab□̃ϕ̃

)
−8π

ϕ̃
T̃ab = 0 , (4)

and variation with respect to ϕ̃ gives the scalar field equation as,

□̃ϕ̃ =
8π

2ω + 3
T̃ . (5)

Using equations (2) and (4), we can write the stress-energy tensor T̃ab in terms of the Einstein tensor of submanifold M, scale factor S(τ) and
scalar field ϕ̃ as,

8π

ϕ̃
T̃ab = Gab − 3g̃ab

∇̃cS∇̃cS

S2
− 2

S
(∇̃a∇̃bS − g̃ab□̃S)

− ω

ϕ̃2

(
∇̃aϕ̃∇̃bϕ̃− 1

2
g̃ab∇̃cϕ̃∇ϕ̃

)
− 1

ϕ̃

(
∇̃a∇̃bϕ̃− g̃ab□̃ϕ̃

)
, (6)

here, even if we suppose Gab= 0, there would be a nonzero stress energy tensor in the conformal frame. It means that the conformal
transformation creates an extra term composed of the conformal factor, and this term can be related to the BD scalar field.

The energy-momentum tensor of the matter in conformal frame is,

T̃ab
m =

2√
−g̃

δ

δg̃ab

(√
−g̃L̃m

)
, (7)

and in the form of perfect fluid of matter it is defined as,

T̃ab = T̃
(pf)
ab = (P̃ + ρ̃)ũaũb + g̃abP̃ , (8)

the four velocity ũa and ũaũ
a = −1 , ρ̃ and P̃ are energy density and pressure respectively.

In BD theory, the matter part of Lagrangian L̃m is not coupled with the scalar field ϕ̃, this is the main difference between the BD and Jordan
models. But as we see in (6), the stress-energy tensor of the matter part seems to couple with the scalar ϕ̃, however, it is not a coupling, but an
interaction between the scalar field and metric tensor field. Therefore, the weak equivalence principle is respected [35]. To see this interaction
explicitly, we begin by assuming an ansatz given by [36],

ϕ̃ = ϕ0S(τ)
α, (9)

with ϕ̃0 and α constants and ϕ̃0 ≥ 0. This equation yields BD scalar field depends only on time [37]. In this work we suppose that the BD
scalar field naturally arises in the universe and stating the ansatz (9), this scalar field may provide different expansion rates depending on the
matter in the submanifold of the metric in (1).

Field equations (6) indicate that if the relation between scalar field and conformal factor becomes as in (9), each term with S and ϕ̃ on the
right will be related with eachother, hence the field equations become easy to solve and the stress-energy tensor for this system satisfies the
perfect fluid description of matter [38].
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Now, we apply these transformation rules to some known geometries and obtain the expansion rates for each spacetime generated by this
method. Therefore, we shall see that the vacuum energy provides the expansion of the universe to accelerate, and the matter content causes it
to decelerate in time.

Our paper is organised as follows. In section 2, we study on the Friedmann-Lemaitre-Robertson-Walker geometry and write the line element
in the conformal form. First we apply time dependent conformal factor acting on Minkowski geometry and we obtain the expansion rates as
a function of scalar field. Next, we consider that the conformal factor is acting on a curved static spacetime, and obtain that expansion rate
decreases due to curvature of the submanifold. In Section 3, we introduce a conformally rescaled, charged, rotating Kerr Black hole with time
dependent conformal factor and we obtain a relation between scale factor and BD scalar field. Finally, we end the paper with a brief summary
and concluding remarks.

2 Friedmann-Lemaitre-Robertson-Walker cosmological solution

FLRW line element is a well known cosmological metric and given by,

ds̃2 = −dt2 + a(t)2
(

dr2

1− kr2
+ r2dΩ2

)
, (10)

here, t is a cosmological time and a(t) is the scale factor, k is the spatial curvature parameter and dΩ2 is two sphere metric. If we rescale the
cosmological time as dt = S(τ)dτ and reorganize the metric suitably, we can write FLRW line element in the conformal form,

ds̃2 = S(τ)2ds2,

= S(τ)2
[
−dτ2 +

dr2

1− kr2
+ r2dΩ2

]
, (11)

by denoting τ as a conformal time and S(τ)2 as the conformal factor where a (t)2 = S[τ (t)]2. Therefore, the static part in square brackets,
which we call as the submanifold, is transformed to the cosmological spacetime by a time dependent conformal factor S(τ)2. The Ricci scalar
of the cosmological space-time is

R̃ =
6

S2

[
k +

S̈

S

]
, (12)

where the overdot represents derivative with respect to conformal time τ . The Ricci scalar of submanifold reads R = 6 k, which will be
vanished for k = 0, hence, we obtain a Minkowski line element that implies the flat submanifold. The BD solution for FLRW metric has been
explicitly given by [39–41]. Also, the work [42] reviews all possible solutions in this subject. Strictly speaking that, the main purpose of our
work is not to obtain all the solutions and repeat the literature but try to understand the effect of the scalar field for some time dependent
spacetimes with static or stationary submanifold and compare their expansion rates in the subject of stress-energy tensor for the perfect fluid.

Using the and equation (8) we solve the BD field equation (6) through the computer algebra and obtain that,

8πS(τ)2

ϕ̃ (τ)
ρ̃ (τ) = 3k +

3Ṡ(τ)
2

S(τ)2
+

3Ṡ(τ)ϕ̇(τ)

S(τ)ϕ(τ)
− ω

2

ϕ̇ (τ)
2

ϕ (τ)2
(13)

8πS(τ)2

ϕ̃ (τ)
P̃ (τ) = −k +

Ṡ (τ)
2

S (τ)2
− 2S̈ (τ)

S (τ)
− Ṡ (τ) ϕ̇ (τ)

S (τ)ϕ (τ)
− ω

2

ϕ̇ (τ)
2

ϕ (τ)2
− ϕ̈ (τ)

ϕ (τ)
, (14)

and using the ansatz (9), we obtain the energy density ρ̃ and pressure P̃ as,

ρ̃ =
Sα−2

16π

(
6k + (6 + 6α− ωα2)

Ṡ2

S2

)
, (15)

P̃ = −Sα−2

16π

[
2k + ((2 + ω)α2 − 2)

Ṡ2

S2
+ 2(2 + α)

S̈

S

]
, (16)

where the four velocity vector has only time component as ũa = {−S(τ), 0, 0, 0}. Substituting ϕ̃ = ϕ0 S(τ)
α, the scalar field equation (5)

satisfies,

6k − ωα(2 + α)
Ṡ2

S2
+ 2(3− ωα)

S̈

S
= 0. (17)

Here, the energy conservation equation ∇̃aT̃
(pf)

ab = 0 becomes identical with the (17) and satisfies the same equation. The (17) is a key
equation and responds to the question of how the flat subspace yields expansion of the spacetime to be accelerated or how any type of the
content of this subspace affects the expansion rate of the universe.
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If k = 0; The untransformed submanifold has no curvature and becomes Minkowski line element, thus it contains no matter, therefore,
solving (17), this flat submanifold yields conformal factor to be a power law,

S(τ) = S0 τ
2ωα−6

ωα(α+4)−6 , (18)

where, S0 is an integration constant Therefore, the empty submanifold is transformed to the cosmological vacuum era by a conformal factor. If
we rescale the time parameter as S(τ)dτ = dt and rewrite the scale factor and scalar field in terms of the cosmological time, we get

a(t) = a0 t
2ωα−6

ωα(α+6)−12 and ϕ̃(t) = ϕ0 a(t)
α, (19)

where the constant, a0 = S0

ωα(α+4)−6
ωα(α+6)−12

(
ωα(α+6)−12
ωα(α+4)−6

) 2ωα−6
ωα(α+6)−12 . These solutions are consistent with previous results [42]. Here, note

that if the power of τ , in (18), is equal to −1, the scale factor in (19) will be an exponential function, hence we obtain de-Sitter spacetime.
Nevertheless, this result is a very special subcase of the solution presented in our work, and we prefer to stay in the power-law type solution.
Another motivation to insist on this solution group is to keep the whole paper in the same context. That means we aim to compare the expansion
rates of three differently curved spacetimes and the common properties of these geometries are all admit the power-law expansion parameter
simultaneously.

Based on this setup, the deceleration parameter that gives how the universe accelerates, becomes

q = − äa

ȧ2
=

ωα2 + 4α− 6

2ωα− 6
, (20)

which strongly depends on the relation between the expansion parameter and the scalar field. In this result, α remains as a free parameter and
we can determine the value of α from cosmological observations. Depending on the value of α, we may have acceleration or deceleration of
the spacetime.

If k ̸= 0 : This choice describes a submanifold with a constant curvature and causes a nonzero stress-energy tensor. Hence, the first term
Gab on the right side of (6) has some contribution to the system. Physically, that means we are studying a homogeneously curved submanifold,
and hence this submanifold has some massive content and affects the expansion rate.

The solution of nonlinear differential equation (17) has the form of an exponential equation,

S(τ) = S0 e
±
(

6k
ωα2+4ωα−6

)1/2
τ
, (21)

and the expansion parameter with respect to cosmological time becomes,

a(t) = ±
(

6k

ωα2 + 4ωα− 6

)1/2

t and ϕ̃(t) = ϕ0 a(t)
α, (22)

which satisfies a linearly expanding spacetime and fits the result obtained in [42]. Here, note that we choose the plus sign for the consistency.
This result could be interpreted as follows, the matter content in the conformally transformed submanifold prevents the acceleration of the
spacetime, or we may say that the scalar field in the curved region could not accelerate the expansion of the spacetime. Neverheless, the
vacuum submanifold that fills with a scalar field could speed up the expansion of spacetime. In summary, by taking into account k = 0 and
k ̸=0 cases, we can propose the following statements: while a scalar field yields an accelerated expansion for the flat submanifold, it cannot
accelerate the curved manifold filled with matter. This result might be applied to cosmology and interpreted as: a galactic system does not
expand locally however, the vacuum parts of the universe are expanding much more and spreading apart the galaxies from each other.

3 The Charged and Rotating Time Dependent Black Hole Solution

In this part, using the same ansatz in previous part, we search for an allowable cosmological black hole solution. A cosmological black hole
might be possible by means of embedding a static or stationary black hole in a cosmological background. There are some similar cosmological
black hole geometries considered in the literature [43–48]. More realistic black holes are axially symmetric ones that have a mass and angular
momentum. Although it is not necessary to have electrical charge for the physically reasonable black holes, to obtain a more general result, we
include the electrical charge in this work. Therefore, we consider a Kerr-Newman (KN) metric that will be transformed into a spacetime varying
in time with a time-dependent conformal factor. Since observations show that the realistic black holes curve the spacetime around themself,
and also they are dynamical objects and interact with their environment, it will be convenient to work with this geometry that changes in time.
From the previous part, we expect that, these massive objects, in which we may call the curved stationary submanifolds, might decelerate the
expansion rate around itself or cause spacetime to be expanded linearly or there might be no expansion at all.

The simplest way to embed a black hole in a time dependent framework is to multiply all KN metric by a time dependent scale factor S(τ)2

[44]. Then the metric becomes,

d̃s
2

= S(τ)2 ds2KN , (23)

= S(τ)2
[
−

(
1− 2Mr −Q2

Σ

)
dτ2 − 2a sin2 θ

(2Mr −Q2)

Σ
dτdφ

+Σ
(dr2

∆
+ dθ2

)
+

(
a2 + r2 +

(2Mr −Q2)a2 sin2 θ

Σ

)
sin2 θdφ2

]
,
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which can also be written as,

d̃s
2

= S(τ)2
[
− dτ2 +Σ

(dr2
∆

+ dθ2
)
+

2Mr −Q2

Σ

(
−dτ + a sin2 θdφ

)2

+(a2 + r2) sin2 θdφ2
]
, (24)

where,

Σ = r2 + a2 cos2 θ (25)

∆ = r2 + a2 +Q2 − 2Mr, (26)

where, M is the mass, Q is the electric charge and a is the the rotation parameter of the body. Here, for large radial distances, this geometry
reduces to the spatially flat FLRW geometry. For the systems with electromagnetic field, the Brans-Dicke action is given by

S̃BD =

∫
d4x

√
−g̃

{
ϕ̃R̃− ω

g̃ab

ϕ̃
∇̃aϕ̃∇̃bϕ̃− F̃abF̃ab + L̃m

]
, (27)

where, R̃ is the Ricci scalar of overall cosmological metric, ϕ̃ is the BD scalar field, ω is the BD parameter, F̃ab is the Maxwell electromag-
netic tensor and L̃m is the Lagrangian density for the matter part. The total stress-energy tensor for this cosmological background contains
electromagnetic and perfect fluid contributions as

T̃ab = T̃
(EM)
ab + T̃

(m)
ab ,

=
T

(EM)
ab

S(τ)2
+ T̃

(pf)
ab . (28)

The Ricci scalar for this geometry becomes

R̃ =
6[∆Σ− (r2 + a2)(Q2 − 2Mr)]

∆Σ

S̈

S3
=

6S̈

S
|g00|. (29)

Here, the matter part might be chosen as the form given in (8) and the velocity four vector has the following components:

ũa = {−S(τ)

√
∆Σ

∆Σ− (r2 + a2)(Q2 − 2Mr)
, 0, 0, 0} = {− 1√

|g̃ 00|
, 0, 0, 0} , (30)

and ũaũ
a = −1.

The nonzero components of energy-momentum tensor for the matter part are

T̃ τ
τ

(pf) = −ρ̃(τ, r, θ) ,

T̃ r
r
(pf) = T̃ θ

θ
(pf) = T̃φ

φ
(pf) = P̃ (τ, r, θ) ,

T̃φ
τ

(pf) =
2a(Q2 − 2Mr)(ρ̃+ P̃ )

∆Σ− (r2 + a2)(Q2 − 2Mr)
. (31)

The electromagnetic stress-energy momentum tensor is given by

T̃
(EM)
ab = 2(F̃acF̃bdg

cd − 1

4
F̃cdF̃

cdgab). (32)

Here, the electromagnetic potential one form is,

Aa =
(
− Qr

Σ
, 0, 0,

Qra sin2 θ

Σ
), (33)
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and the electromagnetic field tensor is given by F̃ = d̃A or in component form, it is defined as F̃ab = ∇̃aAb − ∇̃bAa. The nonzero
components of electromagnetic energy-momentum tensor are

T̃ τ
τ
(EM) = −T̃φ

φ
(EM) =

Q2[Σ− 2(r2 + a2)]

Σ3S4
,

T̃ τ
φ

(EM) =
2aQ2(r2 + a2) sin2 θ

Σ3S4
,

T̃ r
r
(EM) = T θ

θ
(EM) =

Q2

2Σ2S4
,

T̃φ
τ
(EM) =

2aQ2

Σ3S4
. (34)

Note that, the conservation of energy-momentum tensor for the electromagnetic part, ∇̃aT̃
(EM)
ab = 0 is already satisfied.

Substituting the stress-energy tensor (28) in the Brans-Dicke field equations (6) and using computer algebra, from the (τ, r) term, we obtain
the following differential equation,

2ϕ̃(τ) ˙S(τ) +
˙̃
ϕ(τ)S(τ) = 0, (35)

and the solution for the scalar field is given by,

ϕ̃(τ) = ϕ0 S(τ)
−2. (36)

The components (τ, τ) and (r, r) of the field equations (6) are satisfied for ϕ0 = 1 then the energy density and pressure become,

ρ̃(τ, r, θ) = P̃ (τ, r, θ) = −
(2ω + 3)

(
∆Σ− (Q2 − 2Mr)(r2 + a2)

)
8π∆Σ

Ṡ2

S6
. (37)

To satisfy positive energy density, this result requires to be ω < − 3
2 or ∆Σ < (Q2 − 2Mr)(r2 + a2). In the works [44, 45], energy density

becomes negative for the cosmological black hole geometries generated in this way. Therefore, using a straightforward conformal transforma-
tion, in BD theory, we have embedded a Kerr-Newman black hole in an expanding universe filled with matter. The equation of state, ρ̃ = P̃ is
known as Zeldovich’s stiff fluid model and is used in general relativity to obtain the stellar and cosmological models for ultrahigh dense matter
[49].

Now, we must satisfy the scalar field equation (5),

2(2ω + 3)
(
∆Σ− (Q2 − 2Mr)(r2 + a2)

)
∆Σ

S̈

S5
= 0 . (38)

This equation restricts the scale factor S(τ) to be linearly depending on time as,

S(τ) = S0 τ. (39)

This value of scale factor also satisfies the conservation of energy-momentum tensor for the matter part and given by,

∇̃aT̃
(pf)
ab = 0. (40)

Therefore, all of the field equations are satisfied and the line element takes the folowing form,

ds2 = S0
2τ2

[
−

(
1− 2Mr −Q2

Σ

)
dτ2 − 2a sin2 θ

(2Mr −Q2)

Σ
dτdφ

+Σ
(dr2

∆
+ dθ2

)
+

(
a2 + r2 +

(2Mr −Q2)a2 sin2 θ

Σ

)
sin2 θdφ2

]
.

(41)

To analyse the singularity structure of this spacetime, since Ricci scalar (29) is zero for the result (39), we can look for the square of Riemann
tensor

R̃abcdR̃
abcd =

f(r, θ)

τ8∆2Σ4
, (42)

where the function, f(r, θ) in the numerator is an r and θ dependent complicated function and its explicit expression is not needed to determine
the singularity structure of the geometry. This geometry posesses three singular points, namely, the initial big bang type singularity at τ = 0,
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the ring singularity of Kerr-Newman solution at Σ = 0, and also the horizon singularity at ∆ = 0. These singularities also cause a singular
fluid in which the energy density and pressure (37) diverge as well. If we rescale the conformal time, the line element (41) can be expressed as,

ds2 = −
(
1− 2Mr −Q2

Σ

)
dt2 + t

[
− 2a sin2 θ

(2Mr −Q2)√
tΣ

dtdφ

+Σ
(dr2

∆
+ dθ2

)
+

(
a2 + r2 +

(2Mr −Q2)a2 sin2 θ

Σ

)
sin2 θdφ2

]
.

(43)

Here, the scale factor has the form a(t) =
√
t hence, the deceleration parameter becomes q = 1 (where the integration constants are chosen to

be unity as a convenience). This result shows that the spacetime around a charged rotating object with mass M and angular momentum a is not
accelerating but decelerating as we expect. The scalar field in this curved submanifold does not yield the expansion to accelerate.

4 Conclusion

In this work, we have tried to explain how the vacuum energy provides the expansion of the universe to be accelerated in time and how the
matter content of spacetime causes the universe to be decelerated. Using the rules for conformal transformation of a metric and the BD theory,
we get some different cosmological spacetimes from the several static or stationary submanifolds. One of these submanifolds has chosen as
Minkowskian spacetime, one has constant curvature, and the other has a massive content. The conformal factor has been set as a time dependent
function, and the Brans-Dicke scalar field is directly related to this conformal factor as ϕ̃ = ϕ0 S(τ)

α. Depending on the matter content in the
submanifold, we obtain different expansion rates resulting in various scalar fields for each scenario. We conclude that the BD scalar field yields
an accelerated expansion for the empty submanifold, but it is difficult to expand a spacetime filled with some pressure and energy. Therefore,
the scalar field becomes responsible for the expansion in the vacuum. On the other hand, the gravitational sector prevents the expansion of
spacetime even if there is a scalar field existing around the massive content. Cosmologically, the effect of scalar field can be explained as
follows: If a spacetime has some massive content in it, this spacetime is not expanded so fast, nevertheless, an empty spacetime can have
accelerated expansion due to the BD scalar field that might be interpreted as the effect of dark energy in the conventional cosmology.
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Abstract: In this work, we introduce Gaussian generalized John numbers and as particular cases, we examine Gaussian John and
Gaussian John-Lucas numbers with their several properties. We exhibit the Binet’s formulas, some identities, generating functions,
sum formulas and matrix formulations of this new type Gaussian sequence and it’s two special cases.
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1 Introduction and Preliminaries

Horadam [1], in 1963, carried out the concept of Fibonacci numbers to the complex sense and defined the complex Fibonacci numbers called
with Gaussian Fibonacci numbers. Later, Jordan [2], in 1965, considered the complex Fibonacci numbers {GFn} and the complex Fibonacci-
Lucas numbers {GLn} called as Gaussian Fibonacci-Lucas numbers by writing GFn = Fn + iFn−1 where {Fn} is the Fibonacci sequence
and GLn = Ln + iLn−1 where {Ln} is the Fibonacci-Lucas sequence, respectively. Here, {Fn} and {Ln} are given by the relations Fn =
Fn−1 + Fn−2 and Ln = Ln−1 + Ln−2 with F0 = 0, F1 = 1 and L0 = 2, L1 = 1 initial values, respectively. Later on, Berzsenyi [3],
in 1977, also defined complex Fibonacci numbers with a different approach which is considering them as a set of complex numbers whose
imaginary and real part are Gaussian integers with satisfying the Fibonacci second order recurrence relation at any triple of adjacent points.
Then, Harman [4] in 1981 and Pethe and Horadam [5] in 1986 developed the idea and exhibited several properties of Gaussian Fibonacci
numbers. Gaussian versions of other sequences of numbers other than Fibonacci were studied later. For instance, Aşçı and Gürel [6], in 2013,
worked on Gaussian Jacobsthal and Gaussian Jacobsthal-Lucas numbers. Later on, Halıcı and Öz [7], in 2016, considered Gaussian Pell and
Gaussian Pell-Lucas numbers and exhibited several properties of these special sequences. When we pass to the complex sequences given with
the third order recurrence relation we come across with the work about Gaussian generalized Tribonacci and Tribonacci-Lucas numbers written
by Soykan et. al. [8] in 2018. They defined the Gaussian generalized Tribonacci numbers {GVn} by

GVn = GVn−1 + GVn−2 + GVn−3 (1.1)

with the initial conditions

GV0 = V0 + i(V2 − V1 − V0), GV1 = V1 + iV0, GV2 = V2 + iV1

not all being zero where {Vn} is a generalized Tribonacci sequence given with the relation from [9]

Vn = Vn−1 + Vn−2 + Vn−3 (1.2)

with initial conditions V0,V1 and V2 arbitrary real numbers. (1.1) and (1.2) are third order linear recurrence relations. Equivalently, this
Gaussian sequence can be also defined by

GVn = Vn + iVn−1. (1.3)

Generalized Tribonacci numbers or (r, s, t)−numbers have been worked by many authors, see for example [9–19]. Other than these, there have
been many studies about Gaussian sequences which are defined recursively, see [20–27], however, it never have been worked about generalized
John numbers in Gaussian sense which we will see that it can be defined with third order linear recurrence relation. Therefore, we will recall
generalized John numbers and Gaussian numbers in a quick background. Then we will pass to our problem which is to investigate several
properties of a new complex sequence, named Gaussian generalized John sequence obtained with generalized John sequence, such as Binet’s
formula, summation formulas, generating function, identities and matrix formulation.

Soykan [28], in 2022, defined a new sequence named with generalized John sequence {Wn}n≥0 = {Wn (W0,W1,W2)}n≥0 having the
third order recurrence relation, also related with Pell and Pell-Lucas sequences given by the second order recurrence relation, as follows:

Wn = 3Wn−1 −Wn−2 −Wn−3, (1.4)

with the initial values W0,W1 and W2 not all being zero.
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The sequence {Wn}n≥0 can be expanded to negative indices by describing

W−n = −W−(n−1) + 3W−(n−2) −W−(n−3)

for n ∈ N. Hence, recurrence (1.4) satisfies for all integers n [28].
As {Wn}n≥0 is a sequence of third order recurrence, the characteristic equation associated to this recurrence is given with the equation

x3 − 3x2 + x+ 1 = 0 (1.5)

where roots are

α = 1 +
√
2, (1.6)

β = 1−
√
2,

γ = 1.

It is given by Soykan [28] that generalized John numbers Wn (W0,W1,W2) can be written, for each integers n, in the Binet’s form

Wn =
Pαn

(α− β)(α− γ)
+

Qβn

(β − α)(β − γ)
+

Rγn

(γ − α)(γ − β)
(1.7)

where

P = W2 − (β + γ)W1 + βγW0 = W2 − (3− α)W1 − 1

α
W0 = W2 −

(
2−

√
2
)
W1 −

(√
2− 1

)
W0,

Q = W2 − (α+ γ)W1 + αγW0 = W2 − (3− β)W1 − 1

β
W0 = W2 −

(
2−

√
2
)
W1 −

(
−
√
2− 1

)
W0,

R = W2 − (α+ β)W1 + αβW0 = W2 − (3− γ)W1 − 1

γ
W0 = W2 − 2W1 −W0.

Then it can be repreheased the Binet’s form as

Wn =
Pαn

4
+

Qβn

4
− Rγn

2
=

Pαn +Qβn − 2Rγn

4
.

We now consider two special cases of Wn in according to the initial values. The first one is John numbers which is determined with
Wn(0, 1, 3) = Jn and the second one is John-Lucas numbers which is determined with Wn(3, 3, 7) = Hn, so we can obtain the Binet’s
formula of John and John-Lucas sequence as follows:

Jn =
αn+1 + βn+1 − 2γn+1

4
,

Hn = αn + βn + γn.

by [28].
Now let us recall the definiton of a Gaussian integer. A Gaussian integer z is a complex number where it’s imaginary and real parts are

both integers. Gauss searched these type of numbers in 1832 and Z[i] is the denotion of these numbers. Z[i] composes an integral domain
with the usual addition and multiplication of complex numbers,. The norm of a Gaussian integer a+ ib, a, b ∈ Z is it’s Euclidean norm, i.e.,
N(a+ ib) =

√
a2 + b2 =

√
(a+ ib)(a− ib). See [29] for more information and details about the Gaussian integers.

2 Gaussian Generalized John Numbers

Gaussian generalized John numbers {GWn}n≥0 = {GWn(GW0, GW1, GW2)}n≥0 are defined by

GWn = 3GWn−1 −GWn−2 −GWn−3, (2.1)

with the initial conditions

GW0 = W0 + i(−W2 + 3W1 −W0),

GW1 = W1 + iW0,

GW2 = W2 + iW1,

not all being zero. The sequences {GWn}n≥0 can be expanded to negative indices by describing

GW−n = −GW−(n−1) + 3GW−(n−2) −GW−(n−3)

for n ∈ N. Hence, recurrence (2.1) satisfies for each integers n. We can note that for each integer n, this sequence can be defined equivalently
by

GWn = Wn + iWn−1. (2.2)

The first few Gaussian generalized John numbers with negative and positive indices are given in the next tables:
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n GWn

0 W0 + i(−W2 + 3W1 −W0)
1 W1 + iW0
2 W2 + iW1
3 3W2 −W1 −W0 + iW2
4 (8 + 3i)W2 − (4 + i)W1 − (3 + i)W0
5 (20 + 8i)W2 − (11 + 4i)W1 − (8 + 3i)W0
6 (49 + 20i)W2 − (28 + 11i)W1 − (20 + 8i)W0
7 (119 + 49i)W2 − (69 + 28i)W1 − (49 + 20i)W0
8 (288 + 119i)W2 − (168 + 69i)W1 − (119 + 49i)W0
9 (696 + 288i)W2 − (407 + 168i)W1 − (288 + 119i)W0
10 (1681 + 696i)W2 − (984 + 407i)W1 − (696 + 288i)W0
11 (4059 + 1681i)W2 − (2377 + 984i)W1 − (1681 + 696i)W0
12 (9800 + 4059i)W2 − (5740 + 2377i)W1 − (4059 + 1681i)W0

...

Table 1 A few values of Gaussian generalized John numbers with positive subscripts.

n GW−n

0 (1− i)W0 + 3iW1 − iW2
1 − (1− 4i)W0 + (3− 4i)W1 − (1− i)W2
2 (4− 8i)W0 − (4− 13i)W1 + (1− 4i)W2
3 − (8− 21i)W0 + (13− 28i)W1 − (4− 8i)W2
4 (21− 49i)W0 − (28− 71i)W1 + (8− 21i)W2
5 − (49− 120i)W0 + (71− 168i)W1 − (21− 49i)W2
6 (120− 288i)W0 − (168− 409i)W1 + (49− 120i)W2
7 − (288− 697i)W0 + (409− 984i)W1 − (120− 288i)W2
8 (697− 1681i)W0 − (984− 2379i)W1 + (288− 697i)W2
9 − (1681− 4060i)W0 + (2379− 5740i)W1 − (697− 1681i)W2
10 (4060− 9800i)W0 − (5740− 13 861i)W1 + (1681− 4060i)W2
11 − (9800− 23 661i)W0 + (13 861− 33 460i)W1 − (4060− 9800i)W2
12 (23 661− 57 121i)W0 − (33 460− 80 783i)W1 + (9800− 23 661i)W2

...

Table 2 A few values of Gaussian generalized John numbers with negative subscripts.

We now consider two special cases of GWn in according to initial values. The first one is Gaussian John numbers which is determined
with GWn(0, 1, 3 + i) = GJn and the second one is Gaussian John-Lucas numbers which is determined with GWn(3− i, 3 + 3i, 7 + 3i) =
GHn. If we would like to define this special sequences, we can give the next defitions:

Gaussian John numbers are defined by
GJn = 3GJn−1 −GJn−2 −GJn−3

with the initial conditions
GJ0 = 0, GJ1 = 1, GJ2 = 3 + i

and Gaussian John-Lucas numbers are defined by

GHn = 3GHn−1 −GHn−2 −GHn−3

with the initial conditions
GH0 = 3− i, GH1 = 3 + 3i, GH2 = 7 + 3i.

Note that for all integers n
GJn = Jn + iJn−1

and
GHn = Hn + iHn−1.

If we combine the first few values of the Gaussian John and Gaussian John-Lucas numbers in a one list, we can give Table 3.
We next exhibit the Binet’s formula for the Gaussian generalized John numbers which helps to express the terms of Gaussian generalized

John numbers in function of roots (1.6) of the characteristic equation (1.5).
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n GJn GJ−n GHn GH−n

0 0 0 3− i 3− i
1 1 −i 3 + 3i −1 + 7i
2 3 + i −1 + i 7 + 3i 7− 13i
3 8 + 3i 1− 4i 15 + 7i −13 + 35i
4 20 + 8i −4 + 8i 35 + 15i 35− 81i
5 49 + 20i 8− 21i 83 + 35i −81 + 199i
6 119 + 49i −21 + 49i 199 + 83i 199− 477i
7 288 + 119i 49− 120i 479 + 199i −477 + 1155i
8 696 + 288i −120 + 288i 1155 + 479i 1155− 2785i
9 1681 + 696i 288− 697i 2787 + 1155i −2785 + 6727i
10 4059 + 1681i −697 + 1681i 6727 + 2787i 6727− 16 237i
11 9800 + 4059i 1681− 4060i 16 239 + 6727i −16 237 + 39 203i
12 23 660 + 9800i −4060 + 9800i 39 203 + 16 239i 39 203− 94 641i

...
...

...
...

Table 3 The first few values of the Gaussian John and Gaussian John-Lucas numbers.

Theorem 1. The Binet’s formula for the Gaussian generalized John numbers is

GWn =

(
Pαn

(α− β)(α− γ)
+

Qβn

(β − α)(β − γ)
+

Rγn

(γ − α)(γ − β)

)
(2.3)

+i

(
Pαn−1

(α− β)(α− γ)
+

Qβn−1

(β − α)(β − γ)
+

Rγn−1

(γ − α)(γ − β)

)

where P,Q and R are as in (1.7).

Proof: The proof follows from (1.7) and (2.2). □

Theorem 1 about the Binet’s formula gives the next results as special examples:

Corollary 1. The Binet’s formula for the Gaussian John numbers and Gaussian John-Lucas numbers are

GJn =

(
αn+1

(α− β)(α− γ)
+

βn+1

(β − α)(β − γ)
+

γn+1

(γ − α)(γ − β)

)
+i

(
αn

(α− β)(α− γ)
+

βn

(β − α)(β − γ)
+

γn

(γ − α)(γ − β)

)

and

GHn =
(
αn + βn + γn

)
+ i

(
αn−1 + βn−1 + γn−1

)
,

respectively.

The next theorem exhibits the generating function of Gaussian generalized John numbers.

Theorem 2. The generating function of Gaussian generalized John numbers is given as

FGWn
(x) =

∞∑
n=0

GWnx
n =

GW0 + (GW1 − 3GW0)x+ (GW2 − 3GW1 +GW0)x
2

1− 3x+ x2 + x3
. (2.4)

Proof: Let

FGWn
(x) =

∞∑
n=0

GWnx
n
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be generating function of Gaussian generalized John numbers. If we use the definition of GWn and substract 3x
∑∞

n=0 GWnx
n,

−x2
∑∞

n=0 GWnx
n and −x3

∑∞
n=0 GWnx

n from
∑∞

n=0 GWnx
n then we obtain that

(1− 3x+ x2 + x3)FGWn
(x) =

∞∑
n=0

GWnx
n − 3x

∞∑
n=0

GWnx
n + x2

∞∑
n=0

GWnx
n + x3

∞∑
n=0

GWnx
n

=

∞∑
n=0

GWnx
n − 3

∞∑
n=0

GWnx
n+1 +

∞∑
n=0

GWnx
n+2 +

∞∑
n=0

GWnx
n+3

=

∞∑
n=0

GWnx
n − 3

∞∑
n=1

GWn−1x
n +

∞∑
n=2

GWn−2x
n +

∞∑
n=3

GWn−3x
n

= (GW0 +GW1x+GW2x
2)− (3GW0x+ 3GW1x

2) +GW0x
2

+

∞∑
n=3

(GWn − 3GWn−1 +GWn−2 +GWn−3)x
n

= GW0 +GW1x+GW2x
2 − 3GW0x− 3GW1x

2 +GW0x
2

= GW0 + (GW1 − 3GW0)x+ (GW2 − 3GW1 +GW0)x
2.

Rearranging above equation, we get

FGWn
(x) =

GW0 + (GW1 − 3GW0)x+ (GW2 − 3GW1 +GW0)x
2

1− 3x+ x2 + x3
.

□

The previous theorem concerning the generating function gives the following results for Gaussian John and Gaussian John-Lucas numbers
as particular examples:

Corollary 2. The generating function of Gaussian John numbers and Gaussian John-Lucas numbers are given as

FGJn
(x) =

x+ ix2

1− 3x+ x2 + x3

and

FGHn
(x) =

(1− 7i)x2 − 6 (1− i)x+ 3− i

1− 3x+ x2 + x3
,

respectively.

3 Binet’s Formula Obtained From Generating Function

We next find Binet’s formula of Gaussian generalized John numbers {GWn} by the help of generating function for GWn.

Theorem 3. (Binet’s formula of Gaussian generalized John numbers)

GWn =
d1α

n

(α− β) (α− γ)
+

d2β
n

(β − α) (β − γ)
+

d3γ
n

(γ − α) (γ − β)
(3.1)

where

d1 = GW0α
2 + (GW1 − 3GW0)α+ (GW2 − 3GW1 +GW0) ,

d2 = GW0β
2 + (GW1 − 3GW0)β + (GW2 − 3GW1 +GW0) ,

d3 = GW0γ
2 + (GW1 − 3GW0)γ + (GW2 − 3GW1 +GW0) .

Proof: Consider the equation

k(x) = 1− 3x+ x2 + x3.

For some α, β and γ we can write

1− 3x+ x2 + x3 = (1− αx)(1− βx)(1− γx). (3.2)

Therefore, 1
α , 1

β and 1
γ are the roots of k(x). As a result, we have that α and β as the roots of

k(
1

x
) = 1− 3

x
+

1

x2
+

1

x3
= 0.
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This implies that x3 − 3x2 + x+ 1 = 0. Now, by (2.4) and (3.2), it follows that

∞∑
n=0

GWnx
n =

GW0 + (GW1 − 3GW0)x+ (GW2 − 3GW1 +GW0)x
2

(1− αx)(1− βx)(1− γx)
.

Then we can write

GW0 + (GW1 − 3GW0)x+ (GW2 − 3GW1 +GW0)x
2

(1− αx)(1− βx)(1− γx)
=

Z1

(1− αx)
+

Z2

(1− βx)
+

Z3

(1− γx)
. (3.3)

So,

GW0 + (GW1 − 3GW0)x+ (GW2 − 3GW1 +GW0)x
2 = Z1(1− βx)(1− γx) + Z2(1− αx)(1− γx) + Z3(1− αx)(1− βx).

Considering x = 1
α , we get GW0 + (GW1 − 3GW0)

1
α + (GW2 − 3GW1 +GW0)

1
α2 = Z1(1−

β

α
)(1− γ

α
). This gives

Z1 =
GW0α

2 + (GW1 − 3GW0)α+ (GW2 − 3GW1 +GW0)

(α− β)(α− γ)
=

d1
(α− β)(α− γ)

.

Considering x = 1
β , we obtain

Z2 =
GW0β

2 + (GW1 − 3GW0)β + (GW2 − 3GW1 +GW0)

(β − α)(β − γ)
=

d2
(β − α)(β − γ)

.

Similarly, taking x = 1
γ , we have

Z3 =
GW0γ

2 + (GW1 − 3GW0) γ + (GW2 − 3GW1 +GW0)

(γ − α)(γ − β)
=

d3
(γ − α)(γ − β)

.

Thus (3.3) can be written as
∞∑

n=0

GWnx
n = Z1(1− αx)−1 + Z2(1− βx)−1 + Z3(1− γx)−1.

This gives
∞∑

n=0

GWnx
n = Z1

∞∑
n=0

αnxn + Z2

∞∑
n=0

βnxn + Z3

∞∑
n=0

γnxn =

∞∑
n=0

(Z1α
n + Z2β

n + Z3γ
n)xn. (3.4)

Thus, comparing the coefficients on both sides of (3.4), we obtain

GWn = Z1α
n + Z2β

n + Z3γ
n

and then we get (3.1). □

Hence, we have immediately next corollary comparing (3.1) with (2.4) pointing out the relation between the first three values of generalized
John numbers and the Gaussian generalized John numbers by using the roots 1.6 of 1.5.

Corollary 3. The following identities hold:

(W2 − (β + γ)W1 + βγW0)

(
1 +

i

α

)
= GW0α

2 + (GW1 − 3GW0)α+ (GW2 − 3GW1 +GW0) ,

(W2 − (α+ γ)W1 + αγW0)

(
1 +

i

β

)
= GW0β

2 + (GW1 − 3GW0)β + (GW2 − 3GW1 +GW0) ,

(W2 − (α+ β)W1 + αβW0)

(
1 +

i

γ

)
= GW0γ

2 + (GW1 − 3GW0)γ + (GW2 − 3GW1 +GW0) .

4 Sum Formulas

In the next theorem we present the sum formulas of Gaussian generalized John numbers.

Theorem 4. We have the following sum formulas:

(a)
∑n

k=0 GWk = 1
2 (−(n+ 2)GWn+2 + (2n+ 5)GWn+1 + (n+ 3)GWn + 2GW2 − 5GW1 −GW0).

(b)
∑n

k=0 GW2k = 1
4 (− (2n+ 3)GW2n+2 + 4 (n+ 2)GW2n+1 + (2n+ 3)GW2n + 3GW2 − 8GW1 +GW0).
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(c)
∑n

k=0 GW2k+1 = 1
4 (− (2n+ 1)GW2n+2 + 2 (2n+ 3)GW2n+1 + (2n+ 3)GW2n +GW2 − 2GW1 − 3GW0).

(d)
∑n

k=0 GW−k = 1
2 (−(n+ 1)GW−n+2 + (2n+ 1)GW−n+1 + (n+ 2)GW−n +GW2 −GW1).

(e)
∑n

k=0 GW−2k = − 1
4 (−(2n+ 5)GW−2n−2 − 4(n+ 2)GW−2n−1 + (2n+ 5)GW−2n − 3GW2 + 4GW1 + 3GW0).

(f)
∑n

k=0 GW−2k+1 = − 1
4 (−(2n+ 5)GW−2n−2 − 2(2n+ 5)GW−2n−1 + (2n+ 7)GW−2n − 5GW2 + 6GW1 + 3GW0).

Proof: When we take r = 3, s = −1, t = −1 in [Theorem 62, [30]] we obtain the sum formulas of generalized John numbers. Then, if we
modify the sum formulas to the Gaussian version, we get the sum formulas above of Gaussian generalized John numbers. □

As a special case, we can present the sum formulas of Gaussian John numbers in the next corollary.

Corollary 4. We have the following sum formulas:

(a)
∑n

k=0 GJk = 1
2 (−(n+ 2)GJn+2 + (2n+ 5)GJn+1 + (n+ 3)GJn + 1 + 2i).

(b)
∑n

k=0 GJ2k = 1
4 (− (2n+ 3)GJ2n+2 + 4 (n+ 2)GJ2n+1 + (2n+ 3)GJ2n + 1 + 3i).

(c)
∑n

k=0 GJ2k+1 = 1
4 (− (2n+ 1)GJ2n+2 + 2 (2n+ 3)GJ2n+1 + (2n+ 3)GJ2n + 1 + i).

(d)
∑n

k=0 GJ−k = 1
2 (−(n+ 1)GJ−n+2 + (2n+ 1)GJ−n+1 + (n+ 2)GJ−n + 2 + i).

(e)
∑n

k=0 GJ−2k = − 1
4 (−(2n+ 5)GJ−2n−2 − 4(n+ 2)GJ−2n−1 + (2n+ 5)GJ−2n − 5− 3i).

(f)
∑n

k=0 GJ−2k+1 = − 1
4 (−(2n+ 5)GJ−2n−2 − 2(2n+ 5)GJ−2n−1 + (2n+ 7)GJ−2n − 9− 5i).

Next, the sum formulas for Gaussian John-Lucas numbers are given.

Corollary 5. We have the following sum formulas:

(a)
∑n

k=0 GHk = 1
2 (−(n+ 2)GHn+2 + (2n+ 5)GHn+1 + (n+ 3)GHn − 4− 8i).

(b)
∑n

k=0 GH2k = 1
4 (− (2n+ 3)GH2n+2 + 4 (n+ 2)GH2n+1 + (2n+ 3)GH2n − 16i).

(c)
∑n

k=0 GH2k+1 = 1
4 (− (2n+ 1)GH2n+2 + 2 (2n+ 3)GH2n+1 + (2n+ 3)GH2n − 8).

(d)
∑n

k=0 GH−k = 1
2 (−(n+ 1)GH−n+2 + (2n+ 1)GH−n+1 + (n+ 2)GH−n + 4).

(e)
∑n

k=0 GH−2k = − 1
4 (−(2n+ 5)GH−2n−2 − 4(n+ 2)GH−2n−1 + (2n+ 5)GH−2n).

(f)
∑n

k=0 GH−2k+1 = − 1
4 (−(2n+ 5)GH−2n−2 − 2(2n+ 5)GH−2n−1 + (2n+ 7)GH−2n − 8).

5 Some Identities

In the present section, some identities of Gaussian John numbers and Gaussian John-Lucas numbers will be obtained. The next one represent
the relation between Gaussian John and Gaussian John-Lucas numbers. Specifically, we write the terms of Gaussian John sequence in terms of
Gaussian John-Lucas sequence, or vice versa.

Lemma 5. For each integer, we have the next identities:

(a) GJn = 3
8GHn+2 − 1

2GHn+1 − 3
8GHn.

(b) GJn = 9
8GHn −GHn−1 − 5

8GHn−2.
(c) GHn = −GJn+2 + 6GJn+1 − 7GJn.
(d) GHn = 3GJn − 2GJn−1 − 3GJn−2.

Proof: We can oly proof of (a). The other identities in (b), (c) and (d) can be proven similarly. Writing

GJn = aGHn+2 + bGHn+1 + cGHn

and solving the system of equations

GJ0 = aGH2 + bGH1 + cGH0

GJ1 = aGH3 + bGH2 + cGH1

GJ2 = aGH4 + bGH3 + cGH2

we find that a =
3

8
, b = − 1

2 , c =
−3

8
. □

Now, we give the Simson’s formula of Gaussian generalized John numbers.

Theorem 6. (Simson’s Formula) For every integer n, we have the next formula:

∣∣∣∣∣∣
GWn+2 GWn+1 GWn

GWn+1 GWn GWn−1
GWn GWn−1 GWn−2

∣∣∣∣∣∣ = 4(−1)n+1 (W0 + 2W1 −W2)
(
W2

0 − 2W2
1 −W2

2 − 2W0W2 + 4W1W2

)
.
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Proof: We prove this formula with the strong induction over n. We see that the identity is true for n = 1 as follows:∣∣∣∣∣∣
GW3 GW2 GW1
GW2 GW1 GW0
GW1 GW0 GW−1

∣∣∣∣∣∣
= det

 3W2 −W1 −W0 + iW2 W2 + iW1 W1 + iW0
W2 + iW1 W1 + iW0 W0 + i(−W2 + 3W1 −W0)
W1 + iW0 W0 + i(−W2 + 3W1 −W0) − (1− 4i)W0 + (3− 4i)W1 − (1− i)W2


= 4 (W0 + 2W1 −W2)

(
W2

0 − 2W2
1 −W2

2 − 2W0W2 + 4W1W2

)
Next, we assume that the identity is true for n = 1, 2, ..., k, i.e.,∣∣∣∣∣∣

GWk+2 GWk+1 GWk
GWk+1 GWk GWk−1
GWk GWk−1 GWk−2

∣∣∣∣∣∣ = 4(−1)k+1 (W0 + 2W1 −W2)
(
W2

0 − 2W2
1 −W2

2 − 2W0W2 + 4W1W2

)
.

At last, we need to show the identity holds for also n = k + 1.∣∣∣∣∣∣
GWk+3 GWk+2 GWk+1
GWk+2 GWk+1 GWk
GWk+1 GWk GWk−1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
3GWk+2 −GWk+1 −GWk GWk+2 GWk+1
3GWk+1 −GWk −GWk−1 GWk+1 GWk
3GWk −GWk−1 −GWk−2 GWk GWk−1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
3GWk+2 GWk+2 GWk+1
3GWk+1 GWk+1 GWk
3GWk GWk GWk−1

∣∣∣∣∣∣−
∣∣∣∣∣∣
GWk+1 GWk+2 GWk+1
GWk GWk+1 GWk

GWk−1 GWk GWk−1

∣∣∣∣∣∣
−

∣∣∣∣∣∣
GWk GWk+2 GWk+1

GWk−1 GWk+1 GWk
GWk−2 GWk GWk−1

∣∣∣∣∣∣
= −

∣∣∣∣∣∣
GWk GWk+2 GWk+1

GWk−1 GWk+1 GWk
GWk−2 GWk GWk−1

∣∣∣∣∣∣ = −

∣∣∣∣∣∣
GWk+2 GWk+1 GWk
GWk+1 GWk GWk−1
GWk GWk−1 GWk−2

∣∣∣∣∣∣
= 4(−1)k+2 (W0 + 2W1 −W2)

(
W2

0 − 2W2
1 −W2

2 − 2W0W2 + 4W1W2

)
.

Therefore, it is also true for n = k + 1. □

We can obtain the Simson’s Formulas of Gaussian John and Gaussian John-Lucas numbers as special case of Theorem 6.

Corollary 6. For every integer n, the Simson’s Formulas of Gaussian John and Gaussian John-Lucas numbers are given by∣∣∣∣∣∣
GJn+2 GJn+1 GJn

GJn+1 GJn GJn−1
GJn GJn−1 GJn−2

∣∣∣∣∣∣ = 4(−1)n and

∣∣∣∣∣∣
GHn+2 GHn+1 GHn

GHn+1 GHn GHn−1
GHn GHn−1 GHn−2

∣∣∣∣∣∣ = −128(−1)n+1

respectively.

6 Matrix Formulation of GWn

One of the fruitful method for obtaining the some identities for particular sequences of which we fix the initial values is the matrix method. Let
us describe the square matrix D of order 3 as:

D =

 3 −1 −1
1 0 0
0 1 0

 .

If we define

Bn =

 Jn+1 −Jn − Jn−1 −Jn

Jn −Jn−1 − Jn−2 −Jn−1
Jn−1 −Jn−2 − Jn−3 −Jn−2


then we know from [28] that

Bn = Dn,

i.e.,  3 −1 −1
1 0 0
0 1 0

n

=

 Jn+1 −Jn − Jn−1 −Jn

Jn −Jn−1 − Jn−2 −Jn−1
Jn−1 −Jn−2 − Jn−3 −Jn−2

 .
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Also we have the following identity from [28]:

Dn =
1

8

 3Hn+3 − 4Hn+2 − 3Hn+1 −6Hn+2 + 10Hn+1 + 4Hn −3Hn+2 + 4Hn+1 + 3Hn

3Hn+2 − 4Hn+1 − 3Hn −6Hn+1 + 10Hn + 4Hn−1 −3Hn+1 + 4Hn + 3Hn−1
3Hn+1 − 4Hn − 3Hn−1 −6Hn + 10Hn−1 + 4Hn−2 −3Hn + 4Hn−1 + 3Hn−2

 ,

i.e.,  3 −1 −1
1 0 0
0 1 0

n

=
1

8

 3Hn+3 − 4Hn+2 − 3Hn+1 −6Hn+2 + 10Hn+1 + 4Hn −3Hn+2 + 4Hn+1 + 3Hn

3Hn+2 − 4Hn+1 − 3Hn −6Hn+1 + 10Hn + 4Hn−1 −3Hn+1 + 4Hn + 3Hn−1
3Hn+1 − 4Hn − 3Hn−1 −6Hn + 10Hn−1 + 4Hn−2 −3Hn + 4Hn−1 + 3Hn−2

 .

Consider the matrices NJ , EJ defined in a such a way:

NJ =

 1 i 0
0 1 i
−i 3i 1− i

 and EJ =

 GJn+1 −GJn −GJn−1 −GJn

GJn −GJn−1 −GJn−2 −GJn−1
GJn−1 −GJn−2 −GJn−3 −GJn−2

 .

The next theorem exhibits the relations between Dn, NJ and EJ .

Theorem 7. For all integers n, we have

DnNJ = EJ .

Proof: It is clear from the matrix multiplication. Note that

DnNJ = EJ ⇒ NJ = D−nEJ

⇒ NJ =

 3 −1 −1
1 0 0
0 1 0

−n  GJn+1 −GJn −GJn−1 −GJn

GJn −GJn−1 −GJn−2 −GJn−1
GJn−1 −GJn−2 −GJn−3 −GJn−2

 .

□

Theorem 7 can also be shown by mathematical induction.
We then obtain the matrix formulation of Gaussian John-Lucas numbers as a corollary.

Corollary 7. For every integer n, we have

DnNH = EH

where

EH =
1

8

 Z11 Z12 Z13
Z21 Z22 Z23
Z31 Z32 h33


with

Z11 = 3GHn+3 − 4GHn+2 − 3GHn+1,

Z12 = −3GHn+2 +GHn+1 + 7GHn + 3GHn−1,

Z13 = −3GHn+2 + 4GHn+1 + 3GHn,

Z21 = 3GHn+2 − 4GHn+1 − 3GHn,

Z22 = −3GHn+1 +GHn + 7GHn−1 + 3GHn−2,

Z23 = −3GHn+1 + 4GHn + 3GHn−1,

Z31 = 3GHn+1 − 4GHn − 3GHn−1,

Z32 = −3GHn +GHn−1 + 7GHn−2 + 3GHn−3,

Z33 = −3GHn + 4GHn−1 + 3GHn−2

and

NH =

 1 i 0
0 1 i
−i 3i 1− i

 .

The proof of this corollary can be seen from Lemma 5 and the matrix multiplication.
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7 Conclusion

The important features of the Gaussian version of the generalized John sequences that have been newly introduced to the literature are examined.
In this sense, it is considered as an important reference source for researchers who will work with special sequences. In the present work,
matrices and important equations have been obtained and they contain important results that can be applied to daily life problems.
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Abstract: The laminar, fully-developed magnetohydrodynamic (MHD) pipe flow of a viscous and incompressible fluid has been
considered between consecutive magnets placed on the pipe-axis. The flow is under the effect of an axial-dependent applied
magnetic field B⃗ = (0,B0(z),0) and B0(z) = B0g(z) where B0 denotes the external magnetic field intensity, and g(z) is the function
determining the strength of the applied magnetic field along the pipe-axis. The MHD flow equations are transformed to three
nonlinear Poisson type equations in terms of velocity, induced magnetic field and electric potential, and they are solved by using
the dual reciprocity boundary element method (DRBEM) with the fundamental solution of Laplace’s equation. The study shows
that, axially-changing magnetic field makes the flow to turn its direction at a certain position of the axis. The effects of the problem
parameters, Hartmann number M and magnetic Reynolds number Rm on the flow behavior contrast with each other in the sense
that, the lengths of the intervals on the pipe-axis on which the flow is reversed are increasing as M increases, however, they are
getting shorter as Rm increases.

Keywords: Axially-changing magnetic field, DRBEM, MHD duct flow.

1 Introduction

Magnetohydrodynamic (MHD) investigates the behavior of electrically conducting fluids such as plasmas, liquid metals, electrolytes, etc. The
MHD equations are derived from a combination of the Navier-Stokes equations of fluid dynamics and Maxwell’s equations of electromagnetism.
The MHD flow in channels has many applications in engineering, biology and industry such as nuclear fusion, geothermal energy extraction,
blood flow pressure, MHD generators and accelerators, etc. The non-linear nature of the Navier-Stokes equations restricts one to find an analytic
solution for the MHD channel flows. Thus, numerical approaches are used mostly for general geometry and applied magnetic field. Among
these, Bozkaya and Tezer-Sezgin [1] have been used both the extended-domain-eigenfunction method (EDEM) and the boundary element
method (BEM) to investigate the MHD pipe flow in annular-like domains with electrically conducting walls. For the solution of 3D MHD
equations, a finite element method (FEM) has been developed by Salah et al. [2]. Also in this study, the stabilized finite element formulations
have been used for the Navier-Stokes and magnetic equations to solve boundary layers and convection dominated flows. The biomagnetic
fluid flow equations are solved under a point source magnetic field by using the numerical method based on a pressure-linked pseudotransient
method in [3]. The numerical implementations are different in the above studies however they have a common property that the strength of the
applied magnetic field B0 is constant. However, there are gradients of the applied magnetic field varying in the streamwise direction in real life
applications such as designing self cooled liquid-metal blankets which are used for fusion reactors. Kim [4] considered 3D liquid-metal MHD
flow in a square duct under a non-uniform magnetic field. Sterl [5] studied MHD flow in rectangular ducts in 2D and 3D regions. He examined
the effect of wall conductance and several Hartmann number values on the flow behavior and also axial-dependent applied magnetic field.

In this paper, the laminar MHD pipe flow of a viscous, incompressible and electrically conducting fluid in a rectangular duct is considered.
The flow is under the influence of an axially-varying applied magnetic field B0(z). Some magnets are placed on the duct axis at fixed z-values
and they are varying as a function of z. The flow is assumed to be fully-developed between those two fixed z-values. The MHD flow equations
in terms of velocity, induced magnetic field and electric potential are solved by using the dual reciprocity boundary element method (DRBEM)
with the fundamental solution of Laplace’s equation [6]. The behavior of the fluid flow is examined for several values of Hartmann number
M and magnetic Reynolds number Rm. It is seen that, axially-changing magnetic field makes the flow to turn its direction at a certain position
of the axis giving the flow behavior along the pipe-axis as if it is 3D flow. The effects of the problem parameters, Hartmann number M and
magnetic Reynolds number Rm on the flow behavior contrast with each other in the sense that, the lengths of the intervals on the pipe-axis
on which the flow is reversed are increasing as M increases, however, they are getting shorter as Rm increases. The DRBEM implementation,
discretizing only the boundary with constant elements, captures the well known behavior of the MHD flow. Thus, its computational cost is
considerably small compared to the other domain type numerical methods.
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2 Mathematical formulation

The laminar, fully-developed MHD flow of a viscous and incompressible fluid is considered between consecutive magnets placed on the pipe-
axis. The flow is under the effect of an axial-dependent vertically applied magnetic field. The governing non-dimensional MHD flow equations
in terms of the velocity, induced magnetic field and electric potential are

∇
2V +Mg(z)

∂B
∂y

=−1+
M2

Rm
g(z)

∂g(z)
∂ z

∇
2B+Mg(z)

∂V
∂y

= 0 −1 ≤ x,y ≤ 1

∇
2
Φ =−g(z)

∂V
∂x

.

(1)

where M = B0L0
√

σ/
√

µ is the Hartmann number and L0, σ , µ are the characteristic length, electrical conductivity and viscosity of the fluid
respectively. The walls of the duct are considered as insulated with no-slip velocity together with the Dirichlet type boundary condition for Φ

which correspond to the following wall conditions

x

y

−1 1

1

−1
V = B = 0 Φ = 0

V = B = 0 Φ = 0

V = B = 0

Φ = 0

V = B = 0

Φ = 0

B0(z)

Fig. 1: The boundary conditions on duct walls.

3 The DRBEM formulation

The DRBEM is applied to the nonlinear Poisson type equations (1) with the fundamental solution of Laplace’s equation, u∗ =
ln(1/r)

2π
given

in [6]. The terms other than Laplacian are considered as inhomogeneities. Weighting the equations in (1) over Ω by u∗ and applying Green’s
second identity two times, the following boundary-domain integral equations are obtained

ciVi +

∫
Γ

q∗V dΓ−
∫

Γ

u∗
∂V
∂n

dΓ =−
∫

Ω

(−Mg(z)
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∂g(z)
∂ z

)u∗dΩ
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∫
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∫

Ω

(−Mg(z)
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)u∗dΩ

ciΦi +

∫
Γ

q∗ΦdΓ−
∫

Γ

u∗
∂Φ

∂n
dΓ =−

∫
Ω

(−g(z)
∂V
∂x

)u∗dΩ

(2)

where q∗ =
∂u∗

∂n
, the index i denotes the source point, i = 1, ...,N, N is the number of constant boundary elements. The constant ci is 1/2 and

1 when the source point is on the boundary and in the interior of the domain, respectively.

The integrands on the right hand sides in equations (2) are considered as inhomogeneities and these inhomogeneous terms can be expanded
by a series of a radial basis functions as

b1(x,y) =−(−Mg(z)
∂B
∂y

−1+
M2

Rm
g(z)

∂g(z)
∂ z

) =
N+L

∑
j=1

α j f j(x,y)

b2(x,y) = Mg(z)
∂V
∂y

=
N+L

∑
j=1

β j f j(x,y)

b3(x,y) = g(z)
∂V
∂x

=
N+L

∑
j=1

γ j f j(x,y)

(3)

where f j(x,y) are the radial basis functions which are connected to the particular solutions û j with ∇2û j = f j, the coefficients α j’s, β j’s and
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γ j’s are undetermined contants and L denotes the number of interior points.

Substituting f j = ∇2û j in the equations (3) and applying Green’s second identity two times again to the right hand sides of the equations
(2), the following boundary integral equations are obtained

ciVi +

∫
Γ

q∗V dΓ−
∫

Γ

u∗
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∂n
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where q̂ j =
∂ û j

∂n
=

∂ û j

∂x
∂x
∂n

+
∂ û j

∂y
∂y
∂n

, i = 1, ...,N.

Constructing the matrices Û , Q̂ and coordinate matrix F by taking the vectors û j, q̂ j and fi j = 1+ ri j, ri j being the distance from the point i
to the point j, as columns respectively, and evaluating the values of b1, b2 and b3 at N+L points, a sets of linear equations as b1 = Fα b2 = Fβ

and b3 = Fγ are obtained. Thus, the equations (4) can be rewritten in matrix-vector form
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∂n
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The components of the H and G matrices for a constant element are given as
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1
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where r is the modulus of the distance vector from the point i to element j, δi j is the Kronecker delta function, l is the length of the elements.

The space derivatives for V and B are computed by using the coordinate function F as

∂V
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∂x

F−1V,
∂V
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∂y
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∂B
∂y

=
∂F
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F−1B.

Then, the discrete equations in (5) become,

HV −G
∂V
∂n

+K
(
Mg(z)

∂F
∂y

F−1B
)
= K

{
−1+

M2

Rm
g(z)

∂g(z)
∂ z

}
HB−G

∂B
∂n

+K
(
Mg(z)

∂F
∂y

F−1V
)
= 0

HΦ−G
∂Φ

∂n
+K

(
g(z)

∂F
∂x

F−1V
)
= 0

(7)

where K = (HÛ −GQ̂)F−1.

The solution of

V
B
Φ

 can be obtained from the following enlarged system of equations

H1 H2 H3
H4 H5 H6
H7 H8 H9

V
B
Φ

−

G 0 0
0 G 0
0 0 G

∂V/∂n
∂B/∂n
∂Φ/∂n

=

b1
0
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 (8)
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where the (N +L)× (N +L) matrices are

H1 = H H4 = H2 H7 = K
(
g(z)

∂F
∂x

F−1)
H2 = K

(
Mg(z)

∂F
∂y

F−1) H5 = H H8 = 0

H3 = 0 H6 = 0 H9 = H

(9)

and b1 = K
(
−1+

M2

Rm
g(z)

∂g(z)
∂ z

)
.

Prescribing new matrices as

H′ =

H1 H2 H3
H4 H5 H6
H7 H8 H9

 , G′ =

G 0 0
0 G 0
0 0 G

 (10)

the enlarged system having dimensions 3(N +L)×3(N +L) becomes

H ′

V
B
Φ

= G′

∂V/∂n
∂B/∂n
∂Φ/∂n

+

b1
0
0

 . (11)

A linear system of equations such as Ax = d can be obtained after inserting the given boundary conditions shown on Figure 1 into (11) and
swapping the corresponding columns of H ′ and G′. The solution of Ax = d gives the unknown values of V , B and Φ at the discretized points
wherever they are unknown.

4 Numerical results

The ducts Ωi = [−1,1]× [−1,1] are discretized at the locations zi on the pipe-axis by using N = 200 constant boundary elements and L = 2500

interior nodes. The pipe-axis dependent function in B0(z) is taken as g(z) =
1

1+ e−z/0.15
. The zi values (positions of the magnets) are considered

between −2.13 ≤ z ≤ 2.13. The velocity, induced magnetic field and electric potential values are obtained with Hartmann number values
M = 10, 30 and magnetic Reynolds number values as Rm = 2 and 25 respectively. The solution of the resulting system Ax = d is obtained by
using a solver mldivide from matlab.

Figures 2 and 3 show the velocity and induced current contours and velocity level curves at several locations in [−2.13,2.13] along the pipe
for increasing values of Hartmann number M as 10 and 30 by taking the magnetic Reynolds number fixed as Rm = 2. The fluid flows in the
positive pipe-axis direction first and then it reverses its direction at a certain z-value, and then the flow becomes positive again in that interval.
It can be seen from these figures that, as M increases the reversed flow occurs much earlier, and then the flow turns to the pipe-axis direction
(positive z-axis) much later. That is, the length of the interval on the pipe-axis on which the flow is reversed is increasing (i.e. for M = 10 the
length of the interval for reversed flow is 1.30, for M = 30 it is 1.80). The flattening tendency of the flow is also observed as M increases at the
same location of the pipe (i.e. at z = 2.13). The current lines align in the direction of applied magnetic field in terms of two loops.

Figures 3 and 4 show the velocity and induced current contours and velocity level curves for increasing values of magnetic Reynolds number
Rm as 2 and 25 by taking Hartmann number fixed as M = 30. It is observed that, as Rm increases the flow reverses much later however, reversing
back to the pipe-axis direction occurs much earlier. That is, the length of the interval for the reverse flow is getting shorter as Rm increases. The
lengths are 1.80 and 1.22 for Rm as 2 and 25, respectively. This opposite effects of the increase in the values of Hartmann number and magnetic
Reynolds number, on the lengths of the sections of the pipes for the reversed flow can be explained physically. For the same fluid of constant
viscosity µ and electric conductivity σ , Hartmann number increases when the intensity of the applied magnetic field B0 is strong. Its effect is
also strong on the fluid and the flow reversion occurs on a longer interval on the pipe-axis. But, the magnetic Reynolds number Rm increases
when magnetic permeability µ0 increases. Thus, the flow changes direction quickly on the pipe-axis.

Figure 5 shows the velocity, induced current and electric potential contours for M = 30, Rm = 2. V and B contours stay the same and electric
potential Φ curves show the same behavior in opposite direction with induced current B curves but in different magnitude.
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Fig. 2: Velocity and induced magnetic field, M = 10, Rm = 2.
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Fig. 3: Velocity and induced magnetic field, M = 30, Rm = 2.
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Fig. 4: Velocity and induced magnetic field, M = 30, Rm = 25.
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Fig. 5: Velocity, induced magnetic field and electric current, M = 30, Rm = 2.
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5 Conclusion

In this study, the MHD duct flow under the effect of an axially changing magnetic field is considered in ducts where the magnets are located
at several points through the pipe. The MHD flow equations are solved in terms of velocity, induced magnetic field and electric potential with
the fully-developed flow assumption between these points. This way, the three-dimensional effects on the MHD flow are obtained throughout
the pipe. The numerical results show that, axially changing magnetic field makes the flow to change its direction at a certain position of the
pipe-axis. But then, the flow turns back to the pipe-axis direction after traveled a shorter distance for the case of increasing Hartmann number
than the case of increasing magnetic Reynolds number. Thus, with the axially-dependent applied magnetic field, the 3D flow behavior of MHD
flow is very well captured by using the DRBEM numerical approach.
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Abstract: In approximation theory, positive linear operators are generalized in order to approximate continous functions with bet-
ter convergence results. Quite recently, some new bivariate operators have been introduced to extend Bernstein operators and
obtain more accurate and sensitive numerical results. In this study, we focus on some recent bivariate positive linear operators to
approximate functions.
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1 Introduction

Assume that D = (dl,o,u,v) is a four-dimensional summability method. Given a double sequence ϱ = (ϱu,v), D transform of ϱ, denoted by
Dϱ := ((Dϱ)l,o), is defined as

(Dϱ)l,o =

∞∑
u,v=1

dl,o,u,vϱu,v,

and the double series is Π-convergent for (l, o) ∈ N2. When four-dimensional matrix D = (dl,o,u,v) maps every bounded Π−convergent
sequence into a Π−convergent sequence with the same Π−limit, it is called RH−regular (shortly RHR). A four-dimensional matrix D =
(dl,o,u,v) is RHR if and only if

(a) Π − liml,o dl,o,u,v = 0,

(b) Π − liml,o

∞∑
u,v=1

dl,o,u,v = 1,

(c)Π − liml,o

∞∑
u=1

∣∣dl,o,u,v∣∣ = 0 (∀v ∈ N),

(d)Π − liml,o

∞∑
v=1

∣∣dl,o,u,v∣∣ = 0 (∀u ∈ N),

(e)
∞∑

u,v=1

∣∣dl,o,u,v∣∣ is Π−convergent,

(f) The inequality
∑

u,v>E2

∣∣dl,o,u,v∣∣ < E1 is satisfied for finite positive integers E1 and E2 and for each (l, o) ∈ N2.

These conditions are called Robison-Hamilton conditions. Assume that D = (dl,o,u,v) is a nonnegative RHR matrix, and S ⊂ N2, then
D−density of S is defined as

δ2D(S) := Π − lim
l,o

∑
(u,v)∈S

dl,o,u,v

provided that the limit on the right-hand side exists in the Pringsheim sense. A real double sequence ϱ = (ϱu,v) is called D−statistically
convergent to Q and denoted by st2D − lim

u,v
ϱu,v = Q if, for every τ > 0,

δ2D(
{
(u, v) ∈ N2 : |ϱu,v −Q| ≥ τ

}
) = 0.

A Π−convergent double sequence is D−statistically convergent to the same number even if converse statement may not be true. When
D = C(1, 1), C(1, 1)−statistical convergence becomes statistical convergence for double sequences, where C(1, 1) = (cl,o,u,v) is double
Cesàro matrix, defined by cl,o,u,v = 1/lo if 1 ≤ u ≤ o, 1 ≤ v ≤ l, and cl,o,u,v = 0 otherwise. Suppose that (ξu,v) is a double sequence of
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nonnegative numbers with condition ξ0,0 > 0, then power series

ξ (a, b) :=

∞∑
u,v=0

ξu,va
ubv

has radius of convergence Θ, where Θ ∈ (0,∞] and a, b ∈ (0, Θ) . When following equality is satisfied

lim
a,b→Θ−

1

ξ (a, b)

∞∑
u,v=0

ξu,va
ubvϱu,v = Q

for each a, b ∈ (0, Θ) , then double sequence ϱ = (ϱu,v) is said to be convergent to Q in the sense of PSM. PSM for double sequences is
regular if and only if

lim
a,b→Θ−

∞∑
r=0

ξr,υa
u

ξ (a, b)
= 0; lim

a,b→Θ−

∞∑
s=0

ξµ,sb
v

ξ (a, b)
= 0

are satisfied for any µ, υ. In this work, we assume that PSM is regular. When Θ = 1 and ξu,v = 1 PSM becomes Abel summability method,
and it becomes logarithmic summability method if ξu,v = 1

(u+1)(v+1)
.

2 Recent results on bivariate operators

In this section, the definitions of some recent bivariate operators and related polynomials are provided.
Let throughout the paper the binomial coefficients be given by the formula:

(
p

i

)
=

{
p!

i!(p−i)!
, 0 ≤ i ≤ p,

0, otherwise.

The following polynomial functions

au,0(ρ;x) = (1− x)u (1− ρ1x),

au,i(ρ;x) = xi(1− x)u−i
((

u

v

)
+ ρi − ρix− ρi+1x

)
, i = 1, 2 . . . , [

u

2
]− 1,

au,[u2 ](ρ;x) = x[
u
2 ](1− x)u−[u2 ]

((
u

[u2 ]

)
+ ρ[

u
2 ] − ρ[

u
2 ]x+ ρ[

u
2 ]+1x

)
,

au,i(ρ;x) = xi(1− x)u−i
((

u

v

)
− ρi + ρix+ ρi+1x

)
, i = [

u

2
] + 1, . . . , u− 1,

au,u(ρ;x) = xu(1− ρu + ρux) (1)

are called generalized Bernstein polynomials of degree u (u ≥ 2) and for x ∈ [0, 1] with shape parameters ρi, i = 1, 2, . . . , u, where

{
ρi ∈ [−

(u
i

)
,
( u
i−1

)
] ; i = 1, 2, . . . , [u2 ]

ρi ∈ [−
( u
i−1

)
,
(u
i

)
] ; i = [u2 ] + 1, . . . , u

with

{
[u2 ] =

u
2 ; if u is even

[u2 ] =
u−1
2 ; if u is odd.

(2)

These polynomials were introduced by Han et al. in. [1] and they are reduced to classical Bernstein basis functions bu,i(x) of degree u on
x ∈ [0, 1] which is defined as

bu,i(x) =

(
u

v

)
xi (1− x)u−i, i = 0, . . . , u

when ρi = 0 (i = 1, 2, . . . , u). Generalized Bernstein basis functions with parameters ρi (i = 1, 2, . . . , u) are linearly independent (see [2])
and these basis functions are effectively and flexibly used in designing parametric curves and surfaces (see [1, 2]). These functions also have
partition of unity, symmetry and nonnegativity properties (see [1]). In 2017, Hu et al. [2] have obtained the following equations to convert
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classical Bernstein polynomials of degree u to generalized Bernstein polynomials of degree u associated with shape parameters ρi:

au,0(ρ;x) = bu+1,0(x) +

(u
0

)
− ρ1(u+1
1

) bu+1,1(x),

au,i(ρ;x) =

(u
i

)
+ ρi(u+1
i

) bu+1,i(x) +

(u
i

)
− ρi+1(u+1
i+1

) bu+1,i+1(x), i = 1, 2 . . . ,
[u
2

]
− 1,

au,i(ρ;x) =

(u
i

)
+ ρv(u+1
i

) bu+1,i(x) +

(u
i

)
+ ρi+1(u+1
i+1

) bu+1,i+1(x), i =
[u
2

]
,

au,i(ρ;x) =

(u
i

)
− ρi(u+1
i

) bu+1,i(x) +

(u
i

)
+ ρi+1(u+1
i+1

) bu+1,i+1(x), i =
[u
2

]
+ 1, . . . , u− 1,

au,u(ρ;x) =

(u
u

)
− ρu(u+1
u

) bu+1,u(x) + bu+1,u+1(x). (3)

Let C[0, 1] = C be the space of all continuous functions on unit interval [0, 1] and C ([0, 1]× [0, 1]) = C̄. The operators Bν
u,Bµ

v : C −→ C
for any u, v ∈ N are given as follows, respectively,

Bν
u(f ; y) =

u∑
i=0

f

(
i

u

)
au,i(ν; y), (4)

Bµ
v (g; z) =

v∑
j=0

g

(
j

v

)
av,j(µ; z), (5)

where polynomials au,i(ν; y) and av,j(µ; z) are given in (3). The parametric extension of (4) and (5) for u, v ∈ N and h ∈ C̄ are the operators

Bν,y
u ,Bµ,z

v : C̄ −→ C̄,

where

Bν,y
u (h; y, z) =

u∑
i=0

au,i(ν; y)h

(
i

u
,
i

u

)
, (6)

Bµ,z
v (h; y, z) =

v∑
j=0

av,j(µ; z)h

(
j

v
,
j

v

)
. (7)

The parametric extensions of bivariate operators commute on C̄. Their product establishes bivariate operators Bν,µ
u,v : C̄ −→ C̄ defined for

any u, v ∈ N and any h ∈ C̄ by the relation

Bν,µ
u,v(h; y, z) =

u∑
i=0

v∑
j=0

au,i(ν; y)av,j(µ; z)h

(
i

u
,
j

v

)
. (8)

Let z, y ∈ I, we define following operators

Kp,q
c,d(ϑ; z, y) = (c+ 1)(d+ 1)

c∑
m=0

d∑
n=0

ac,m(p; z)ad,n(q; y)

∫ m+1
c+1

m
c+1

∫ n+1
d+1

n
d+1

ϑ(t, s) dtds, (9)

where shape parameters pm and qn satisfy the conditions (2), and call them as generalized bivariate Bernstein-Kantorovich operators. We refer
to certain recent papers about approximation of functions by positive linear operators [9–11, 30–32, 35, 36].

By the following theorem we give uniform convergence of some positive linear operators.

Theorem 1. For any α ∈ [0, 1], then L(r) converge uniformly to r on [0, 1], that is,

lim ∥L(r)− r∥ = 0,

where L = Bν,µ
u,v , Kp,q

c,d .

Proof: Taking into account moments of Bernstein type operators we have

L(e0) = e0 as m → ∞, L(e1;x) = e1 as m → ∞

and similarly Lm,α(e2) = e2 if one applies the limit. Hence, by the Korovkin theorem, we obtain

lim ∥L(f)− f∥ = 0,

where L = Bν,µ
u,v , Kp,q

c,d . □
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3 Concluding Remarks

This paper is based on the results in [4, 37], this is why we refer these papers for further literature. We will study approximation properties of
Stancu, Schurer, Kantorovich and some other modifications of focused bivariate operators in future.
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Abstract: One of the main ideas of approximate theory is to approximate functions via positive linear operators. Recently, some
new beta-type operators have been introduced using some shape parameters and combining the current operators in order to
obtain more accurate and sensitive numerical results. In this study, we focus on certain recent beta-type positive linear operators
to approximate functions.

Keywords: Beta-type operators, Positive linear operators, Convergence.

1 Introduction

Karl Weierstrass focused on approximation of continuous functions by polynomials (see [25]). Bernstein demonstrated a differented way for
the proof of well-known Weierstrass approximation theorem (see [8]).

There are several extentions of Bernstein operators, we refer to the following list for further research:

(a) λ-Bernstein operators [15] with b̃n,i(λ;x) Bézier bases and shape parameter λ (see [24]):

b̃n,0(λ;x) = bn,0(x)−
λ

n+ 1
bn+1,1(x),

b̃n,i(λ;x) = bn,i(x) +
n− 2i+ 1

n2 − 1
λbn+1,i(x)−

n− 2i− 1

n2 − 1
λbn+1,i+1(x), i = 1, 2 . . . , n− 1,

b̃n,n(λ;x) = bn,n(x)−
λ

n+ 1
bn+1,n(x). (1)

(b) Bernstein type operators by using continuously differentiable ∞ times function τ on [0, 1] [16].
(c) New variant of Bernstein operators [21]
(d) (p, q)-Bernstein operators.
(e) Stancu-type λ-Bernstein operators [23].
(f) Modified Un operators [14] and references therein.
(g) α-Bernstein operators [17, 19] p(α)m,γ,j(z) denotes the α-Bernstein-Schurer polynomials defined by

p
(α)
1,γ,0 (z) = 1− z, p

(α)
1,γ,1(z) = z

and

p
(α)
m,γ,j (z) =

[
(1− α) z

(
m+ γ − 2

j

)
+ (1− α) (1− z)

(
m+ γ − 2

j − 2

)

+αz (1− z)

(
m+ γ

j

)]
zj−1 (1− z)m+γ−(j+1) (m ≥ 2). (2)

(h) Bivariate extension of α-Bernstein-Durrmeyer operators [20].
(i) Kantorovich modifications of α-Bernstein operators.
(j) λ-Bernstein-Schurer operators [22].
(k) Bivariate λ-Bernstein operators [31].
(l) λ-Bernstein-Kantorovich operators [18].
(m) Univariate and bivariate λ-Bernstein-Kantorovich operators [12].
(n) Genuine modified Bernstein-Durrmeyer operators.
(p) Blending type Bernstein operators [6].
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(r) Blending type Bernstein-Kantorovich operators [7].
(s) Baskakov operators based on α ∈ [0, 1] [37]:

B(α)
m (ζ;x) =

∞∑
j=0

b
(α)
m,j(x)ζ

(
j

m

)
, x ∈ [0,∞), (3)

where

b
(α)
m,j(x) =

xj−1

(1 + x)m+j−1

[
αx

(1 + x)

(
m+ j − 1

j

)
− (1− α)(1 + x)

(
m+ j − 3

j − 2

)
+ (1− α)x

(
m+ j − 1

j

)]
.

These B(α)
m (ζ;x) reduce to Baskakov operators [38] for α = 1.

(t) A Durrmeyer type generalization of the operators (3) is

B∗
m,α(ζ;x) =

∞∑
j=0

b
(α)
m,j(x)

1

B(j + 1,m)

∫∞
0

tj

(1 + t)m+j+1
ζ(t)dt, (4)

where B(j + 1,m) is the beta function defined as

B(r, s) =

∫∞
0

wr−1

(1 + w)r+s
dw =

Γ(r)Γ(s)

Γ(r + s)
, r, s > 0.

(u) Bézier variant B∗
m,α,θ of the operators B∗

m,α as follows:

B∗
m,α,θ(ζ;x) =

∞∑
j=0

Q
(θ)
m,j,α(x)

1

B(j + 1,m)

∫∞
0

tj

(1 + t)m+j+1
ζ(t)dt, (5)

where θ ≥ 1 and Q
(θ)
m,j,α(x) =

[
Vm,j,α(x)

]θ −
[
Vm,j+1,α(x)

]θ with Vm,j,α(x) =

∞∑
v=j

b
(α)
m,v(x).

Alternatively, (5) can be written as (see [3])

B∗
m,α,θ(ζ;x) =

∞∫
0

Um,α,θ(x, t)ζ(t)dt, x ∈ [0,∞), (6)

where

Um,α,θ(x, t) =

∞∑
j=0

Q
(θ)
m,j,α(x)

1

B(j + 1,m)

tj

(1 + t)m+j+1
.

(v) For m ∈ N and ρ > 0, the functional (see [4])
F ρ
m,i : C[0, 1] → R

is defined by

F ρ
m,i (g) =

1∫
0

µρ
m,i(t)g (t) dt (i = 1, 2, . . . ,m− 1), (7)

F ρ
m,0 (g) = g(0), F ρ

m,m (g) = g(1),

where µρ
m,i(t) in (7) is given by the formula

µρ
m,i(t) =

tiρ−1(1− t)(m−i)ρ−1

B(iρ, (m− i)ρ)

and the Euler’s beta function in the last equality is defined by

B(a, b) =

1∫
0

ta−1(1− t)b−1dt (a, b > 0).
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(y) Assume that θ and β are two real parameters satisfying 0 ≤ θ ≤ β. Genuine (α, ρ)-Durrmeyer-Stancu operators Uβ,θ,ρ
m,α defined by (see

[2])

Uβ,θ,ρ
m,α (g; y) =

m∑
i=0

Fβ,θ,ρ
m,i (g) p

(α)
m,i(y),

where

Fβ,θ,ρ
m,i (g) =

1∫
0

µρ
m,i(t)g

(
mt+ θ

m+ β

)
dt

for i = 1, 2, . . . ,m− 1, Fβ,θ,ρ
m,0 (g) = g

(
θ

m+β

)
and Fβ,θ,ρ

m,1 (g) = g
(

m+θ
m+β

)
. Consequently, one may write the operators Uβ,θ,ρ

m,α as

Uβ,θ,ρ
m,α (g; y) =

m−1∑
i=1

1∫
0

[
tiρ−1(1− t)(m−i)ρ−1

B(iρ, (m− i)ρ)
g

(
mt+ θ

m+ β

)
dt

]
p
(α)
m,i(y)

+g

(
θ

m+ β

)
p
(α)
m,0(y) + g

(
m+ θ

m+ β

)
p
(α)
m,m(y). (8)

This paper is focused on the literature review of certain blending type Bernstein operators.

2 Convergence of beta-type operators

In this section, we study convergence of some beta-type operators that are given in the previous section.
The moments of Uβ,θ,ρ

m,α operators are given as below:
Let ei (y) = yi, (i = 0, 1, 2). Then, the operators Uβ,θ,ρ

m,α satisfy

Uβ,θ,ρ
m,α (e0; y) = 1,

Uβ,θ,ρ
m,α (e1; y) =

my + θ

m+ β
,

Uβ,θ,ρ
m,α (e2; y) =

m3ρy2 + (y − y2)(m2 + 2mρ(1− α)) +m2y

(m+ β)2(mρ+ 1)
+

θ2 + 2mθy

(m+ β)2
.

By the following theorem, a uniform convergence theorem for some positive linear operators is given.

Theorem 1. For any α ∈ [0, 1], then L(r) converge uniformly to r on [0, 1], that is,

lim
m→∞

∥L(r)− r∥ = 0,

where L = Uβ,θ,ρ
m,α ,L(α,s)

p,λ , Bα,s
p,λ , Kα,s

p,λ, B∗
m,α,θ.

Proof: Taking into account moments of Bernstein type operators we have

L(e0) = e0 as m → ∞, L(e1;x) = e1 as m → ∞

and similarly Lm,α(e2) = e2 as m → ∞. Hence, by the Korovkin theorem, we obtain

lim
m→∞

∥L(f)− f∥ = 0,

where L = Uβ,θ,ρ
m,α ,L(α,s)

p,λ , Bα,s
p,λ , Kα,s

p,λ, B∗
m,α,θ. □

3 Concluding Remarks

This paper is based on the results in [2, 3], this is why we refer these papers for further literature. We will study approximation properties some
related operators in close future.
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Abstract: .

In this study, the minimal grill semi-closure (MGSC) function is defined using the concepts of minimal structure, grill and m-
semi-closure. The properties of this function are examined. Using this function, a new set operator is defined. Moreover, with the
help of this operator, a new supra topology is obtained.
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1 Introduction and Preliminaries

Choquet introduced the concept of grill in [1]. There have been many studies in the literature on minimal spaces [2]-[4] . In minimal structures,
the conceptsm-semi-open,m-semi-closed andm-semi-closure were introduced to the literature by Won Keun Min [5] . Modak obtained a new
topology using the concepts of grill and minimal structure [4].

In this study, a new supra topology is obtained by defining a new function type and a new set operator in grill minimal spaces. Moreover, the
properties of these is examined.

Definition 1 ([6]). Let X be nonempty set and M ⊆ P(X). If {X, ∅} ⊆ M, then M is called minimal structure on X and (X,M) is
called minimal space. Each element of M is called minimal open (briefly m-open) and the complement of a m-open is called minimal closed
(m-closed).

Definition 2 ([7]). Let (X,M) be a minimal space and A ⊆ X . m-interior of A and m-closure of A are defined as follows:

1. m-Int(A) =
⋃
{U : U ∈ M and U ⊆ A}

2. m-Cl(A) =
⋂
{F : X \ F ∈ M and A ⊆ F}

Definition 3 ([5]). Let (X,M) be a minimal space. A subset A of X is called a m-semi-open set if A ⊆ mCl(mInt(A)). The complement
of a m-semi-open set is called a m-semi-closed set. The family of all m-semi-open sets in X is denoted by mSO(X).

Definition 4 ([5]). Let (X,M) be a minimal space and A ⊆ X . m-semi-interior of A and m-semi-closure of A are defined as follows:

1. m-sInt(A) =
⋃
{U : U is m-semiopen and U ⊆ A}

2. m-sCl(A) =
⋂
{F : X \ F is semi open and A ⊆ F}

Lemma 5 ([5]). Every m-open set is m-semi open set.

Lemma 6 ([5]). Let (X,M) be a minimal space and A ⊆ X . Then x ∈ m-sCl(A) if and only if A ∩ V ̸= ∅ for every m-semi open set V
containing x.

Definition 7 ([1]). Let X ̸= ∅ and G ⊆ P(X). If G satifies the following conditions, it is called a grill on X :

1. ∅ /∈ G.
2. If A ∈ M and A ⊆ B, then B ∈ G.
3. If A ∪B ∈ G, then A ∈ G or A ∈ G.

If (X,M) is a minimal space, then the triplet (X,M,G) is called a grill minimal space.

Definition 8 ([4]). Let (X,M,G) be a grill minimal space and A ⊆ X . An operator ()∗M : P(X) → P(X) is defined by
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()∗M(A)(G) = {x ∈ X : U ∩A ∈ G for every U ∈ M(x)}

where M(x) = {U ∈ M : x ∈ U}.

Theorem 9. [8] Let X be nonempty subset. τs ⊆ P(X) is called a supra topology on X if τs satisfies the following conditions:

1. ∅, X ∈ τs

2. The arbitrary union of the sets belonging to τs belongs to τs.

2 γM Function in Grill Minimal Spaces

Definition 10. Let (X,M,G) be a grill minimal space and A ⊆ X . An operator γM : P(X) → P(X) is defined by

γM(A)(G) = {x ∈ X : m-sCl(U) ∩A ∈ G for every U ∈ M(x)}

and is called the minimal grill semi-closure (MGSC) function of A with respect to G and M. Sometimes, we write briefly γM(A) instead of
γM(A)(G).

Theorem 11. Let (X,M,G) be a grill minimal space and A ⊆ X . Then,

(A)∗M ⊆ γM(A)(G)

.

Proof: Let x ∈ (A)∗M. Then U ∩A ∈ G for every U ∈ M(x). Therefore (U ∩A) ⊆ (m-sCl(U) ∩A) ∈ G from the definition of grill.
Consequently, x ∈ γM(A)(G). □

Let us show that the inclusion in the above theorem is strictly hold.

Example 12. Let M = {X, ∅, {a, b}, {b, c}} be a minimal space on X = {a, b, c, d} with a grill G = P(X) \ {∅}. Consider the subset
A = {d}. Then,

(A)∗M = {d} ⫋ γM(A) = X

Theorem 13. Let (X,M) be a minimal space, A,B ⊆ X and G, L be two grills on X .

1. If A /∈ G, then γM(A) = ∅.
2. γM(∅) = ∅.
3. If A ⊆ B, then γM(A) ⊆ γM(B).
4. γM(A) is minimal closed. That is, γM(A) = m-Cl(γM(A)).
5. If G ⊆ L, then γM(A)(G) ⊆ γM(A)(L).

Proof:

1. Let A /∈ G. From the definition of grill, (m-sCl(U) ∩A) /∈ G for every U ∈ M. Therefore γM(A) = ∅.
2. It is obvious from 1.
3. Let x ∈ γM(A). So, (m-sCl(U) ∩A) ∈ G for everyU ∈ M(x). From the definition of grill, (m-sCl(U) ∩A) ⊆ (m-sCl(U) ∩B) ∈ G.
Therefore x ∈ γM(B). That is, γM(A) ⊆ γM(B).
4. We have γM(A) ⊆ m-Cl(γM(A)). Now, we must show that m-Cl(γM(A)) ⊆ γM(A). Let x ∈ m-Cl(γM(A)). Then, (U ∩
γM(A)) ̸= ∅ for every U ∈ M(x). There exists y ∈ X such that y ∈ U and y ∈ γM(A). Therefore U ∈ M(y). Since y ∈ γM(A),
m-sCl(U) ∩A ∈ G. Consequently, x ∈ γM(A). That is, γM(A) = m-Cl(γM(A)).
5. Let G ⊆ L and x ∈ γM(A)(G). Therefore m-sCl(U) ∩A ∈ G for every U ∈ M(x). Since G ⊆ L, m-sCl(U) ∩A ∈ L for every U ∈
M(x). Therefore γM(A)(G) ⊆ γM(A)(L).

□

A minimal space is called "minimal space with the property (I)" if the finite intersection of minimal open sets is minimal open.

Theorem 14. Let (X,M,G) be a grill minimal space with the property (I) and A,B ⊆ X . Then,

γM(A ∪B) = γM(A) ∪ γM(B)

.

Proof: From Theorem 13-3), γM(A) ⊆ γM(A ∪B) and γM(B) ⊆ γM(A ∪B). Therefore γM(A) ∪ γM(B) ⊆ γM(A ∪B). Now, we
must show that γM(A ∪B) ⊆ γM(A) ∪ γM(B). Let x /∈ (γM(A) ∪ γM(B)). There exists U, V ∈ M(x) such that (m-sCl(U) ∩A) /∈
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G and (m-sCl(V ) ∩B) /∈ G. From the property (I), (U ∩ V ) ∈ M(x). Suppose that m-sCl(U ∩ V ) ∩ (A ∪B) ∈ G. Then,

m-sCl(U ∩ V ) ∩ (A ∪B) ⊆ ((m-sCl(U) ∩m-sCl(V )) ∩ (A ∪B)

⊆ (m-sCl(U) ∩A) ∪ (m-sCl(V ) ∩B) ∈ G
⇒ (m-sCl(U) ∩A) ∈ G or (m-sCl(V ) ∩B) ∈ G

. This is a contradiction. Therefore m-sCl(U ∩ V ) ∩ (A ∪B) /∈ G. That is, x /∈ γM(A ∪B). Consequently, γM(A ∪B) ⊆ γM(A) ∪
γM(B). □

Definition 15. [3] The minimal structure (X,M) is said to be m-regular if for each m-closed set F and each x /∈ F there exist disjoint
m-open sets U and V such that x ∈ U and F ⊆ V .

Lemma 16. [3] If the minimal structure (X,M) is m-regular, for each x ∈ X and each m -open set U containing x, there exists a m-open
set W such that x ∈W ⊆ m-Cl(W ) ⊆ U .

Theorem 17. Let (X,M,G) be a m-regular grill minimal space with the property (I) and A ⊆ X . If U ∈ M, then

U ∩ γM(A) = U ∩ γM(U ∩A)

.

Proof: Since γM(U ∩A) ⊆ γM(A), U ∩ γM(U ∩A) ⊆ U ∩ γM(A). Conversely, let x ∈ U ∩ γM(A). Therefore x ∈ U and x ∈
γM(A). Since (X,M) is m-regular, there exists W ∈ M(x) such that x ∈W ⊆ m-Cl(W ) ⊆ U . Let V be any m-open containing x.
Then, V ∩W ∈ M(x). Since x ∈ γM(A), m-sCl(W ∩ V ) ∩A ∈ G. Moreover, the definition of grill,

m-sCl(V ∩W ) ∩A ⊆ (m-sCl(V ) ∩m-sCl(W )) ∩A
⊆ (m-sCl(V ) ∩m-Cl(W )) ∩A
⊆ m-sCl(V ) ∩ (U ∩A) ∈ G

. Therefore x ∈ γM(U ∩A). Consequently, U ∩ γM(A) ⊆ U ∩ γM(U ∩A).
□

Theorem 18. Let (X,M,G) be a grill minimal space with the property (I) and A,B ⊆ X . Then,

γM(A) \ γM(B) = γM(A \B) \ γM(B)

.

Proof: Since γM(A \B) ⊆ γM(A), γM(A \B) \ γM(B) ⊆ γM(A) \ γM(B). Conversely,

γM(A) = γM((A \B) ∪ (A ∩B))

= γM(A \B) ∪ γM(A ∩B)

⊆ γM(A \B) ∪ γM(B)

and therefore γM(A) \ γM(B) ⊆ γM(A \B) \ γM(B). The desired result is obtained. □

Theorem 19. Let (X,M,G) be a grill minimal space with the property (I). If B /∈ G, then

γM(A ∪B) = γM(A) = γM(A \B)

.

Proof: From Theorem 13-1., Theorem 14. and Theorem 18., γM(A ∪B) = γM(A) ∪ γM(B) = γM(A) = γM(A \B). □

3 ψγ
MG-Operator

Definition 20. Let (X,M,G) be a grill minimal space and A ⊆ X . An operator ψγ
MG : P(X) → M is defined as

ψγ
MG(A) = {x ∈ X : there exist a U ∈ M such that (m-sCl(U) \A) /∈ G}

= X \ γM(X \A)

.
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Theorem 21. Let (X,M,G) be a grill minimal space and A,B ⊆ X .

1. ψγ
MG(A) is m-open.

2. If A ⊆ B, then ψγ
MG(A) ⊆ ψγ

MG(B).
3. ψγ

MG(ψ
γ
MG(A)) = X \ γM(γM(X \A))

4. ψγ
MG(A) = ψγ

MG(ψ
γ
MG(A)) if and only if γM(X \A) = γM(γM(X \A))

Proof:

1. From Theorem 13-4. and the definition ψγ
MG(A), it is clear.

2. From Theorem 13-3., it is obvious.
3.

ψγ
MG(ψ

γ
MG(A)) = ψγ

MG(X \ γM(X \A))

= X \ γM(X \ (X \ γM(X \A))

= X \ γM(γM(X \A))

4. From 3),

ψγ
MG(ψ

γ
MG(A)) = ψγ

MG(A) ⇔ X \ γM(γM(X \A)) = X \ γM(X \A)

⇔ γM(γM(X \A)) = γM(X \A).

□

Theorem 22. Let (X,M,G) be a grill minimal space with the property (I) and A,B ⊆ X .

1. ψγ
MG(A ∩B) = ψγ

MG(A) ∩ ψ
γ
MG(B)

2. If A /∈ G, then ψγ
MG(A) = X \ γM(X)

3. If B /∈ G, then ψγ
MG(A \B) = ψγ

MG(A)
4. If B /∈ G, then ψγ

MG(A ∪B) = ψγ
MG(A)

Proof:

1. Using Theorem 14.,

ψγ
MG(A ∩B) = X \ γM(X \ (A ∩B))

= X \ [γM(X \A) ∪ γM(X \B)]

= [X \ γM(X \A)] ∩ [X \ γM(X \B)]

= ψγ
MG ∩ ψγ

MG(B)

2. Let A /∈ G. Then, X \ γM(X \A) = X \ γM(X) from Theorem 19. Therefore ψγ
MG(A) = X \ γM(X).

3. From Theorem 14. and 19.,

ψγ
MG(A \B) = X \ γM(X \ (A \B))

= X \ γM((X \A) ∪B)

= X \ [γM(X \A) ∪ γM(B)]

= X \ γM(X \A)

= ψγ
MG(A)

.
4. Using Theorem 19.,

ψγ
MG(A ∪B) = X \ γM(X \ (A ∪B))

= X \ γM((X \A) ∩ (X \B))

= X \ γM((X \A) \B)

= X \ γM(X \A)

= ψγ
MG(A)

.
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□

Theorem 23. Let (X,M,G) be a grill minimal space and τγM = {A ⊆ X : A ⊆ ψγ
MG(A)}.

1. ∅, X ∈ τγM .
2. τγM is closed under arbitrary union.

That is, τγM is a supra topology on X .

Proof: It is obvious that ∅, X ∈ τγM. Let {Aα}α∈I be a family of subsets of τγM for any index set I . Since Aα ⊆ ψγ
MG(Aα) for every α ∈ I ,

Aα ⊆ ψγ
MG(Aα) ⊆ ψγ

MG(∪α∈IAα). Then, ∪α∈IAα ⊆ ψγ
MG(∪α∈IAα). Hence ∪α∈IAα ∈ τγM. □

4 Conclusion

The properties of both the minimal grill semi-closure (MGSC) function and the operator ψγ
MG(A) have been examined. A new supra topology

has been created with the help of the operator ψγ
MG(A).
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1 Introduction

In this work, we study following fourth-order parabolic equation with variable exponents ut +∆2u = uq(x), x ∈ Ω, t > 0,

u (x, t) = ∂u
∂v (x, t) = 0, x ∈ ∂Ω,

u (x, 0) = u0 (x) , x ∈ Ω,

(1)

where Ω ⊂ Rn (n ≥ 3) is a bounded domain with smooth boundary ∂Ω, and u0 (x) ≥ 0.
The problem (1) occurs in many mathematical models of applied science, such as electro-rheological fluids, heat transfer, chemical reactions,

population dynamics, etc., The interested readers may refer to [1, 2] and the references therein.
Wu et al. [3] considered the following semilinear parabolic equation with variable exponent

ut −∆u = uq(x).

They proved the blow up of solutions. Later, many authors studied the blow up of solutions the same problem under different conditions (see
[4–6]). Recently, some authors studied the partial diffirential equations with variable exponents (see [7–10]).

2 Preliminaries

Let q(x) satisfy the following condition:

1 < q− := inf
x∈Ω

q (x) ≤ q (x) ≤ q+ := sup
x∈Ω

q (x) < ∞, (2)

∀z, ξ ∈ Ω, |z − ξ| < 1, |q (z)− q (ξ)| ≤ ω (z − ξ) , (3)

where

lim
τ→0+

ω (τ) ln
1

τ
= C < ∞.

By Lq(.) (Ω) we denote the space of measurable functions u (x) on Ω such that

Aq(.) (f) =

∫
Ω

|u (x)|q(x) < ∞.
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The space Lq(.) (Ω) is a Banach space in [11]. It follows directly from the definition that

min
{
∥u∥q

−

q(.)
, ∥u∥q

+

q(.)

}
≤ Aq(.) (u) ≤ max

{
∥u∥q

−

q(.)
, ∥u∥q

+

q(.)

}
. (4)

By Corollary 3.34 in [11], we know Lq++1 (Ω) ↪→ Lq(x)+1 (Ω) . And then according to the embedding H2
0 (Ω) ↪→ Lq++1 (Ω) and Poincàre

inequality, we have
∥u∥q(.)+1 ≤ B ∥∆u∥2 , (5)

where 1 < q− ≤ q (.) ≤ q+ ≤ K+4
K−4 (K > 4) and B is the embedding constant. Set

E1 =
1

q− + 1

[
q+ − 1

2
Bq++1α

q++1
2

1 +
q− − 1

2
Bq−+1α

q−+1
2

1

]
, (6)

where α1 satisfies
1

q− + 1

[
Bq++1

(
q+ + 1

)
α

q+−1
2

1 +Bq−+1
(
q− + 1

)
α

q−−1
2

1

]
= 1. (7)

Set

E1 =

(
q+ − 1

q− − 1

) 2

q++1

α1

2
− 1

q− + 1

Bq++1
(
q+ − 1

q− − 1

) q+−1

q++1

α
q++1

2
1 +Bq−+1

(
q+ − 1

q− − 1

) q−−1

q++1

α
q−+1

2
1

 (8)

and

E (t) =
1

2
∥∆u∥2 −

∫
Ω

1

q (x) + 1
uq(x)+1 (x, t) dx. (9)

We have the following result:

Theorem 1. Suppose that q (x) satisfies the conditions (2)-(3), and the following assumptions hold:

(H1) E (0) < E1, ∥∆u0∥2 > α1

(H2)
√

2q+ − 1 < q− ≤ q+ ≤ K+2
K−2 .

Then the solution of problem (1) blows up in finite time.

3 Main Result

To prove Theorem 1, we require the following lemmas.

Lemma 1. For t ≥ 0, E(t) is a nonincreasing function.

Proof: Multiplying the first equation of (1) by ut and integrating over Ω, by using integrating by parts, we get

E
′
(t) = ∥ut∥2 ≤ 0.

□

Lemma 2. Assume that u is a solution of problem (1). If E (0) < E1 and ∥∆u0∥2 > α1, then there exists a positive constant α2 > α =(
q+−1
q−−1

) 2

q++1 α1, such that

∥∆u∥2 ≥ α2, ∀t ≥ 0, (10)

and ∫
Ω

1

q (x) + 1
uq(x)+1dx ≥ 1

q− + 1
Bq++1α

q++1
2

2 +Bq−+1α
q−+1

2
2 . (11)

Proof: By the (5) and (9) we have

E (t) ≥ 1

2
∥∆u∥2 − 1

q− + 1

∫
Ω

uq(x)+1dx.

≥ 1

2
∥∆u∥2 − 1

q− + 1
max

{
∥u∥q

++1
q(.)+1,Ω

, ∥u∥q
−+1

q(.)+1,Ω

}
=

1

2
α− 1

q− + 1

(
Bq++1α

q++1
2 +Bq++1α

q−+1
2

)
= h (α) , (12)

where α = ∥∆u∥2 .
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It is easy to verify that h is increasing for 0 < α < α1, decreasing for α > α1; h(α) → −∞ as α → +∞ and h(α1) = E1, where E1 and
α1 are given respectively in (6) and (7). Since E(0) < E1, there exists an α2 > α > α1 such that h(α2) = E(0). Let α0 =∥ ∆u0 ∥ , then
we have h(α0) ≤ E(0) = h(α2) by (12), which implies that α0 ≥ α2 since α0, α2 > α1. To prove (10), we suppose on the contrary that
∥ ∆u(·, t) ∥2< α2 for some t0 > 0. By the continuity of ∥ ∆u(·, t) ∥2 , we may choose

E(0) = h(α2) < h
(
∥ ∆u(·, t) ∥2

)
≤ E (t0) ,

this contradicts the conclusion of Lemma 1. From (9) we get

1

2
∥∆u∥2 ≤ E(0) +

1

q (x) + 1

∫
Ω

uq(x)+1dx,

which implies that

1

q (x) + 1

∫
Ω

uq(x)+1dx ≥ 1

2
∥∆u∥2 − E(0) ≥ α2

2
− h(α2)

=
1

q− + 1

(
Bq++1α

q++1
2

2 +Bq−+1α
q−+1

2
2

)
.

□

Lemma 3. For all t > 0,

0 < H (0) < H (t) ≤
∫
Ω

uq(x)+1

q (x) + 1
dx (13)

where

H (t) = E1 − E(t), t ≥ 0. (14)

Proof: By Lemma 1, we have H
′
(t) ≥ 0, that is H (t) ≥ H (0) > 0, t ≥ 0. (9) and (14) yield

H (t) = E1 − 1

2
∥∆u∥2 +

∫
Ω

uq(x)+1

q (x) + 1
dx.

Also, (10)-(12) we have

E1 − 1

2
∥∆u∥2 ≤ E1 − α2

2
≤ E1 − α1

2
≤ 0, t > 0.

□

Proof of Theorem 1. Set

G (t) =
1

2

∫
Ω

u2dx,

then

G
′
(t) =

∫
Ω

uut =

∫
Ω

uq(x)+1dx−
∫
Ω

|∆u|2 dx. (15)

From (9), (14) and (15), we have

G
′
(t) =

∫
Ω

q (x)− 1

q (x) + 1
uq(x)+1dx− 2E1 + 2H (t) . (16)

Moreover, by (6) and (11), we get

2E1 ≤
(
q+ − 1

)
Bq++1α

q++1
2

1 +
(
q− − 1

)
Bq−+1α

q−+1
2

1

Bq++1α
q++1

2
2 +Bq−+1α

q−+1
2

2

∫
Ω

1

q (x) + 1
uq(x)+1dx. (17)

By (13), (16) and (17), we can deduce the following inequality

G
′
(t) ≥ C

∫
Ω

uq(x)+1dx,
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where

C =

Bq++1

[(
q− − 1

)
α

q++1
2

2 −
(
q+ − 1

)
α

q++1
2

1

]
(
Bq++1α

q++1
2

2 +Bq−+1α
q−+1

2
2

)
(q+ + 1)

> 0.

By (4) and embedding Lq(.)+1 (Ω) ↪→ L2 (Ω) in [11], we get

G
′
(t) ≥ Cmin

{
∥u∥q

−+1
2 , ∥u∥q

−+1
2

}
. (18)

Then, inequality (18) and Gronwall’s inequality yield

G
q−−1

2 (t) ≥ 1

G
1−q−

2 (0)− q−−1
2 C2t

,

where C2 = 2Cmin

{(
1
C

)q−+1
,
(
1
C

)q++1
}
min

{
1, G

q+−q−
2 (0)

}
, C̃ is a positive constant depending on Ω, q+. Then G (t) blows up

at a finite time T ∗ ≤ G
1−q−

2 (0)
q−−1

2 C2

, and so does u (x, t) .

4 Conclusion

We studied a nonlinear fourth-order parabolic equation with variable exponents, we proved the blow up of solutions with positive initial energy.
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Abstract: The Berezin symbol X̃ and the Berezin number of an operator X on the reproducing kernel Hilbert space H(Λ) over
some set Λ with the reproducing kernel are defined, respectively, by

X̃(ϱ) =

〈
X

kϱ
∥kϱ∥

,
kϱ

∥kϱ∥

〉
, ϱ ∈ Λ and ber(X) = sup

ϱ∈Λ
|X̃(ϱ)|.

By using this bounded function X̃, we discover a few inequalities pertaining to Berezin number inequalities of functional Hilbert
space operators. There are also some conclusions drawn using Hermite-Hadamard inequality. We strengthen and broaden a few
inequalities in relation to Specht’s ratio. With these enhancements, we also demonstrate a number of new inequalities for the
Berezin norm and Berezin radius of operators.

Keywords: Berezin number, Hermite-Hadamard inequality, Specht’s ratio, positive operator.

1 Introduction

Inequalities are used in mathematical analysis to analyze the properties of operators in the form of upper and lower bounds. Mathematical
inequalities are the most successful means of describing and offering solutions to real-world issues in practically all fields of science and engi-
neering. The boundedness property of many types of operators studied in analysis courses, including mathematical and functional analysis, is a
significant consideration when developing theory and applications. Upper and lower bounds, for example, are used for developing the operator
norm, which is essential when dealing with related difficulties. Many researchers in mathematics and mathematical physics are interested in
the Berezin transform of an operator defined on the reproducing kernel Hilbert space. In this context, several mathematicians have conducted
substantial research on the Berezin radius inequality given in (2) (see [17–19]). In fact, it is of interest to academics to get refinements and
extensions of this disparity [8, 9, 26]. The purpose of this research is to improve and generalize some inequalities with respect to Specht’s ratio
using the Berezin transform for operators on the reproducing kernel Hilbert space. Furthermore, we used the previously described refinements
to show several additional inequalities for the Berezin norm and Berezin radius of operators. Related results are contained in [30, 31]. We will
now outline the preliminary concepts needed to proceed with the findings of this investigation.

Recall that reproducing kernel Hilbert space (shortly, RKHS) is the Hilbert space H = H (Λ) of complex-valued functions on some set Λ
such that the evaluation functionals φϱ(f) = f(ϱ), ϱ ∈ Λ, are continuous on H. Then, by the Riesz representation theorem, for each ϱ ∈ Λ
there exists a unique function kϱ ∈ H such that f (ϱ) = ⟨f,kϱ⟩ for all f ∈ H. The family {kϱ : ϱ ∈ Λ} is called the reproducing kernel of
the space H. The Hardy space H2(D), where D = {z ∈ C : |z| < 1} is the unit disc, the Bergman space L2

a(D), the Dirichlet space D2(D)
and the Fock space F (C) are example of RKHSs. Aronzajn [1], for example, provides a comprehensive treatment of the theory of RKHSs and
reproducing kernels.

The Berezin transform associates smooth functions with operators on Hilbert spaces of analytic functions.

Definition 1. Let H be an RKHS on a set Λ and let T be a bounded linear operator on H.
(i) For ϱ ∈ Λ, the Berezin transform of X at ϱ (or Berezin symbol of X) is

X̃ (ϱ) :=
〈
Xk̂ϱ, k̂ϱ

〉
H
.

(ii) The Berezin range of X (or Berezin set of X) is

Ber(X) := Range(X̃) =
{
X̃(ϱ) : ϱ ∈ Λ

}
.

(iii) The Berezin radius of X (or Berezin number of X) is

ber(X) := sup
ϱ∈Λ

∣∣∣X̃(ϱ)
∣∣∣ .
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We also define the following so-called Berezin norm of operators X ∈ L (H) :

∥X∥Ber := sup
ϱ∈Λ

∥∥∥Xk̂ϱ

∥∥∥ .
It is easy to see that actually ∥X∥Ber determines a new operator norm in L (H (Λ)) (since the set of reproducing kernels {kϱ : ϱ ∈ Λ} span the
space H (Λ)). It is also trivial that ber (X) ≤ ∥X∥Ber ≤ ∥X∥ (for more facts about reproducing kernel Hilbert spaces and Berezin symbol,
see, Aronzajn [1] and Berezin [4]).

Berezin range and Berezin radius of operators are new numerical characteristics of operators on the RKHS which are presented by Karaev
in [28]. For the basic properties and facts on these new concepts, see [19, 29]

For each bounded operator X on H, the Berezin transform X̃ is a bounded real-analytic function on Λ. Properties of the operator X are
often reflected in properties of the Berezin transform X̃. The Berezin transform itself was introduced by F. Berezin in [4] and has proven to be a
importal tool in operator theory, as many foundational properties of significant operators are encoded in their Berezin transforms. The Berezin
set and number, also denoted by Ber(X) and ber(X), respectively, were purportedly first formally introduced by Karaev in [28].

In an RKHS, the Berezin range of an operator X is a subset of the numerical range of X,

W (X) := {⟨Xx, x⟩ : x ∈ H and ∥x∥ = 1} .

Hence
ber(X) ≤ w(X) := sup {|⟨Xx, x⟩| : x ∈ H and ∥x∥ = 1}

(the numerical radius of operator X ). The numerical range of an operator has some interesting properties. For example, it is well known
that the spectrum of an operator is contained in the closure of its numerical range. For basic properties of the numerical radius, we refer to
[12, 33, 34, 39].

It is well-known that
1

2
∥X∥ ≤ w (X) ≤ ∥X∥ (1)

and
ber (X) ≤ w (X) ≤ ∥X∥ (2)

for any X ∈ L (H (Λ)) .
Suppose that (H, ⟨., .⟩) is a complex Hilbert space and that L (H) denotes the C∗-algebra of all bounded linear operators on H. We recall

some definitions and concepts from [37].
An operator X ∈ L (H) is positive, defined by X ≥ 0, if X is self-adjoint (X = X∗) and ⟨Xx, x⟩ ≥ 0 or equivalently, X is positive if and

only if X = Y ∗Y for some operator Y ∈ L (H). In particular, for some scalar m and M , we can write mI ≤ X ≤ MI if m ≤ ⟨Xx, x⟩ ≤ M

for every x ∈ H, where I denote the identity operator of L (H). The absolute value of X is defined by |X| = (X∗X)
1
2 . Note that for a

self-adjoint operator X , mI ≤ X ≤ MI if and only if sp (X) ⊂ [m,M ]. Also the set of all positive invertible operators is defined by L+ (H).
Let X ∈ L+ (H) and let Y be a positive operator L (H). The operator υ−weighted geometric mean of X and Y for υ ∈ [0, 1] is denoted

by

X♮υY = X
1
2

(
X− 1

2 Y X− 1
2

)
X

1
2 .

Recall that a linear map φ : L (H) → L (K) is positive, if it keeps things positive. It is normalized if φ (IH) = IK. The Specht’s ratio [13, 38]
was denoted by

S (h) =
h

1
h−1

e log h
1

h−1

(h ̸= 1)

for a positive real number h, and it has some properties as follows:
(i) S (1) = 1 and S (h) = S

(
1
h

)
> 1 for h > 0.

(ii) S (h) is a monotone increasing function on (1,∞).
(iii) S (h) is a monotone decreasing function on (0, 1).

Some results have given in the following with related to Specht’s ratio:

Lemma 1 ([15]). For a, b > 0 and υ ∈ [0, 1], it follows that (1− υ) a+ υb ≥ S
((

b
a

)r)
a1−vbυ , where r = min {υ, 1− υ} and S (.) is

the Specht’s ratio.

Theorem 1 ([15]). Let X and R be two positive operators and let m, m′, M , M ′ be positive real numbers satisfying the following conditions
(i) 0 ≤ m′I ≤ X ≤ mI ≤ MI ≤ Y ≤ M ′I or (ii) 0 ≤ m′I ≤ Y ≤ mI ≤ MI ≤ X ≤ M ′I with h = M

m and h′ = M ′

m′ . Then

(1− υ)X + υY ≥ S
(
hr

)
X♮υY ≥ X♮υY

≥ S
(
hr

){
(1− υ)X−1 + υY −1

}−1

≥
{
(1− υ)X−1 + υY −1

}−1

where υ ∈ [0, 1], r = min {υ, 1− υ} and S (.) is the Specht’s ratio.

Remark 1. If X = aI , R = bI , υ = 1
2 and r = 1

2 in Theorem 1, then

S
(√

h
)√

ab ≤ a+ b

2
, (3)

where S (.) is the Specht’s ratio.
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In 1994, Furuta [14] showed the following inequallity:∣∣∣〈X1 |X1|α+β−1 x1, x2

〉∣∣∣2 ≤
〈
|X1|2α x1, x1

〉〈
|X1|2β x2, x2

〉
(4)

for any x1, x2 ∈ H and α, β ∈ [0, 1] with α+ β ≥ 1.
In Dragomir’s [11] a work, Dragomir provides a useful extension of Furuta’s inequality, as follow:

|⟨X4X3X2X1x1, x2⟩|2 ≤
〈
X∗

1 |X2|2 X1x1, x1

〉〈
X4 |X3|2 X∗

4x2, x2

〉
(5)

for any X4, X3, X2, X1 ∈ L (H) and any vectors x1, x2 ∈ H. The inequality in (5) holds if and only if the vectors X2X1x1 and X∗
4X

∗
3x2

are linearly depended in H.
In [27], Huban et al. proved the following results,

ber (X) ≤ 1

2

∥∥|X|+
∣∣X∗∣∣∥∥

ber
≤ 1

2

(
∥X∥ber +

∥∥∥X2
∥∥∥ 1

2

ber

)
≤ ∥X∥ber , (6)

and

berr (X) ≤ 1

2

∥∥∥|X|2rζ +
∣∣X∗∣∣2r(1−ζ)

∥∥∥
ber

, r ≥ 1, 0 < ζ < 1. (7)

Başaran and Gürdal in [7, Theorem 2.3] improved the left hand of inequality (7) with help of improvement of Hölder-McCarthy’s inequality.
Huban et al. in [26, Theorem 3.11] showed the following inequality by the product of two operators

berr
(
Y ∗X

)
≤ 1

2

∥∥∥|X|2r + |Y |2r
∥∥∥
ber

, r ≥ 1. (8)

2 Auxiliary Theorems

In this section, we present some useful lemmas that we need them for improving and generalizing some inequalities.

Lemma 2. ([32]) Let X ∈ L (H) and for any x, y ∈ H.
(i) If 0 ≤ α ≤ 1, then

|⟨Xx, y⟩| ≤
〈
|X|2α x, x

〉 1
2
〈∣∣X∗∣∣2(1−α)

y, y
〉 1

2
. (9)

(ii) If f and g is non-negative continuos functions on [0,∞) satisfying f (X) g (X) = X , then

|⟨Xx, y⟩| ≤
√

∥f (|X|)x∥ ∥g (|X∗|) y∥. (10)

For a convex function f : J → R and for any a, b ∈ J , the well-known Hermite-Hadamard inequality (for more information on the Hermite-
Hadamard inequality see the relevant reference [10]) obtain the following inequality:

f

(
a+ b

2

)
≤

∫1
0
f (ta+ (1− t) b) dt ≤ f (a) + f (b)

2
(11)

Mond and Pečarić [36] proved the following result.

Lemma 3. Let X ∈ L (H) be a self-adjoint operator with spectrum contained in the interval J , and x ∈ H be a unit vector. If f is a convex
function on J , then

f (⟨Xx, x⟩) ≤ ⟨f (X)x, x⟩ . (12)

If f is concave the above inequality is reversed.

The third lemma in the this section is a direct result of [3].

Lemma 4. ([35, page 5]) Let f be a twice differentiable on [a, b]. If f is a convex such that f ′′ ≥ µ = minx∈[a,b] f (x) > 0. Then

f

(
a+ b

2

)
≤ f (a) + f (b)

2
− 1

8
µ (b− a)2 . (13)

3 Main results

Now, let’s prove the first theorem.

Theorem 2. Let H = H (Λ) be a RKHS. If X,Y, T ∈ L (H), let f and g be nonnegative continous function on [0,∞) satisfying the relation
f (t) g (t) = t for all t ∈ [0,∞), and let τ be a nonnegative increasing convex function on [0,∞) and twice differentiable such that τ ′′ ≥
µ > 0, with τ (0) = 0. Also let the positive real numbers m, m′, M , M ′ satisfy the following conditions (i) 0 ≤ m′I ≤ ˜Y ∗f2 (|T |)Y (ϱ) ≤
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mI ≤ MI ≤ ˜X∗g2 (|T ∗|)X (ϱ) ≤ M ′I or (ii) 0 ≤ m′I ≤ ˜X∗g2 (|T ∗|)X (ϱ) ≤ mI ≤ MI ≤ ˜Y ∗f2 (|X|)Y (ϱ) ≤ M ′I, with h = M
m

and h′ = M ′

m′ , then

τ
(
ber

(
X∗TR

))
≤ 1

2S
(√

h
) ∥∥∥τ (Y ∗f2 (|T |)Y

)
+ τ

(
X∗g2

(∣∣T ∗∣∣)X)∥∥∥
ber

− inf
ϱ∈Λ

ζ (ϱ) , (14)

whenever

ζ (ϱ) =
1

8S
(√

h
)µ(

˜X∗g2 (|T ∗|)X − Y ∗f2 (|T |)Y (ϱ)
)2

where S (.) is the Specht’s ratio.

Proof: Let k̂ϱ be a normalized reproducing kernel. From inequality (10), we have∣∣∣〈X∗TY k̂ϱ, k̂ϱ
〉∣∣∣ = ∣∣∣〈TY k̂ϱ, Xk̂ϱ

〉∣∣∣
≤

√〈
Y ∗f2 (|T |)Y k̂ϱ, k̂ϱ

〉〈
X∗g2 (|T ∗|)Xk̂ϱ, k̂ϱ

〉
(15)

≤ 1

2S
(√

h
) (〈

Y ∗f2 (|T |)Y k̂ϱ, k̂ϱ
〉
+

〈
X∗g2

(∣∣T ∗∣∣)Xk̂ϱ, k̂ϱ
〉)

=
1

2S
(√

h
) (〈(

Y ∗f2 (|T |)Y +X∗g2
(∣∣T ∗∣∣)X)

k̂ϱ, k̂ϱ
〉)

.

It follows from last inequality and (15) that∣∣∣〈X∗TY k̂ϱ, k̂ϱ
〉∣∣∣ ≤ 1

2S
(√

h
) (〈(

Y ∗f2 (|T |)Y +X∗g2
(∣∣T ∗∣∣)X)

k̂ϱ, k̂ϱ
〉)

.

Then we get

τ
(∣∣∣〈X∗TY k̂ϱ, k̂ϱ

〉∣∣∣) ≤ τ

 1

2S
(√

h
) (〈(

Y ∗f2 (|T |)Y +X∗g2
(∣∣T ∗∣∣)X)

k̂ϱ, k̂ϱ
〉)

≤ 1

S
(√

h
)τ (1

2

(〈(
Y ∗f2 (|T |)Y +X∗g2

(∣∣T ∗∣∣)X)
k̂ϱ, k̂ϱ

〉))
(16)

≤ 1

S
(√

h
)
τ

(〈
Y ∗f2 (|T |)Y k̂ϱ, k̂ϱ

〉)
+ τ

(〈
X∗g2 (|T ∗|)Xk̂ϱ, k̂ϱ

〉)
2


− 1

8
µ
(〈

X∗g2
(∣∣T ∗∣∣)Xk̂ϱ, k̂ϱ

〉
−

〈(
Y ∗f2 (|T |)Y

)
k̂ϱ, k̂ϱ

〉)2
(by (13))

≤ 1

2S
(√

h
) 〈

τ
(
Y ∗f2 (|T |)Y

)
k̂ϱ, k̂ϱ

〉
+

〈
τ
(
X∗g2

(∣∣T ∗∣∣)X)
k̂ϱ, k̂ϱ

〉

− 1

8S
(√

h
)µ(〈

X∗g2
(∣∣T ∗∣∣)Xk̂ϱ, k̂ϱ

〉
−

〈(
Y ∗f2 (|T |)Y

)
k̂ϱ, k̂ϱ

〉)2
(by (12))

=
1

2S
(√

h
) [〈(

τ
(
Y ∗f2 (|T |)Y

)
+ τ

(
X∗g2

(∣∣T ∗∣∣)X))
k̂ϱ, k̂ϱ

〉]

− 1

8S
(√

h
)µ(〈

X∗g2
(∣∣T ∗∣∣)Xk̂ϱ, k̂ϱ

〉
−

〈(
Y ∗f2 (|T |)Y

)
k̂ϱ, k̂ϱ

〉)2
,

where inequality (16) follows from τ (αt) ≤ ατ (t)

(
α = 1

S(
√
h)

≤ 1

)
. Hence

τ
(∣∣∣〈X∗TY k̂ϱ, k̂ϱ

〉∣∣∣) ≤ 1

2S
(√

h
) [〈(

τ
(
Y ∗f2 (|T |)Y

)
+ τ

(
X∗g2

(∣∣T ∗∣∣)X))
k̂ϱ, k̂ϱ

〉]
− ζ (ϱ) ,

whenever

ζ (ϱ) =
1

8S
(√

h
)µ(

˜X∗g2 (|T ∗|)X − Y ∗f2 (|T |)Y (ϱ)
)2

.
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Taking the supremum over ϱ ∈ Λ in the above inequality, we get

sup
ϱ∈Λ

(
τ
(∣∣∣〈X∗TY k̂ϱ, k̂ϱ

〉∣∣∣)) ≤ sup
ϱ∈Λ

 1

2S
(√

h
) [〈(

τ
(
Y ∗f2 (|T |)Y

)
+ τ

(
X∗g2

(∣∣T ∗∣∣)X))
k̂ϱ, k̂ϱ

〉]
− ζ (ϱ)


Thus

τ
(
ber

(
X∗TY

))
≤ 1

2S
(√

h
) ∥∥∥τ (Y ∗f2 (|T |)Y

)
+ τ

(
X∗g2

(∣∣T ∗∣∣)X)∥∥∥
ber

− inf
ϱ∈Λ

ζ (ϱ) ,

whenever

ζ (ϱ) =
1

8S
(√

h
)µ(

˜X∗g2 (|T ∗|)X − Y ∗f2 (|T |)Y (ϱ)
)2

where S (.) is the Specht’s ratio.
This completes the proof and implies inequality (14). □

Remark 2. Gürdal and Başaran [21, Theorem 3] showed the inequality:

τ
(
ber

(
X∗TY

))
≤ 1

2S
(√

h
) ∥∥∥τ (Y ∗f2 (|T |)Y

)
+ τ

(
X∗g2

(∣∣T ∗∣∣)X)∥∥∥
ber

. (17)

Inequality (14) is improvement the inequality (17).

Remark 3. From Bakherad and Garayev [5, Thorem 3.5] and function f (t) = tr , for each X,Y, T ∈ L (H), proved the following general
Berezin radius inequality:

berr
(
X∗TY

)
≤ 1

2

∥∥(X∗ ∣∣T ∗∣∣X)r
+

(
Y ∗ |T |Y

)r∥∥
ber

, r ≥ 1. (18)

From inequality (18) and Theorem 2, we imply the following inequalities.

Corollary 1. We know that τ (t) = tr , r ≥ 1, is an increasing convex function on [0,∞). Let the assumption of Theorem 2 be satisfied. Then
(i) If (i) 0 < m′I < Y ∗ |T |Y ≤ mI < MI ≤ X∗ |T ∗|X < M ′I or (ii) 0 < m′I < X∗ |T ∗|X ≤ mI < MI ≤ Y ∗ |X|Y < M ′I,

with h = M
m and h′ = M ′

m′ , for positive real number m, m′, M , M ′, then

berr
(
X∗TY

)
≤ 1

2S
(√

h
) ∥∥(Y ∗ |T |Y

)r
+

(
X∗ ∣∣T ∗∣∣X)r∥∥

ber

− inf
ϱ∈Λ

1

8S
(√

h
)µ(

˜X∗ |T ∗|X − Y ∗ |T |Y (ϱ)
)2

.

(ii) If T = I holds in conditions of (i), then

berr
(
X∗Y

)
≤ 1

2S
(√

h
) ∥∥∥|X|2r + |Y |2r

∥∥∥
ber

− inf
ϱ∈Λ

1

8S
(√

h
)µ(

˜|X|2 − |Y |2 (ϱ)
)2

,

which refines inequality (8).
(iii) If X = Y = I holds in conditions of (i), then

berr (T ) ≤ 1

2S
(√

h
) ∥∥|T |r + ∣∣T ∗∣∣r∥∥

ber
− inf

ϱ∈Λ

1

8S
(√

h
)µ(

˜|T ∗| − |T | (ϱ)
)2

,

where S (.) is the Specht’s ratio.

Remark 4. Corollary 1 is improvement of [21, Corollary 1].

Special case of corollary 1 is as follow.

Corollary 2. Let the assumption of Theorem 2 be satisfied. By taking τ (t) = t2, on [0,∞), hence the required µ would be "2".
(i) If (i) 0 < m′I < Y ∗ |T |Y ≤ mI < MI ≤ X∗ |T ∗|X < M ′I or (ii) 0 < m′I < X∗ |T ∗|X ≤ mI < MI ≤ Y ∗ |T |Y < M ′I,

with h = M
m and h′ = M ′

m′ , for positive real number m, m′, M , M ′, then

ber2
(
X∗TY

)
≤ 1

2S
(√

h
) ∥∥∥(Y ∗ |T |Y

)2
+

(
X∗ ∣∣T ∗∣∣X)2∥∥∥

ber

− inf
ϱ∈Λ

1

4S
(√

h
) (

˜X∗ |T ∗|X − Y ∗ |T |Y (ϱ)
)2

,

which refines inequality (18).
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(ii) If T = I holds in conditions of (i), then

ber2
(
X∗Y

)
≤ 1

2S
(√

h
) ∥∥∥|X|4 + |Y |4

∥∥∥
ber

− inf
ϱ∈Λ

1

4S
(√

h
) (

˜|X|2 − |Y |2 (ϱ)
)2

,

which refines inequality (8) in special conditions.
(iii) If X = Y = I holds in conditions of (i), then

ber2 (T ) ≤ 1

2S
(√

h
) ∥∥∥|T |2 +

∣∣T ∗∣∣2∥∥∥
ber

− inf
ϱ∈Λ

1

4S
(√

h
) (

˜|T ∗| − |T | (ϱ)
)2

,

where S (.) is the Specht’s ratio.

Remark 5. Gürdal and Yücel [23]demonstrated the following disparities:

f (ber (X4X3X2X1)) ≤
∥∥∥f (

X∗
1 |X2|2 X1

)
+ f

(
X4 |X3|2 X∗

4

)∥∥∥
ber

(19)

− 1

8
µ

(
˜

X∗
1 |X2|2 X1 −X4 |X3|2 X∗

4 (ϱ)

)
,

f
(
ber

(
X |X|α+β−1

))
≤

∥∥∥f (
|X|2α

)
+ f

(∣∣X∗∣∣2β)∥∥∥
ber

(20)

− 1

8
µ

(
˜|X|2α − |X∗|2β (ϱ)

)
,

where X,X4, X3, X2, X1 ∈ L (H), µ ≥ 0 and α, β ∈ [0, 1] with α+ β ≥ 1.

We use the inequality (5) to prove the following theorem.

Theorem 3. Let H = H (Λ) be a RKHS. Let X4, X3, X2, X1 ∈ L (H) , let f be a non-negative increasing convex function on R and also
that f is twice differentiable such that f ′′ ≥ µ > 0, with f (0) = 0. Let the positive real numbers m, m′, M , M ′ satisfy one of the fol-
lowing conditions (i) 0 < m′I ≤ X∗

1 |X2|2 X1 ≤ mI ≤ MI ≤ X4 |X3|2 X∗
4 ≤ M ′I or (ii) 0 < m′ ≤

(
X4 |X3|2 X∗

4

)
≤ mI ≤ MI ≤

X∗
1 |X2|2 X1 ≤ M ′I, with h = M

m and h′ = M ′

m′ . Then we have

f
(∣∣∣〈X4X3X2X1k̂ϱ, k̂ω

〉∣∣∣) ≤ 1

2S
(√

h
) [〈

f
(
X∗

1 |X2|2 X1

)
k̂ϱ, k̂ϱ

〉
+

〈
f
(
X4 |X3|2 X∗

4

)
k̂ω, k̂ω

〉]
(21)

− 1

8S
(√

h
)µ(〈

X∗
1 |X2|2 X1k̂ϱ, k̂ϱ

〉
−

〈
X4 |X3|2 X∗

4 k̂ω, k̂ω
〉)2

where S (.) is the Specht’s ratio.

Proof: Let ϱ, ω ∈ Λ be arbitrary number. Using the monotoncity and convexity of increasing function f for the inequality (5), we reach

f
(∣∣∣〈X4X3X2X1k̂ϱ, k̂ω

〉∣∣∣) ≤
√

f
(〈

X∗
1 |X2|2 X1k̂ϱ, k̂ϱ

〉〈
X4 |X3|2 X∗

4 k̂ω, k̂ω
〉)

.

Now inequality (3) implies that

√
f
(〈

X∗
1 |X2|2 X1k̂ϱ, k̂ϱ

〉〈
X4 |X3|2 X∗

4 k̂ω, k̂ω
〉)

≤ f

 1

2S
(√

h
) (〈

X∗
1 |X2|2 X1k̂ϱ, k̂ϱ

〉
+

〈
X4 |X3|2 X∗

4 k̂ω, k̂ω
〉) .
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Hence,

f
(∣∣∣〈X4X3X2X1k̂ϱ, k̂ω

〉∣∣∣) ≤ f

 1

2S
(√

h
) (〈

X∗
1 |X2|2 X1k̂ϱ, k̂ϱ

〉
+

〈
X4 |X3|2 X∗

4 k̂ω, k̂ω
〉)

≤ 1

S
(√

h
)f


(〈

X∗
1 |X2|2 X1k̂ϱ, k̂ϱ

〉
+

〈
X4 |X3|2 X∗

4 k̂ω, k̂ω
〉)

2


≤ 1

2S
(√

h
) [

f
(〈

X∗
1 |X2|2 X1k̂ϱ, k̂ϱ

〉)
+ f

(〈
X4 |X3|2 X∗

4 k̂ω, k̂ω
〉)]

− 1

8S
(√

h
)µ(〈

X∗
1 |X2|2 X1k̂ϱ, k̂ϱ

〉
−

〈
X4 |X3|2 X∗

4 k̂ω, k̂ω
〉)2

≤ 1

2S
(√

h
) [〈

f
(
X∗

1 |X2|2 X1

)
k̂ϱ, k̂ϱ

〉
+

〈
f
(
X4 |X3|2 X∗

4

)
k̂ω, k̂ω

〉]

− 1

8S
(√

h
)µ(

X∗
1 |X2|2 X1k̂ϱ, k̂ϱ −

〈
X4 |X3|2 X∗

4 k̂ω, k̂ω
〉)2

,

where the second inequality follows from inequality τ (αt) ≤ ατ (t)

(
α = 1

S(
√
h)

≤ 1

)
; the third inequality follows from inequality (13);

the last inequality followa from inequality (12). We have the desired result. □

Remark 6. Theorem 3 is refinement of the [2, Lemma 6].

Corollary 3. Let X ∈ L (H) , let f be a non-negative increasing convex function on R and also that f is twice differentiable such that
f ′′ ≥ µ > 0, with f (0) = 0. Let the positive real numbers m, m′, M , M ′ satisfy one of the following conditions (i) 0 < m′I ≤ |X|2α ≤
mI ≤ MI ≤ |X∗|2β ≤ M ′I or (ii) 0 < m′ ≤ |X∗|2β ≤ mI ≤ MI ≤ |X|2α ≤ M ′I, with h = M

m and h′ = M ′

m′ . Then we have

f
(∣∣∣〈X |X|α+β−1 k̂ϱ, k̂ω

〉∣∣∣) ≤ 1

2S
(√

h
) [〈

f
(
|X|2α

)
k̂ϱ, k̂ϱ

〉
+

〈
f
(∣∣X∗∣∣2β) k̂ω, k̂ω

〉]
(22)

− 1

8S
(√

h
)µ(〈

|X|2α k̂ϱ, k̂ϱ
〉
−

〈∣∣X∗∣∣2β k̂ω, k̂ω
〉)2

where S (.) is the Specht’s ratio.

Proof: Replacing X4 by U , X2 by 1H, X3 by |X|β and X1 by |X|α in (21), we have

X4X3X2X1 = U |X|β |X|α = X |X|α+β−1 .

Then, by using

X∗
1 |X2|2 X1 = |X|2α and X4 |X3|2 X∗

4 =
∣∣X∗∣∣2β ,

we get inequality (22). □

Remark 7. Corollary 3 is refinement of the [2, Corollary 1].

Theorem 4. Let H = H (Λ) be a RKHS. Let X4, X3, X2, X1 ∈ L (H) , let f be a non-negative increasing convex function on R and also that
f is twice differentiable such that f ′′ ≥ µ > 0, with f (0) = 0. Let the positive real numbers m, m′, M , M ′ satisfy one of the following condi-
tions (i) 0 < m′I ≤ X∗

1 |X2|2 X1 ≤ mI ≤ MI ≤ X4 |X3|2 X∗
4 ≤ M ′I or (ii) 0 < m′ ≤ X4 |X3|2 X∗

4 ≤ mI ≤ MI ≤ X∗
1 |X2|2 X1 ≤

M ′I, with h = M
m and h′ = M ′

m′ . Then we have

f (ber (X4X3X2X1)) ≤
1

2S
(√

h
) ∥∥∥f (

X∗
1 |X2|2 X1

)
+ f

(
X4 |X3|2 X∗

4

)∥∥∥
ber

(23)

− 1

8S
(√

h
)µ(

˜
X∗

1 |X2|2 X1 −X4 |X3|2 X∗
4 (ϱ)

)2

,

where S (.) is the Specht’s ratio.

© CPOST 2023 101



Proof: Let ϱ, ω ∈ Λ be arbitrary number. By taking k̂ϱ = k̂ω in inequality (21), then we get

f
(∣∣∣〈X4X3X2X1k̂ϱ, k̂ϱ

〉∣∣∣) ≤ 1

2S
(√

h
) [〈

f
(
X∗

1 |X2|2 X1

)
k̂ϱ, k̂ϱ

〉
+

〈
f
(
X4 |X3|2 X∗

4

)
k̂ϱ, k̂ϱ

〉]

− 1

8S
(√

h
)µ(〈

X∗
1 |X2|2 X1k̂ϱ, k̂ϱ

〉
−

〈
X4 |X3|2 X∗

4 k̂ϱ , k̂ϱ

〉)2

=
1

2S
(√

h
) 〈(

f
(
X∗

1 |X2|2 X1

)
+ f

(
X4 |X3|2 X∗

4

))
k̂ϱ, k̂ϱ

〉

− 1

8S
(√

h
)µ(〈(

X∗
1 |X2|2 X1 −X4 |X3|2 X∗

4

)
k̂ϱ, k̂ϱ

〉)2

and

sup
ϱ∈Λ

f
(∣∣∣〈X4X3X2X1k̂ϱ, k̂ϱ

〉∣∣∣) ≤ sup
ϱ∈Λ

1

2S
(√

h
) 〈(

f
(
X∗

1 |X2|2 X1

)
+ f

(
X4 |X3|2 X∗

4

))
k̂ϱ, k̂ϱ

〉

− inf
ϱ∈Λ

1

8S
(√

h
)µ(

˜
X∗

1 |X2|2 X1 −X4 |X3|2 X∗
4 (ϱ)

)2

,

which equivalent to

f (ber (X4X3X2X1)) ≤
1

2S
(√

h
) ∥∥∥f (

X∗
1 |X2|2 X1

)
+ f

(
X4 |X3|2 X∗

4

)∥∥∥
ber

− inf
ϱ∈Λ

1

8S
(√

h
)µ(

˜
X∗

1 |X2|2 X1 −X4 |X3|2 X∗
4 (ϱ)

)2

,

and completes the proof of the theorem. □

Remark 8. Inequality (23) is better than inequality (19).

If f (t) = tn and µ = n is taken, the following corollary is an easy consequence of Theorem 4.

Corollary 4. Let X4, X3, X2, X1 ∈ L (H). Then

bern (X4X3X2X1) ≤
1

2S
(√

h
) ∥∥∥(X∗

1 |X2|2 X1

)n
+

(
X4 |X3|2 X∗

4

)n∥∥∥
ber

(24)

− inf
ϱ∈Λ

1

8S
(√

h
)n(

˜
X∗

1 |X2|2 X1 −X4 |X3|2 X∗
4 (ϱ)

)2

,

where S (.) is the Specht’s ratio.

If we take n = 2 in inequality (24), then we have the following corollary.

Corollary 5. Let X4, X3, X2, X1 ∈ L (H). Then

ber2 (X4X3X2X1) ≤
1

2S
(√

h
) ∥∥∥∥(X∗

1 |X2|2 X1

)2
+

(
X4 |X3|2 X∗

4

)2
∥∥∥∥
ber

− inf
ϱ∈Λ

1

4S
(√

h
) (

˜
X∗

1 |X2|2 X1 −X4 |X3|2 X∗
4 (ϱ)

)2

,

where S (.) is the Specht’s ratio.

Corollary 6. Let X ∈ L (H) , let f be a non-negative increasing convex function on R and also that f is twice differentiable such that
f ′′ ≥ µ > 0, with f (0) = 0. Let the positive real numbers m, m′, M , M ′ satisfy one of the following conditions (i) 0 < m′I ≤ |X|2α ≤
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mI ≤ MI ≤ |X∗|2β ≤ M ′I or (ii) 0 < m′ ≤ |X∗|2β ≤ mI ≤ MI ≤ |X|2α ≤ M ′I, with h = M
m and h′ = M ′

m′ . Then we have

f
(
ber

(
X |X|α+β−1

))
≤ 1

2S
(√

h
) ∥∥∥f (

|X|2α
)
+ f

(∣∣X∗∣∣2β)∥∥∥
ber

(25)

− inf
ϱ∈Λ

1

8S
(√

h
)µ(

˜|X|2α − |X∗|2β (ϱ)

)2

,

where S (.) is the Specht’s ratio and α, β ∈ [0, 1] with α+ β ≥ 1.

Proof: Let ϱ, ω ∈ Λ be arbitrary number. By taking k̂ϱ = k̂ω in inequality (22), then we get

f
(∣∣∣〈X |X|α+β−1 k̂ϱ, k̂ϱ

〉∣∣∣) ≤ 1

2S
(√

h
) (〈

f
(
|X|2α

)
k̂ϱ, k̂ϱ

〉
+

〈
f
(∣∣X∗∣∣2β) k̂ϱ, k̂ϱ

〉)

− 1

8S
(√

h
)µ(〈

|X|2α k̂ϱ, k̂ϱ
〉
−

〈∣∣X∗∣∣2β k̂ϱ, k̂ϱ
〉)2

.

Equvalently, we can write

f

(∣∣∣∣ ˜
X |X|α+β−1 (ϱ)

∣∣∣∣) ≤ 1

2S
(√

h
) 〈(

f
(
|X|2α

)
+ f

(∣∣X∗∣∣2β)) k̂ϱ, k̂ϱ
〉

− inf
ϱ∈Λ

1

8S
(√

h
)µ(

˜|X|2α − |X∗|2β (ϱ)

)2

.

By taking the supremum over ϱ ∈ Λ in the above inequality, we have

f
(
ber

(
X |X|α+β−1

))
≤ 1

2S
(√

h
) ∥∥∥f (

|X|2α
)
+ f

(∣∣X∗∣∣2β)∥∥∥
ber

− inf
ϱ∈Λ

1

8S
(√

h
)µ(

˜|X|2α − |X∗|2β (ϱ)

)2

,

which completes the proof. □

The following corollary is result of Corollary 6.

Corollary 7. Let X ∈ L (H) and α, β ∈ [0, 1] such that α+ β ≥ 1.If the positive real numbers m, m′, M , M ′ satisfy one of the following
conditions (i) 0 < m′I ≤ |X|2α ≤ mI ≤ MI ≤ |X∗|2β ≤ M ′I or (ii) 0 < m′ ≤ |X∗|2β ≤ mI ≤ MI ≤ |X|2α ≤ M ′I, with h = M

m

and h′ = M ′

m′ . Then we have

bern
(
X |X|α+β−1

)
≤ 1

2S
(√

h
) ∥∥∥|X|2αn +

∣∣X∗∣∣2βn∥∥∥
ber

− inf
ϱ∈Λ

1

8S
(√

h
)µ(

˜|X|2α − |X∗|2β (ϱ)

)2

,

where S (.) is the Specht’s ratio. In particular, for n = µ = 2, we obtain

ber2
(
X |X|α+β−1

)
≤ 1

2S
(√

h
) ∥∥∥|X|4α +

∣∣X∗∣∣4β∥∥∥
ber

− inf
ϱ∈Λ

1

4S
(√

h
) (

˜|X|2α − |X∗|2β (ϱ)

)2

,

where S (.) is the Specht’s ratio.

Considering X4 = X1 = X and X2 = X3 = Y in the inequality (23), we have the following inequality.

Corollary 8. Let X,Y ∈ L (H) , let f be a non-negative increasing convex function on R and also that f is twice differentiable such that
f ′′ ≥ µ > 0, with f (0) = 0. Let the positive real numbers m,m′, M , M ′ satisfy one of the following conditions (i) 0 < m′I ≤ X∗ |Y |2 X ≤
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mI ≤ MI ≤ X∗ |Y ∗|2 X ≤ M ′I or (ii) 0 < m′ ≤ X∗ |R∗|2 X ≤ mI ≤ MI ≤ X∗ |R|2 X ≤ M ′I, with h = M
m and h′ = M ′

m′ . Then we
have

f
(
ber

(
(XY )2

))
≤ 1

2S
(√

h
) ∥∥∥f (

X∗ |Y |2 X
)
+ f

(
X∗ ∣∣Y ∗∣∣2 X)∥∥∥

ber

− inf
ϱ∈Λ

1

8S
(√

h
)µ(

˜
X∗ |Y |2 X −X∗ |Y ∗|2 X (ϱ)

)2

,

where S (.) is the Specht’s ratio.

If we put f (t) = tn in the Corollary 8, then we have the following inequality.

Corollary 9. Let X,Y ∈ L (H) . If the positive real numbers m, m′, M , M ′ satisfy one of the following conditions (i) 0 < m′I ≤
X∗ |Y |2 X ≤ mI ≤ MI ≤ X∗ |Y ∗|2 X ≤ M ′I or (ii) 0 < m′ ≤ X∗ |Y ∗|2 X ≤ mI ≤ MI ≤ X∗ |Y |2 X ≤ M ′I, with h = M

m and
h′ = M ′

m′ , then we have

bern
(
(XY )2

)
≤ 1

2S
(√

h
) ∥∥∥(X∗ |Y |2 X

)n
+

(
X∗ ∣∣Y ∗∣∣2 X)n∥∥∥

ber

− inf
ϱ∈Λ

1

8S
(√

h
)µ(

˜
X∗ |Y |2 X −X∗ |Y ∗|2 X (ϱ)

)2

,

where S (.) is the Specht’s ratio. In particular, for n = µ = 2, we get

ber2
(
(XY )2

)
≤ 1

2S
(√

h
) ∥∥∥∥(X∗ |Y |2 X

)2
+

(
X∗ ∣∣Y ∗∣∣2 X)2

∥∥∥∥
ber

− inf
ϱ∈Λ

1

4S
(√

h
)µ(

˜
X∗ |Y |2 X −X∗ |Y ∗|2 X (ϱ)

)2

,

where S (.) is the Specht’s ratio.

Considering X4 = X1 = X and X2 = X3 = Y in the inequality (23), we have the following corollary..

Corollary 10. Let X,Y ∈ L (H) , let f be a non-negative increasing convex function on R and also that f is twice differentiable such that
f ′′ ≥ µ > 0, with f (0) = 0. Let the positive real numbers m,m′, M , M ′ satisfy one of the following conditions (i) 0 < m′I ≤ X∗ |Y |2 X ≤
mI ≤ MI ≤ X∗ |Y ∗|2 X ≤ M ′I or (ii) 0 < m′ ≤ X∗ |Y ∗|2 X ≤ mI ≤ MI ≤ X∗ |Y |2 X ≤ M ′I, with h = M

m and h′ = M ′

m′ . Then we
have

f
(
ber

(
X∗Y 2X

))
≤ 1

2S
(√

h
) ∥∥∥f (

X∗ |Y |2 X
)
+ f

(
X∗ ∣∣Y ∗∣∣2 X)∥∥∥

ber
− inf

ϱ∈Λ
ζ (ϱ) ,

where ζ (ϱ) = 1
8S(

√
h)

µ

(
˜

X∗ |Y |2 X −X∗ |Y ∗|2 X (ϱ)

)2

and S (.) is the Specht’s ratio.

If we take f (t) = tn in the Corollary 10, then we have the following inequality.

Corollary 11. Let X,Y ∈ L (H) , let f be a non-negative increasing convex function on R and also that f is twice differentiable such that
f ′′ ≥ µ > 0, with f (0) = 0. Let the positive real numbers m,m′, M , M ′ satisfy one of the following conditions (i) 0 < m′I ≤ X∗ |Y |2 X ≤
mI ≤ MI ≤ X∗ |Y ∗|2 X ≤ M ′I or (ii) 0 < m′ ≤ X∗ |Y ∗|2 X ≤ mI ≤ MI ≤ X∗ |Y |2 X ≤ M ′I, with h = M

m and h′ = M ′

m′ . Then we
have

f
(
ber

(
X∗Y 2X

))
≤ 1

2S
(√

h
) ∥∥∥(X∗ |Y |2 X

)n
+

(
X∗ ∣∣Y ∗∣∣2 X)n∥∥∥

ber
− inf

ϱ∈Λ
ζ (ϱ) ,

where ζ (ϱ) = 1
8S(

√
h)

µ

(
˜

X∗ |Y |2 X −X∗ |Y ∗|2 X (ϱ)

)2

and S (.) is the Specht’s ratio. In particular, for n = µ = 2, we have

ber2
(
X∗Y 2X

)
≤ 1

2S
(√

h
) ∥∥∥∥(X∗ |Y |2 X

)2
+

(
X∗ ∣∣Y ∗∣∣2 X)2

∥∥∥∥
ber

− inf
ϱ∈Λ

ζ (ϱ) ,

where ζ (ϱ) = 1
4S(

√
h)

µ

(
˜

X∗ |Y |2 X −X∗ |Y ∗|2 X (ϱ)

)2

and S (.) is the Specht’s ratio.

Setting X4 = X3 = X2 = X1 = X in the inequality (23), we obtain the following result.
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Corollary 12. Let X ∈ L (H). If the positive real numbers m, m′, M , M ′ satisfy one of the following conditions (i) 0 < m′I ≤
X∗ |X|2 X ≤ mI ≤ MI ≤ X∗ |X∗|2 X ≤ M ′I or (ii) 0 < m′ ≤ X∗ |X∗|2 X ≤ mI ≤ MI ≤ X∗ |X|2 X ≤ M ′I, with h = M

m and
h′ = M ′

m′ . Then we have

f
(
ber4 (X)

)
≤ 1

2S
(√

h
) ∥∥∥f (

X∗ |X|2 X
)
+ f

(
X∗ ∣∣X∗∣∣2 X)∥∥∥

ber

− 1

8S
(√

h
)µ(

˜
X∗ |X|2 X −X∗ |X∗|2 X (ϱ)

)2

,

where S (.) is the Specht’s ratio.

If we take f (t) = tn in the Corollary 12, then we have the following inequality.

Corollary 13. Let X ∈ L (H). If the positive real numbers m, m′, M , M ′ satisfy one of the following conditions (i) 0 < m′I ≤
X∗ |X|2 X ≤ mI ≤ MI ≤ X∗ |X∗|2 X ≤ M ′I or (ii) 0 < m′ ≤ X∗ |X∗|2 X ≤ mI ≤ MI ≤ X∗ |X|2 X ≤ M ′I, with h = M

m and
h′ = M ′

m′ . Then we have

ber4n (X) ≤ 1

2S
(√

h
) ∥∥∥(X∗ |X|2 X

)n
+

(
X∗ ∣∣X∗∣∣2 X)n∥∥∥

ber

− 1

8S
(√

h
)µ(

˜
X∗ |X|2 X −X∗ |X∗|2 X (ϱ)

)2

,

where S (.) is the Specht’s ratio. In particular, for n = µ = 2, we have

ber8 (X) ≤ 1

2S
(√

h
) ∥∥∥∥(X∗ |X|2 X

)2
+

(
X∗ ∣∣X∗∣∣2 X)2

∥∥∥∥
ber

− 1

4S
(√

h
)µ(

˜
X∗ |X|2 X −X∗ |X∗|2 X (ϱ)

)2

,

Theorem 5. Let H = H (Λ) be a RKHS. Let X ∈ L (H) , let f be a non-negative increasing convex function on R and also that f is twice
differentiable such that f ′′ ≥ µ > 0, with f (0) = 0. Let the positive real numbers m, m′, M , M ′ satisfy one of the following conditions (i)
0 < m′I ≤ |X|2s ≤ mI ≤ MI ≤ |X∗|2t ≤ M ′I or (ii) 0 < m′I ≤ |X∗|2t ≤ mI ≤ MI ≤ |X|2s ≤ M ′I, with h = M

m and h′ = M ′

m′ .
Then we have

f
(∣∣∣〈Xk̂ϱ, k̂ϱ

〉∣∣∣) ≤ 1

2S
(√

h
) [〈

f
(
|X|2s

)
k̂ϱ, k̂ϱ

〉
+

〈
f
(∣∣X∗∣∣2t) k̂ϱ, k̂ϱ

〉]
(26)

− 1

8S
(√

h
)µ(〈∣∣X∗∣∣2t k̂ϱ, k̂ϱ〉−

〈
|X|2s k̂ϱ, k̂ϱ

〉)2
.

Moreover, for every n ≥ 1, it follows that

bern (X) ≤ 1

2S
(√

h
) ∥∥∥|X|2sn +

∣∣X∗∣∣2tn∥∥∥
ber

, (27)

where S (.) is the Specht’s ratio.
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Proof: Let k̂ϱ be a normalized reproducing kernel. Let X = U |X| is the polar decomposition of X . Using the Schwarz inequality in the Hilbert
space, Remark 2 and convexity of the function h (t) = tr for r ≥ 1 imply that∣∣∣〈Xk̂ϱ, k̂ϱ

〉∣∣∣ ≤ ∣∣∣〈|X|s k̂ϱ, |X|t U∗k̂ϱ
〉∣∣∣ (28)

≤
∥∥∥|X|s k̂ϱ

∥∥∥∥∥∥|X|t U∗k̂ϱ
∥∥∥

≤
〈
|X|2s k̂ϱ, k̂ϱ

〉 1
2
〈∣∣X∗∣∣2t k̂ϱ, k̂ϱ〉 1

2

≤

〈
|X|2s k̂ϱ, k̂ϱ

〉
+

〈
|X∗|2t k̂ϱ, k̂ϱ

〉
2S

(√
h
)

≤


〈
|X|2s k̂ϱ, k̂ϱ

〉n
+

〈
|X∗|2t k̂ϱ, k̂ϱ

〉n

2S
(√

h
)


1
n

. (29)

Also, by using Remark 2, we have

f

(〈
|X|2s k̂ϱ, k̂ϱ

〉 1
2
〈∣∣X∗∣∣2X k̂ϱ, k̂ϱ

〉 1
2

)
≤ f


〈
|X|2s k̂ϱ, k̂ϱ

〉
+

〈
|X∗|2t k̂ϱ, k̂ϱ

〉
2S

(√
h
)


≤ 1

S
(√

h
)f


〈
|X|2s k̂ϱ, k̂ϱ

〉
+

〈
|X∗|2t k̂ϱ, k̂ϱ

〉
2

 (30)

≤ 1

2S
(√

h
) (

f
(〈

|X|2s k̂ϱ, k̂ϱ
〉)

+ f
(〈∣∣X∗∣∣2t k̂ϱ, k̂ϱ〉))

− 1

8
µ
(〈∣∣X∗∣∣2t k̂ϱ, k̂ϱ〉−

〈
|X|2s k̂ϱ, k̂ϱ

〉)2
(by (13))

≤ 1

2S
(√

h
) (〈

f
(
|X|2s

)
k̂ϱ, k̂ϱ

〉
+

〈
f
(∣∣X∗∣∣2t) k̂ϱ, k̂ϱ

〉)
(31)

− 1

8
µ
(〈∣∣X∗∣∣2t k̂ϱ, k̂ϱ〉−

〈
|X|2s k̂ϱ, k̂ϱ

〉)2
.

Hence, by combining (28) and (31), we obtain the desired inequality (26).
From (30) and applying hölder-McCarthy inequality for the positive operator |X|2s and |X∗|2t and the convexity of the function f (t) = tn

for n ≥ 1 imply that 
〈
|X|2s k̂ϱ, k̂ϱ

〉n
+

〈
|X∗|2t k̂ϱ, k̂ϱ

〉n

2S
(√

h
)


1
r

≤


〈
|X|2sn k̂ϱ, k̂ϱ

〉
+

〈
|X∗|2tn k̂ϱ, k̂ϱ

〉
2S

(√
h
)


1
n

(32)

=


〈(

|X|2sn + |X∗|2tn
)
k̂ϱ, k̂ϱ

〉
2S

(√
h
)


1
n

.

By (28) and (32) implies that ∣∣∣〈Xk̂ϱ, k̂ϱ
〉∣∣∣n ≤

〈(
|X|2sn + |X∗|2tn

)
k̂ϱ, k̂ϱ

〉
2S

(√
h
) .

By taking the supremum over ϱ ∈ Λ in the above inequality and this fact operator |X|2sn + |X∗|2tn is self-adjoint, we have desired inequality
(27), which this refines (7). □

Theorem 6. Let H = H (Λ) be a RKHS. Let X ∈ L (H) , let f be a non-negative increasing convex function on R and also that f is twice
differentiable such that f ȷ ≥ µ > 0, with f (0) = 0. Let the positive real numbers m, m′, M , M ′ satisfy one of the following conditions (i)
0 < m′I ≤ |X|

2s
α ≤ mI ≤ MI ≤ |X∗|

2t
1−α ≤ M ′I or (ii) 0 < m′I ≤ |X|

2t
1−α ≤ mI ≤ MI ≤ |X|

2s
α ≤ M ′I, with h = M

m and h′ =
M ′

m′ , 0 < α < 1 and s+ t = 1 Then we have

ber2n (X) ≤ 1

S (hn)

∥∥∥α |X|
2sn
α + (1− α)

∣∣X∗∣∣ 2tn
1−α

∥∥∥
ber

. (33)

where S (.) is the Specht’s ratio.
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Proof: Let k̂ϱ be a normalized reproducing kernel. Let X = U |X| is the polar decomposition of X . By utilizing the Schwarz inequality, we
have ∣∣∣〈Xk̂ϱ, k̂ϱ

〉∣∣∣2 ≤
〈
|X|2s k̂ϱ, k̂ϱ

〉〈∣∣X∗∣∣2t k̂ϱ, k̂ϱ〉 =
〈(

|X|
2sn
α

)α
k̂ϱ, k̂ϱ

〉〈(
|X|

2tn
1−α

)1−α
k̂ϱ, k̂ϱ

〉
≤

〈
|X|

2sn
α k̂ϱ, k̂ϱ

〉α 〈(∣∣X∗∣∣ 2tn
1−α

)
k̂ϱ, k̂ϱ

〉1−α
(by Hölder-McCarthy inequalities)

≤ 1

S (h)

(
α
〈
|X|

2sn
α k̂ϱ, k̂ϱ

〉
+ (1− α)

〈(∣∣X∗∣∣ 2tn
1−α

)
k̂ϱ, k̂ϱ

〉)
(by Theorem 1). (34)

On the other hand, we get the elementary inequality from the convexity of h (t) = tn (for n ≥ 1) in the following:

αa+ (1− α) b ≤
(
αan + (1− α) bn

) 1
n , α ∈ (0, 1) , a, b ≥ 0.

Utilizing this inequality leads to

1

S (h)

(
α
〈
|X|

2s
α k̂ϱ, k̂ϱ

〉
+ (1− α)

〈(∣∣X∗∣∣ 2t
1−α

)
k̂ϱ, k̂ϱ

〉)
≤

(
1

S (hn)

(
α
〈
|X|

2s
α k̂ϱ, k̂ϱ

〉n
+ (1− α)

〈(∣∣X∗∣∣ 2t
1−α

)
k̂ϱ, k̂ϱ

〉n
)) 1

n

≤
(

1

S (hn)

〈(
α |X|

2sn
α + (1− α)

∣∣X∗∣∣ 2tn
1−α

)
k̂ϱ, k̂ϱ

〉) 1
n

. (35)

From inequalities (34) and (35), we have∣∣∣〈Xk̂ϱ, k̂ϱ
〉∣∣∣2n ≤ 1

S (hn)

〈(
α |X|

2sn
α + (1− α)

∣∣X∗∣∣ 2tn
1−α

)
k̂ϱ, k̂ϱ

〉
.

Taking the supremum over ϱ ∈ Λ in the above inequality, we have

ber2n (X) ≤ 1

S (hn)

∥∥∥α |X|
2sn
α + (1− α)

∣∣X∗∣∣ 2tn
1−α

∥∥∥
ber

.

□

For more recent results concerning Berezin radius inequalities for operators and other related results, we suggest [6, 16–18, 20, 22, 24, 25].
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37 J. Pečarić, T. Furuta, H. Mićić, Y. Seo, Mond-Pečarić, Method in Operator Inequalities, Inequalities for Bounded Selfadjoint Operators on Hilbert Space Monographs in

Inequalities, 1. Element, Zagreb, (2005).
38 W. Specht,Zur theorie der elementaren Mittel, Math. Z. 74 (1960), 91-98.
39 K. Shebrawi, H. Albadawi, Numerical radius and operator norm inequalities, J. Inequal. Appl. Art. ID 492154, (2009), 11 pp.

108 © CPOST 2023



Conference Proceeding Science and Technology, 6(1), 2023, 109–113

6th International Conference on Mathematical Advances and Applications (ICOMAA 2023).

Effects of Musics Composed Using
Mathematical Methods and DNA On the EEG
Frequency Bands of Healthy Individuals

ISSN: 2651-544X
http://dergipark.gov.tr/cpost

Cemil Karaçam1,∗ Halil Yakıt2 Kayra Ege Altun2 Şerif Efe Dartar2
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Abstract: Researches about the mathematical techniques that famous musicians used are still being debated by musicians and
mathematicians. In this paper, composing new musics using new mathematical techniques or DNA was aimed to remove the lack
of literature on this topic. Totally five musics were composed for this project by using DNA, Golden Ratio, and Fibonacci numbers.
After the composing process, the EEG tests of the healthy volunteers will be taken while they were listening to composed musics.
After that, the results will be evaluated (by comparing them), and new techniques for music therapy is aimed to be found.

Keywords: DNA, EEG, Fibonacci Numbers, Golden Ratio, Music, Mathematics

1 Introduction

1.1 The Relationship between Music and Mathematics

Music and mathematics share a strong relationship, with mathematics playing a crucial role in music theory and inspiring further research. For
instance, Pythagoras emphasized the harmonious relationships between the frequencies of notes, leading to the development of the Pythagorean
tuning system. Similarly, Bach explored the mathematical aspects of instrument tuning. Throughout history, mathematics has significantly con-
tributed to the structural framework of music, showcasing its influence and potential for investigating new sound systems based on mathematical
ratios (Ayata, 2020; Panti, 2020).

1.2 The Impact of Music on Psychology

The influence of music on human psychology is a captivating subject that continues to be extensively studied. Researchers often employ
music, particularly classical compositions, as stimuli to investigate its effects (Okay & Ece, 2019). Studies have demonstrated that music has
a profound impact on various physiological responses, such as changes in blood oxygen saturation, heart rate, and respiration, particularly
observed in infants (Cassidy & Stanley, 1995). Leonard Meyer’s book, "Emotion and Meaning in Music," serves as a seminal work that
highlights the intricate connection between music and psychology (Spitzer, 2009).

1.3 About Music Therapy

Music therapy has a long history, with early references found in the works of Plato, who advocated for the inclusion of music in education for
the holistic development of individuals (Plato, 2006). Islamic scholars, like Farabi, also recognized the impact of musical notes on emotional
states (Yılmaz et al., 2019).

Throughout the Seljuk and Ottoman periods, music therapy was utilized as a complementary treatment in bimarhanes (mental hospitals) and
darüşşifas (hospitals), and its practice has now expanded globally (Ersoy et al., 2018). Moreover, the sound system which is newly developed
in this paper holds potential for contributing to the existing literature on music therapy.

1.4 Explanation of Brain Waves

The EEG (Electroencephalography) test is a measurement tool used to assess the electrical activity in the brain (Memorial, 2022). Brain waves,
which are essential for our project, can be obtained through this test. They are classified based on their frequency and carry different meanings.

Delta waves, with a frequency up to 3Hz, are observed during deep sleep. Theta waves, ranging from 4Hz to 7Hz, occur during drowsi-
ness, deep thinking, and meditation. Alpha waves, with frequencies between 8Hz and 12Hz, are present during wakefulness. Beta waves, in the
range of 13Hz to 30Hz, are associated with focused thinking and concentration. Gamma waves, with frequencies above 30Hz, are important
for learning and memory (Sisode, 2016; Koudelková et al., 2018).
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Considering the distinct characteristics and implications of alpha, beta, delta, gamma, and theta waves, they will play a central role in ana-
lyzing the music compositions created in our project. For instance, the implications of alpha waves for relaxation and rest, as well as the logical
and analytical thinking associated with beta waves, can provide valuable insights for the examination of music compositions (Koudelková et
al., 2018).

1.5 The Use of Mathematical Structures in Music

Mathematical structures are widely used in music, serving as a foundation for various musical compositions. J.S. Bach’s compositions, for
example, exhibit structural and artistic features that can be analyzed and divided into distinct musical pieces, such as "prelude" and "recitative."
This approach reveals the significant utilization of mathematics in music, including the exploration of values converging towards the golden
ratio (Mutver, 2007).

In addition to Bach’s works, studies have been conducted to investigate the mathematical and musical harmonies in different pieces of music.
Frequency tables have been constructed, showcasing the mathematical and musical relationships between various measures. These studies have
shown the consistent use of the golden ratio across different sections of music, providing further evidence of Bach’s extensive application of
mathematics (Mutver, 2007).

Despite these endeavors, the relationship between mathematics and music remains a topic of ongoing debate, and its full elucidation has
not yet been achieved. In light of this, our project aims to examine this relationship objectively by relying on medical and scientific data, thus
contributing to a deeper understanding of the subject.

1.6 Literature of DNA Music

DNA, the fundamental governing molecule of living organisms, consists of four nucleotides: adenine (A), thymine (T), guanine (G), and cyto-
sine (C). RNA, on the other hand, includes uracil (U) instead of thymine. DNA and RNA are also referred to as nucleic acids.

The conversion of DNA into music, also known as protein music, DNA music, or genetic music, has a historical development. The initial
work in this field is attributed to Gena et al. (1995) where researchers presented a mathematical algorithm to explain the process. However, the
algorithm did not address the differentiation between cancer or tumor cells and did not specify the objective of observing differences between
cancerous and healthy cells.

1.7 Psychological Analysis of Generated Music

In our project, music has been created using both mathematical structures and DNA transformation. At this point, it is necessary to analyze
the music in a systematic manner. To enable systematic analysis, the decision has been made to use an EEG (Electroencephalography) device.
All generated music will be played for individuals, and during this process, data on brain waves will be obtained using the EEG device. The
collected data will be interpreted in light of the characteristics of alpha, beta, delta, gamma, and theta waves described in the introduction
section.

2 Material and Method

2.1 Creating Music with Mathematical Structures

The methods used in the creation of music can be examined under two headings. The first method involves finding the remainder of each
element of the Fibonacci Number Sequence when divided by 7 (mod 7 operation), and then each number is paired with a different note. The
corresponding algorithm has been implemented in Python code, allowing for the determination of the number of Fibonacci numbers to be
processed and the generation of a music file accordingly.

The second method is based on Zeckendorf’s Theorem, which states that every positive integer can be expressed as the sum of one or more
Fibonacci numbers. In this case, a Fibonacci number is chosen (e.g., 34), and the selected Fibonacci number is represented as the sum of differ-
ent Fibonacci numbers, with each resulting number assigned to different notes. The assignment of notes is performed through a cyclical process,
ensuring equal representation of all notes. Similarly to the first method, a Python code is created and the cyclical process is implemented in
Python. An example composition generated using this method is provided in ’Figure 1’.

Fig. 1: The first period of music
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Notes Number of the notes in the first period Fibonacci Numbers
C 1 F1

E 5 F5

G 5 F5

B 5 F5

D 5 F5

F 8 F6

A 5 F5

Total 34 F9

Table 1 Numbers Corresponding to Notes in ’Figure 1’

Notes Distances Fibonacci Distances
C - -
D 3-3-13-5 F4-F4-F7-F5

E 3-3-5-5 F4-F4-F5-F5

F 3-5-3-3-5-5-0 F4-F5-F4-F4-F5-F5-F0

G 3-3-3-3-3 F4-F4-F4-F4-F4

A 3-8-3-5 F4-F6-F4-F5

B 8-2-2-2 F6-F3-F3-F3

Table 2 Distances Between the Notes in the First Period with Fibonacci Numbers

2.2 Studies on the Pythagorean Diatonic Scale

The Pythagorean Diatonic Scale plays a crucial role in modern frequency generation, and thus studying the Pythagorean sequence is important.
However, there is a lack of exploration regarding redesigning the Pythagorean sequence using the golden ratio. The current method utilizes
(3/2)n as the basis for constructing the Pythagorean sequence and obtaining frequencies. The original ratios and frequencies of the Pythagorean
sequence are presented in Tables 3 and 4, respectively.

C D E F G A B C
1/1 9/8 81/64 4/3 3/2 27/16 243/128 2/1

Table 3 Original Pythagorean Diatonic Scale ratios

C D E F G A B C
260 Hz 292 Hz 329 Hz 346 Hz 390 Hz 440 Hz 493 Hz 520 Hz

Table 4 Frequencies Generated According to the Original Pythagorean Diatonic Scale

The Pythagorean sequence, generated using the formula (3/2)n, has been recalculated using the formula for ϕn. Furthermore, a new
sequence based on the golden ratio has been created, with its ratios and frequencies presented in Tables 5 and 6, respectively.

Do Do# Re Re# Mi Fa Fa# Sol Sol# La La# Si
1.0 1.05 1.12 1.18 1.25 1.30 1.38 1.46 1.55 1.61 1.71 1.81

Table 5 Ratios of the Diatonic Sequence Generated with the Golden Ratio (Displayed up to two decimal places)

Note Do Do# Re Re# Mi Fa
Frequency (Hz) 271.9 288.0 304.9 322.9 342.0 356.0

Note Fa# Sol Sol# La La# Si
Frequency (Hz) 376.9 399.2 422.7 440.0 465.9 493.4

Table 6 Frequencies of the Diatonic Sequence Generated with the Golden Ratio

In music theory, the following formula is used to compare the frequencies of two notes:

f(x, y) = 12 · log2
(
x

y

)
(1)
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Aralık Oran Aralık Oran
Do - Do# 0.99 Do# - Re 0.98
Re - Re# 0.99 Re# - Mi 0.99
Mi - Fa 0.69 Fa - Fa# 0.98

Fa# - Sol 0.99 Sol - Sol# 0.99
Sol# - La 0.69 La - La# 0.99
La# - Si 0.99 - -

Table 7 Ratios between Consecutive Notes

The ratios between consecutive notes in both sequences are presented in Table 7, based on the formula 1. The aim is to apply the newly
created sound system based on the golden ratio to an existing composition.

2.3 Creating Music With DNA

One part of this project involves transforming DNA samples from cancerous and healthy cells into music. To achieve this, a mathematical
algorithm based on base arithmetic and ASCII codes is used to obtain the musical values of each organic base in the DNA samples. The opera-
tion of the algorithm can be summarized as follows: (1) The notes are numbered starting from "C" as 0, "D" as 1, and continuing until "B" as
6, (2) The ASCII codes in base-10 are obtained for the letters A, T, G, and S used in the representation of organic bases, (3) The corresponding
ASCII codes are written in base-7 (as there are a total of 7 notes), (4) The numerical values of the digits in the resulting 3-digit numbers are
matched with notes, and (5) A Python software is developed based on this method. The steps of this method are illustrated in Table 8.

Steps
1. Number the notes starting from "C" as 0, "D" as 1, and continuing until "B" as 6.
Example: C represents the note value 0, D represents the note value 1, E represents the note value 2, and so on
until B represents the note value 6.
2. Obtain the ASCII codes (in base-10) for the letters A, T, G, and S used in the representation of organic bases.
Example: The ASCII code for A is 65, T is 84, G is 71, and S is 83.
3. Convert the corresponding ASCII codes to base-7 since there are a total of 7 notes.
Example: In base-7, the ASCII code 65 for A becomes 111, the ASCII code 84 for T becomes 144, the ASCII
code 71 for G becomes 110, and the ASCII code 83 for S becomes 131.
4. Match the numerical values of the digits in the resulting 3-digit numbers with the corresponding notes.
Example: The digit value 111 corresponds to the note C, the digit value 144 corresponds to the note D, the digit
value 110 corresponds to the note E, and the digit value 131 corresponds to the note F.
5. Develop a Python software application based on this method.
Example: A Python software application is created to automate the process described in the previous steps.

Table 8 Table summarizing obtaining music from DNA

During the process of creating music from cancerous DNA sequences, an analysis was conducted on two DNA sections obtained from
the same region, one being healthy and the other being cancerous (or containing a tumor, etc.). A program was developed using the Python
programming language to calculate the sequence that should correspond to the healthy DNA sequence when it is entirely healthy. This calculated
sequence was then compared to the cancerous sequence. Based on this comparison, a new sequence was generated by writing ’1’ at the positions
where there is a correct match (A with T, G with C), and ’0’ at the positions where there is no match. An example of this process is provided
in Figure 3.

Step Description
1 Two DNA sections were obtained from the same region, one being healthy and the other being cancerous

(or containing a tumor, etc.).
2 A program was developed using the Python programming language to calculate the sequence that should

have corresponded to the healthy DNA sequence when it was entirely healthy.
3 The calculated sequence was compared with the cancerous sequence.
4 A new sequence was generated based on the comparison results by writing ’1’ at the positions where

there was a correct match (A with T, G with C), and ’0’ at the positions where there was no match.
Table 9 Explanation of the Comparison Process of Cancerous Sequences

In the generated sequences, positions with frequent adjacent ’0’s were identified as areas with a higher number of errors. To address this, the
octave values of notes to be played in these positions were increased, and note durations were determined accordingly. Function 2 and Function
3 were developed to handle octave values and note durations, respectively. Moreover, for music composition, the first ’0’ value was followed
by utilizing 100 organic bases.

f(x) =

{
6 if x ≥ 10

⌊x5 ⌋+ 4 if x < 10
(2)

f(x): The f Function Used in Calculating Octave Values.
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v(x) =


1
2 if x ≤ 15
3
4 if 15 < x < 20

1 if 20 ≤ x

(3)

v(x): The v Function Used in Calculating Beat Counts.

The code to generate the music, incorporating the octave and beat count functions given as Function 1 and Function 2, respectively, has been
written in the Python programming language. The Python code allows for obtaining the results using the provided healthy and cancerous DNA
sequences.

3 Conclusion

Music therapy techniques have been used and developed since ancient times. In this paper, combining these techniques with DNA and mathe-
matical methods and observing changes in the EEG frequency bands of healthy individuals were aimed.
First of all, mathematical structures like Golden Ratio and Fibonacci Sequence were used for composing the mathematical music. First mathe-
matical music was composed by matching the Fibonacci numbers with notes, and second, music was composed by determining the number of
the notes and the distances between them with Fibonacci numbers. Furthermore, one piece of music was composed by changing the Pythagorean
Diatonic Scale by using the Golden Ratio (ϕ).
Secondly, two pieces of music were composed using healthy and cancerous DNA samples. In addition to this, two purposive functions were
used to determine the beats and octaves of the cancerous DNA samples, and Python codes for all these processes were written.
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1 Introduction

Let
∑

an be an infinite series with partial sums (sn). Let (pn) be a sequence of positive numbers such that

Pn =

n∑
v=0

pv → ∞ as n → ∞, (P−m = p−m = 0,m ≥ 1).

The sequence-to-sequence transformation

σn =
1

Pn

n∑
v=0

pvsv

defines the sequence (σn) of the
(
N̄ , pn

)
mean of the sequence (sn), generated by the sequence of coefficients (pn) (see [1]). If we write

Xn =
∑n

v=0
pv

Pv
, then (Xn) is a positive increasing sequence tending to infinity as n → ∞. The series

∑
an is said to be summable∣∣N̄ , pn

∣∣
k
, k ≥ 1, if (see [2])

∞∑
n=1

(
Pn

pn

)k−1

|σn − σn−1|k < ∞.

Let A = (anv) be a normal matrix, i.e. a lower triangular matrix of non-zero diagonal entries. The series
∑

an is said to be summable |A, pn|k,
k ≥ 1, if (see[3])

∞∑
n=1

(Pn

pn

)k−1
|An(s)−An−1(s)|k < ∞.

The series
∑

an is said to be summable |A, pn, β; δ|k, k ≥ 1, δ ≥ 0 and β is a real number, if (see [4])

∞∑
n=1

(Pn

pn

)β(δk+k−1)
|An(s)−An−1(s)|k < ∞,

where

An(s) =

n∑
v=0

anvsv, n = 0, 1, . . .

If we take pn = 1
n+1 and k = 1, then we obtain |R, logn, 1| summability (see [5]).) If we take β = 1, then |A, pn, β; δ|k summability reduces

to |A, pn; δ|k summability method (see [6]). If we take β = 1 and δ = 0 , then |A, pn, β; δ|k summability reduces to |A, pn|k summability
method.

For any sequence (λn) we write that ∆2λn = ∆λn −∆λn+1 and ∆λn = λn − λn+1. The sequences (λn) is said to be of bounded
variation, denoted by λn ∈ BV , if

∑∞
n=1 |∆λn| < ∞.
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2 Known Result

In [7] Bor has proved the following theorem dealing with |N̄ , pn|k summability factors of infinite series.

Theorem 1. Let (Xn) be a positive increasing sequence. If the sequences (Xn),(λn) and (pn) satisfy the conditions

λm = o(1) as m → ∞, (1)

m∑
n=1

nXn|∆2λn| = O(1) as m → ∞, (2)

m∑
n=1

|tn|k

nXk−1
n

= O(Xm) as m → ∞, (3)

m∑
n=1

pn
Pn

|tn|k

Xk−1
n

= O(Xm) as m → ∞,

and
m∑

n=1

Pn

n
= O(Pm) as m → ∞,

where tn = 1
n+1

∑n
v=0 vav , then the series

∑
anλn is summable |N̄ , pn|k, k ≥ 1.

3 Main Result

There are many papers on absolute matrix summability [8]-[21]. This study provides a generalization of above mentioned theorem to
|A, pn, β; δ|k summability method under some suitable condition. Now, let us mention some notations.

Given a normal matrix A = (anv) be a normal matrix, two lower semimatrices Ā = (ānv) and Â = (ânv) are given as follows.

ānv =

n∑
i=v

ani, n, v = 0, 1, . . . and â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, . . .

An(s) =

n∑
v=0

anvsv =

n∑
v=0

ānvav (4)

and

∆̄An(s) =

n∑
v=0

ânvav. (5)

Now, we shall prove the following theorem.

Theorem 2. Let A = (anv) be a positive normal matrix such that

ān0 = 1, n = 0, 1, ...,

an−1,v ≥ anv for n ≥ v + 1,

ann = O

(
pn
Pn

)
,

m+1∑
n=v+1

(
Pn

pn

)β(δk+k−1)−k+1

|∆v(ânv)| = O

((
Pv

pv

)β(δk+k−1)−k
)

as m → ∞,

m+1∑
n=v+1

(
Pn

pn

)β(δk+k−1)−k+1

|ân,v+1| = O(1) as m → ∞,

m∑
n=1

(
Pn

pn

)β(δk+k−1)−k |tn|k

Xk−1
n

= O(Xm) as m → ∞,

and
n−1∑
v=1

∣∣ân,v+1

∣∣
v

= O(ann), (6)

where ∆v(ânv) = ânv − ân,v+1. If the conditions (1)-(3) of Theorem 1 are satisfied, then the series
∑

anλn is summable |A, pn, β; δ|k,
k ≥ 1, δ ≥ 0 and −β(δk + k − 1) + k > 0.
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Lemma 1. [22] Under the conditions of Theorem 1, we get

Xn|λn| = O(1) as n → ∞. (7)

nXn|∆λn| = O(1) as n → ∞, (8)

∞∑
n=1

Xn|∆λn| < ∞,

Proof: Let (Θn) denotes A-transform of the series
∑

anλn. Then, by (4) and (5), we have

∆̄Θn =

n∑
v=1

ânvλv
v

vav.

By Abel’s transformation, we have

∆̄Θn =

n−1∑
v=1

∆v

( ânvλv
v

) v∑
r=1

rar +
ânnλn

n

n∑
r=1

rar

=

n−1∑
v=1

∆v

( ânvλv
v

)
(v + 1)tv +

ânnλn
n

(n+ 1)tn

=

n−1∑
v=1

v + 1

v
∆v(ânv)λvtv +

n−1∑
v=1

v + 1

v
ân,v+1∆λvtv +

n−1∑
v=1

ân,v+1λv+1
tv
v

+
n+ 1

n
annλntn

= Θn,1 +Θn,2 +Θn,3 +Θn,4.

To prove Theorem 2, by Minkowski’s inequality, it is sufficient to show that

∞∑
n=1

(
Pn

pn

)β(δk+k−1)

|Θn,r|k < ∞ for r = 1, 2, 3, 4.

Firstly, using Hölder’s inequality and |λn| = O(1/Xn) by (7), we have

m+1∑
n=2

(
Pn

pn

)β(δk+k−1) ∣∣Θn,1

∣∣k = O(1)

m+1∑
n=2

(
Pn

pn

)β(δk+k−1)
(

n−1∑
v=1

|∆v(ânv)||λv||tv|

)k

= O(1)

m+1∑
n=2

(
Pn

pn

)β(δk+k−1)
(

n−1∑
v=1

|∆v(ânv)||λv|k|tv|k
)

×

(
n−1∑
v=1

|∆v(ânv)|

)k−1

= O(1)

m+1∑
n=2

(
Pn

pn

)β(δk+k−1)

ak−1
nn

(
n−1∑
v=1

|∆v(ânv)||λv||λv|k−1|tv|k
)

= O(1)

m+1∑
n=2

(
Pn

pn

)β(δk+k−1)−k+1
(

n−1∑
v=1

|∆v(ânv)||λv|
|tv|k

Xk−1
v

)

= O(1)

m∑
v=1

|λv|
|tv|k

Xk−1
v

m+1∑
n=v+1

(
Pn

pn

)β(δk+k−1)−k+1

|∆v(ânv)|

= O(1)

m∑
v=1

(
Pv

pv

)β(δk+k−1)−k

|λv|
|tv|k

Xk−1
v

= O(1)

m−1∑
v=1

∆|λv|
v∑

r=1

(
Pr

pr

)β(δk+k−1)−k |tr|k

Xk−1
r

+ O(1)|λm|
m∑
r=1

(
Pr

pr

)β(δk+k−1)−k |tr|k

Xk−1
r

= O(1)

m−1∑
v=1

|∆λv|Xv +O(1)|λm|Xm = O(1) as m → ∞,

by virtue of the hypotheses of Theorem 2 and Lemma 1.
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Now, since v|∆λv| = O(1/Xv) by (8), we have that

m+1∑
n=2

(
Pn

pn

)β(δk+k−1) ∣∣Θn,2

∣∣k = O(1)

m+1∑
n=2

(
Pn

pn

)β(δk+k−1)
(

n−1∑
v=1

|ân,v+1||∆λv||tv|

)k

= O(1)

m+1∑
n=2

(
Pn

pn

)β(δk+k−1)
(

n−1∑
v=1

|ân,v+1|v|∆λv|
|tv|
v

)k

= O(1)

m+1∑
n=2

(
Pn

pn

)β(δk+k−1)
(

n−1∑
v=1

|ân,v+1|(v|∆λv|)k
|tv|k

v

)

×

(
n−1∑
v=1

|ân,v+1|
v

)k−1

= O(1)

m+1∑
n=2

(
Pn

pn

)β(δk+k−1)

ak−1
nn

(
n−1∑
v=1

|ân,v+1|(v|∆λv|)(v|∆λv|)k−1 |tv|k

v

)

= O(1)

m+1∑
n=2

(
Pn

pn

)β(δk+k−1)−k+1
(

n−1∑
v=1

|ân,v+1|(v|∆λv|)
|tv|k

vXk−1
v

)

= O(1)

m∑
v=1

v|∆λv|
|tv|k

vXk−1
v

m+1∑
n=v+1

(
Pn

pn

)β(δk+k−1)−k+1

|ân,v+1|

= O(1)

m∑
v=1

v|∆λv|
|tv|k

vXk−1
v

= O(1)

m−1∑
v=1

∆(v|∆λv|)
v∑

r=1

|tr|k

rXk−1
r

+O(1)m|∆λm|
m∑
r=1

|tr|k

rXk−1
r

= O(1)

m−1∑
v=1

v|∆2λv|Xv +

m−1∑
v=1

|∆λv+1|Xv+1 +O(1)m|∆λm|Xm

= O(1) as m → ∞,

by virtue of the hypotheses of Theorem 2 and Lemma 1.

Again using Hölder’s inequality and by (6), we get

m+1∑
n=2

(
Pn

pn

)β(δk+k−1) ∣∣Θn,3

∣∣k = O(1)

m+1∑
n=2

(
Pn

pn

)β(δk+k−1)
(

n−1∑
v=1

|ân,v+1||λv+1|
|tv|
v

)k

= O(1)

m+1∑
n=2

(
Pn

pn

)β(δk+k−1)
(

n−1∑
v=1

|ân,v+1||λv+1|k
|tv|k

v

)
×

(
n−1∑
v=1

|ân,v+1|
v

)k−1

= O(1)

m+1∑
n=2

(
Pn

pn

)β(δk+k−1)

ak−1
nn

(
n−1∑
v=1

|ân,v+1||λv+1||λv+1|k−1 |tv|k

v

)

= O(1)

m+1∑
n=2

(
Pn

pn

)β(δk+k−1)−k+1
(

n−1∑
v=1

|ân,v+1||λv+1|
|tv|k

vXk−1
v

)

= O(1)

m∑
v=1

|λv+1|
|tv|k

vXk−1
v

m+1∑
n=v+1

(
Pn

pn

)β(δk+k−1)−k+1

|ân,v+1|

= O(1)

m∑
v=1

|λv+1|
|tv|k

vXk−1
v

= O(1)

m−1∑
v=1

|∆λv+1|
v∑

r=1

|tr|k

rXk−1
r

+O(1)m|∆λm|
m∑
r=1

|tr|k

rXk−1
r

= O(1)

m−1∑
v=1

|∆λv+1|Xv+1 +O(1)m|∆λm|Xm

= O(1) as m → ∞,
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by virtue of the hypotheses of Theorem 2 and Lemma 1.
Finally, we get

m∑
n=1

(
Pn

pn

)β(δk+k−1) ∣∣Θn,4

∣∣k = O(1)

m∑
n=1

(
Pn

pn

)β(δk+k−1)

aknn|λn|k|tn|k

= O(1)

m∑
n=1

(
Pn

pn

)β(δk+k−1)

aknn|λn||λn|k−1|tn|k

= O(1)

m∑
n=1

(
Pn

pn

)β(δk+k−1)−k

|λn|
|tn|k

Xk−1
n

= O(1) as m → ∞,

as in Θn,1.
Therefore, we obtain that

m∑
n=1

(
Pn

pn

)β(δk+k−1)

|Θn,r|k = O(1) as m → ∞, for r = 1, 2, 3, 4.

This completes the proof of theorem. □

4 An Application to Trigonometric Fourier Series

Let f be a periodic function with period 2π and Lebesgue integrable over (−π, π). The trigonometric Fourier series of f is defined as

f(x) ∼ a0
2

+

∞∑
n=1

(an cosnx+ bn sinnx) =

∞∑
n=0

An(x)

where

a0 =
1

π

∫π
−π

f(x)dx, an =
1

π

∫π
−π

f(x) cos(nx)dx and bn =
1

π

∫π
−π

f(x) sin(nx)dx.

Write ϕ(t) = 1
2{f(x+ t) + f(x− t)}, and ϕα(t) =

α
tα

∫t
0(t− u)α−1ϕ(u)du, (α > 0).

It is known that if ϕ1(t) ∈ BV (0, π), then tn(x) = O(1), where tn(x) is the (C, 1) mean of the sequence (nAn(x))(see[23]).

Theorem 3. (see[7]) If ϕ1(t) ∈ BV (0, π), and sequences (pn), (λn), and (Xn) satisfy the conditions of Theorem 1, then the series∑
An(x)λn is summable |N̄ , pn|k, k ≥ 1.

Now, we generalize Theorem 3 for |A, pn, β; δ|k summability method in the following form.

Theorem 4. Let A = (anv) be a positive normal matrix as in Theorem 2. If ϕ1(t) ∈ BV (0, π), and sequences (pn), (λn), and (Xn) satisfy
the conditions of Theorem 2, then the series

∑
An(x)λn is summable |A, pn, β; δ|k, k ≥ 1, δ ≥ 0 and −β(δk + k − 1) + k > 0.

5 Conclusion

If we take β = 1, δ = 0 and anv = pv

Pn
in Theorem 2, then we obtain Theorem 1 dealing with |N̄ , pn|k summability method. If we take

β = 1 in Theorem 2, then we have a result on |A, pn; δ|k summability method. Also, if we take β = 1 and δ = 0 in Theorem 2, then we get a
result on |A, pn|k summability method. Finally, in the special cases of β, δ and (anv), we can obtain similar results from Theorem 4 for the
trigonometric Fourier series.
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17 A. Karakaş, On absolute matrix summability factors of infinite series, J. Class. Anal.,13 (2018) 133-139.
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Abstract: In this study, we consider the best linear unbiased predictors (BLUPs) in the context of a constrained
multivariate linear model with its reduced model. Some properties of the BLUPs and their analytical expressions
are given under this reduced model that associates constrained multivariate linear model. Also, results for special
cases are given.
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1 Introduction and preliminary results

We first introduce the notations that will be utilized throughout this study. Let Rm×n stand for the set of all m× n real matrices.
A′, r(A), C (A), and A+ denote the transpose, the rank, the column space, and the Moore–Penrose generalized inverse of
A ∈ Rm×n, respectively. Im denotes the identity matrix of order m. A⊥ = Im −AA+ stands for the orthogonal projectors.
The inequality A ≽ 0 means that symmetric matrix A is a positive semi-definite (psd) matrix in the Löwner partial ordering
(LPO). Denote by

[
a1, . . . , an

]
the columns of A, the vectorization operation (vec operation) of a matrix A =

[
a1, . . . , an

]
is defined to be

−→
A =

[
a′1, . . . , a

′
n

]′. A well-known property on the vec operation of a triple matrix product is
−−−−−→
A1ΛA2 =

(A′
2 ⊗A1)

−→
Λ for matrices Λ, A1, and A2.

Consider a constrained multivariate linear model (CMLM)

M : Y = XΘ+Ψ = X1Θ1 +X2Θ2 +Ψ, CΘ = C1Θ1 +C2Θ2 = D, (1)

where Y ∈ Rn×m is a matrix of observable dependent variables, X =
[
X1, X2

]
∈ Rn×p with Xi ∈ Rn×pi , C =[

C1, C2
]
∈ Rs×p with Ci ∈ Rs×pi , and D ∈ Rs×m are known matrices of arbitrary ranks, Θ =

[
Θ′

1, Θ′
2

]′ ∈ Rp×m

with Θi ∈ Rpi×m is a matrix of fixed but unknown parameters, i = 1, 2, p1 + p2 = p, Ψ ∈ Rn×m is a matrix of randomly
distributed error terms with mean matrix E(Ψ) = 0 and dispersion matrix D(

−→
Ψ) = σ2(Σ2 ⊗Σ1), where Σ1 = (σ1ij) ∈

Rn×n and Σ2 = (σ2ij) ∈ Rm×m are psd matrices, and σ2 is an unknown positive number. Further, Σ2 ⊗Σ1 means that
−→
Ψ

has a Kronecker product structured covariance matrix.
Reduced linear models are obtained by using linear transformations on the model. They are one of the different forms of

models to meet the analysis requirements. Especially, they can be considered when estimation/prediction problems on general
parametric functions of partial parameters are considered. Premultiplying the model M by X⊥

2 , we can consider the following
reduced model of M:

M1 : X⊥
2 Y = X⊥

2 X1Θ1 +X⊥
2 Ψ, C1Θ1 = D, E(X⊥

2 Ψ) = 0, D(X⊥
2 Ψ) = σ2(Σ2 ⊗X⊥

2 Σ1X
⊥
2 ). (2)

The two given equation parts in (1) and (2) can merge into the following combined form of matrices

R : Υ = X̂Θ+ Ψ̂ = X̂1Θ1 + X̂2Θ2 + Ψ̂, (3)

R1 : X̂⊥
2 Υ = X̂⊥

2 X̂1Θ1 + X̂⊥
2 Ψ̂, (4)
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respectively, and according to the expectation and covariance matrix assumptions in (1) and (2),

E(Υ) = X̂Θ, E(X̂⊥
2 Υ) = X̂⊥

2 X̂1Θ1, D(
−→
Υ) = σ2

[
Σ2 ⊗Σ1 0

0 0

]
:= σ2(Σ̂2 ⊗ Σ̂1),

D(
−−−→
X̂⊥

2 Υ) = σ2(Σ̂2 ⊗ X̂⊥
2 Σ̂1X̂

⊥
2 )

(5)

are obtained, where

Υ =

[
Y
D

]
, X̂ =

[
X̂1, X̂2

]
=

[
X1 X2
C1 C2

]
, X̂1 =

[
X1
C1

]
, X̂2 =

[
X2
C2

]
, Ψ̂ =

[
Ψ
0

]
, X̂⊥

2 =

[
X⊥

2
0

]
.

This merging operation in (3) and (4) is a well-known method of including equality restrictions in linear regression models.
We make statistical inferences of the models in (3) and (4) under the assumptions that the models are consistent, i.e., we

assume that Υ ∈ C
[
X̂, Σ̂2 ⊗ Σ̂1

]
holds with probability (wp) 1, corresponding to the consistency of R, in this case, the

model R1 in (4) is consistent, i.e., X̂⊥
2 Υ ∈ C

[
X̂⊥

2 X̂1, Σ̂2 ⊗ X̂⊥
2 Σ̂1X̂

⊥
2

]
holds wp 1; see, e.g., [9].

To establish the results on predictors of all unknown matrices with partial parameters, we can consider the following matrix

Φ1 = H1Θ1 + JΨ̂ =
[
H1, 0

]
Θ+ JΨ̂, or,

−→
Φ1 = (Im ⊗H1)

−→
Θ1 + (Im ⊗ J)

−→
Ψ̂,

(6)

for given matrices H1 ∈ Rt×p1 and J ∈ Rt×(n+s). Then, according to the assumptions on the expectation matrix and
covariance matrix in (1), we obtain

cov(
−→
Φ1,

−→
Υ) = σ2(Im ⊗ J)(Σ̂2 ⊗ Σ̂1), cov(

−→
Φ1,

−−−→
X̂⊥

2 Υ) = σ2(Im ⊗ J)(Σ̂2 ⊗ X̂⊥
2 Σ̂1X̂

⊥
2 ),

D(
−→
Φ1) = σ2(Im ⊗ J)(Σ̂2 ⊗ Σ̂1)(Im ⊗ J)′.

(7)

The best linear unbiased predictors (BLUPs) are defined according to the unbiasedness criteria of predictors and the min-
imum covariance matrix requirement in the LPO. In this study, we consider BLUPs as predictors. Under our considerations,
we review the predictability/estimability requirement of Φ1 in (6) and its special cases under R1 before giving the definition
of the BLUP.

(a) Φ1 is predictable by X̂⊥
2 Υ in R1 ⇐⇒ C (H′

1) ⊆ C [(X̂⊥
2 X̂1)

′]⇐⇒H1Θ1 is estimable by X̂⊥
2 Υ in R1,

(b) X̂1Θ1 is estimable by X̂⊥
2 Υ in R1 ⇐⇒ C (X̂′

1) ⊆ C [(X̂⊥
2 X̂1)

′],
(c) X̂⊥

2 X̂1Θ1 is always estimable under R1 and Ψ̂ is always predictable under R1,

see, e.g., [1]. Further, if Φ1 is predictable under R1 then it is predictable under R. Let Φ1 be predictable under R1. If there
exists L1X̂

⊥
2 Υ such that

D(
−−−−−−−−−−→
L1X̂

⊥
2 Υ−Φ1) = min s.t. E(L1X̂

⊥
2 Υ−Φ1) = 0 (8)

holds in the LPO, the linear statistic L1X̂
⊥
2 Υ is defined to be the BLUP of Φ1 under R1 and is denoted by L1X̂

⊥
2 Υ =

BLUPR1
(Φ1) = BLUPR1

(H1Θ1 + JΨ̂). If J = 0 in Φ1, L1X̂
⊥
2 Υ corresponds the best linear unbiased estimator

(BLUE) of H1Θ1, denoted by BLUER1
(H1Θ1), under R1; see, e.g., [2] and [8].

The results, in the present paper, are established by making use of some quadratic matrix optimization methods. The related
subject can also be found in [3]-[6], [13] and [15]. We may refer to the studies [4], [5], [10] and [14], among others, in which
both a constrained and unconstrained multivariate linear model on unknown parameters has been considered from different
perspectives.

The following well-known result was given by [7].

Lemma 1.1. The linear matrix equation AX = B is consistent if and only if r
[
A, B

]
= r(A), or equivalently, AA+B =

B. In this case, the general solution of AX = B can be written in the following form X = A+B+ (I−A+A)U, where U
is an arbitrary matrix.

Lemma 1.2. Let B ∈ Rm×p, A ∈ Rn×p be given matrices, and let Q ∈ Rn×n psd matrix. Suppose that there exists X0 ∈
Rm×n such that X0B = A. Then the maximal positive inertia of X0QX′

0 −XQX′ subject to all solutions of XB = A is

max
XB=A

i+(X0QX′
0 −XQX′) = r

[
X0Q
B′

]
− r(B) = r(X0QB⊥).

Hence a solution X0 of X0B = A exists such that X0QX′
0 ≼ XQX′ holds for all solutions of XB = A ⇔ both the

equations X0B = A and X0QB⊥ = 0 are satisfied by X.
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2 Main results

The fundamental BLUP equation and some of the properties of the BLUPs under R1 are given as follows; see, e.g., [12].

Theorem 2.1. Let Φ1 be predictable under R1. For Φ1 under R1, let L1X̂
⊥
2 Υ and K1X̂

⊥
2 Υ be unbiased linear predictors.

Then the maximal positive inertia of D(
−−−−−−−−−−→
L1X̂

⊥
2 Υ−Φ1)−D(

−−−−−−−−−−→
K1X̂

⊥
2 Υ−Φ1) subject to L1X̂

⊥
2 X̂1 = H1 is

max
E(L1X̂⊥

2 Υ−Φ1)=0
i+(D(

−−−−−−−−−−→
L1X̂

⊥
2 Υ−Φ1)−D(

−−−−−−−−−−→
K1X̂

⊥
2 Υ−Φ1))

= r

([
L1, −It

] [In+s

J

]
cov(X̂⊥

2 Υ)

[
In+s

J

]′ [
X̂⊥

2 X̂1
H1

]⊥)
. (9)

Hence, D(
−−−−−−−−−−→
L1X̂

⊥
2 Υ−Φ1) = min s.t.E(L1X̂

⊥
2 Υ−Φ1) = 0 ⇔ L1X̂

⊥
2 Υ = BLUPR1

(Φ1)

⇔ L1
[
X̂⊥

2 X̂1, X̂⊥
2 Σ̂1X̂

⊥
2 (X̂⊥

2 X̂1)
⊥] = [H1, JΣ̂1X̂

⊥
2 (X̂⊥

2 X̂1)
⊥] . (10)

The matrix equation in (10) is consistent and the BLUPR1
(Φ1) is given by using the general solution L1 of (10),

BLUPR1
(Φ1) =L1X̂

⊥
2 Υ =

([
H1, JΣ̂1X̂

⊥
2 (X̂⊥

2 X̂1)
⊥]W+

1 X̂⊥
2 +U1W

⊥
1 X̂⊥

2

)
Υ,

−−−−−−−−−−→
BLUPR1

(Φ1) = (Im ⊗ L1X̂
⊥
2 )

−→
Υ

=
(
Im ⊗

([
H1, JΣ̂1X̂

⊥
2 (X̂⊥

2 X̂1)
⊥]W+

1 X̂⊥
2 +U1W

⊥
1 X̂⊥

2

))−→
Υ,

(11)

where W1 =
[
X̂⊥

2 X̂1, X̂⊥
2 Σ̂1X̂

⊥
2 (X̂⊥

2 X̂1)
⊥] and U1 ∈ Rt×(n+s) is an arbitrary matrix. In particular,

L1 is unique ⇐⇒ r(W1) = n+ s,

BLUPR1
(Φ1) is unique with probability 1 ⇐⇒ R1 is consistent.

Further, the rank of W1 satisfies the equalities

r(W1) = r
[
X̂⊥

2 X̂1, X̂⊥
2 Σ̂1X̂

⊥
2

]
= r

[
X̂⊥

2 X̂1, (X̂⊥
2 X̂1)

⊥X̂⊥
2 Σ̂1X̂

⊥
2

]
. (12)

The covariance matrices of BLUPR1
(Φ1) and Φ1 − BLUPR1

(Φ1) are unique and satisfy the equalities

D
−−−−−−−−−−−→
[BLUPR1

(Φ1)] = σ2Σ̂2 ⊗M1W
+
1 X̂⊥

2 Σ̂1X̂
⊥
2

(
M1W

+
1

)′
, (13)

D[
−→
Φ1 −

−−−−−−−−−−→
BLUPR1

(Φ1)] = σ2Σ̂2 ⊗
(
M1W

+
1 X̂⊥

2 − J
)
Σ̂1

(
M1W

+
1 X̂⊥

2 − J
)′

, (14)

where M1 =
[
H1, JΣ̂1X̂

⊥
2 (X̂⊥

2 X̂1)
⊥] and W1 =

[
X̂⊥

2 X̂1, X̂⊥
2 Σ̂1X̂

⊥
2 (X̂⊥

2 X̂1)
⊥], and U1 ∈ Rt×(n+s) is an arbi-

trary matrix.

Proof of Theorem 2.1: Suppose that L1X̂
⊥
2 Υ and K1X̂

⊥
2 Υ are two unbiased linear predictors for Φ1 in R1. Then, the

expected value and covariance matrix of L1X̂
⊥
2 Υ−Φ1 are written as

E(L1X̂
⊥
2 Υ−Φ1) = 0 ⇐⇒ L1X̂

⊥
2 X̂1 = H1

⇐⇒
[
L1, −It

] [X̂⊥
2 X̂1
H1

]
= 0

(15)

and

D
−−−−−−−−−−−→
(L1X̂

⊥
2 Υ−Φ1) = (Im ⊗ (L1 − J)) cov(X̂⊥

2 Ψ̂) (Im ⊗ (L1 − J))′

= σ2 (Im ⊗ (L1 − J)) (Σ̂2 ⊗ X̂⊥
2 Σ̂1X̂

⊥
2 ) (Im ⊗ (L1 − J))′

= σ2Σ̂2 ⊗ (L1 − J)X̂⊥
2 Σ̂1X̂

⊥
2 (L1 − J)′

= σ2Σ̂2 ⊗
[
L1, −It

] [In+s

J

]
X̂⊥

2 Σ̂1X̂
⊥
2

[
In+s

J

]′ [
L1, −It

]′
:= Σ̂2 ⊗ f(L1),

(16)

where

f(L1) =
[
L1, −It

] [In+s

J

]
X̂⊥

2 Σ̂1X̂
⊥
2

[
In+s

J

]′ [
L1, −It

]′
.

By using K1 in place of L1, the equivalent formulas as in (15) and (16) may also be given for the other unbiased linear
predictor K1X̂

⊥
2 Υ for Φ1 under R1. In order to obtain solution L1 of the consistent linear matrix equation L1X̂

⊥
2 X̂1 = H1,
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the matrix minimization problem described in (8) for finding the BLUP of Φ1 under R1 can be expressed such that

Σ2 ⊗ f(L1) ≼ Σ2 ⊗ f(K1) s.t. K1X̂
⊥
2 X̂1 = H1 (17)

or equivalently,

f(L1) ≼ f(K1) s.t. K1X̂
⊥
2 X̂1 = H1

because Σ2 is a non-null matrix. According to Lemma 1.2, (17) is a typical constrained quadratic matrix-valued function
optimization problem in the LPO. Lemma 1.2 gives us the basic formula for the BLUP of Φ1 in (10), and Lemma 1.1 gives
us the expression for the BLUP of Φ1 under R1 in (11). The expressions in (12) are well-known results; see also [11, Lemma
2.1(a)]. From (7), equalities are established in (13) and (14). □

Many consequences can be derived from Theorem 2.1 for different choices of the matrices H1 and J. Some of these are
given in the following.

Corollary 2.1. Let H1Θ1 be estimable and Ψ̂ be predictable under R1. Then,

BLUER1
(H1Θ1) =

([
H1, 0

]
W+

1 X̂⊥
2 +U1W

⊥
1 X̂⊥

2

)
Υ,

−−−−−−−−−−−−→
BLUER1

(H1Θ1) =
(
Im ⊗

([
H1, 0

]
W+

1 X̂⊥
2 +U1W

⊥
1 X̂⊥

2

))−→
Υ,

and

BLUPR1
(Ψ̂) =

([
0, Σ̂1X̂

⊥
2 (X̂⊥

2 X̂1)
⊥]W+

1 X̂⊥
2 +U1W

⊥
1 X̂⊥

2

)
Υ,

−−−−−−−−→
BLUPR1

(Ψ̂) =
(
Im ⊗

([
0, Σ̂1X̂

⊥
2 (X̂⊥

2 X̂1)
⊥]W+

1 X̂⊥
2 +U1W

⊥
1 X̂⊥

2

))−→
Υ,

where U1 ∈ Rt×(n+s) is an arbitrary matrix and W1 =
[
X̂⊥

2 X̂1, X̂⊥
2 Σ̂1X̂

⊥
2 (X̂⊥

2 X̂1)
⊥]. The covariance matrices of

BLUER1
(H1Θ1) and BLUPR1

(Ψ̂) are unique and satisfy the equalities

D
−−−−−−−−−−−−−→
[BLUER1

(H1Θ1)] = σ2Σ̂2 ⊗
([

H1, 0
]
W+

1 X̂⊥
2 Σ̂1X̂

⊥
2

([
H1, 0

]
W+

1

))′
,

and

D
−−−−−−−−−−→
[BLUPR1

(Ψ̂)] = σ2Σ̂2 ⊗
([

0, Σ̂1X̂
⊥
2 (X̂⊥

2 X̂1)
⊥]W+

1 X̂⊥
2 Σ̂1X̂

⊥
2

([
0, Σ̂1X̂

⊥
2 (X̂⊥

2 X̂1)
⊥]W+

1

))′
.

3 Conclusion

In this study, we consider a CMLM and its corresponding reduced model. We obtain new models by combining two parts
of the models, namely the model parts and the constraint parts. Thus, the explicit CMLMs are transformed into implicit
CMLMs. This combination process is one of the approaches used when considering such models. We compute the BLUPs
of all unknown parameter matrices under these models by taking this approach into account. We use some quadratic matrix
optimization methods to derive analytical formulas for calculating the BLUPs. The obtained analytical results provide a broad
perspective on the BLUPs under the considered models.

Another popular approach to such models is to reparameterize them subject to exact linear restrictions. Note that the linear
restriction equations CΘ = D and C1Θ1 = D in M and M1, respectively, are consistent. The general solutions of these
matrix equations can be written as Θ = C+D+ FCΩ and Θ1 = C+

1 D+ FC1
Ω1, respectively, where Ω ∈ Rp×m and

Ω1 ∈ Rp1×m are reparameterized but arbitrary matrices. Substituting these solutions into the model equations in M and M1
yields unconstrained multivariate linear models. Both approaches can yield equivalent results for the BLUP of Φ1.

4 References
1 I. S. Alalouf, G. P. H. Styan, Characterizations of estimability in the general linear model, Ann. Stat., 7 (1979), 194–200.
2 A. S. Goldberger, Best linear unbiased prediction in the generalized linear regression model, J. Amer. Statist. Assoc., 57 (1962), 369–375.
3 J. Groβ, S. Puntanen, Estimation under a general partitioned linear model, Linear Algebra Appl., 321 (2000), 131–144.
4 B. Jiang, Y. Tian, On additive decompositions of estimators under a multivariate general linear model and its two submodels, J. Multivar. Anal., 162 (2017a),

193–214.
5 B. Jiang, Y. Tian, On equivalence of predictors/estimators under a multivariate general linear model with augmentation, J. Korean Stat. Soc., 46 (2017b),

551–561.
6 R. Ma, Y. Tian, A matrix approach to a general partitioned linear model with partial parameter restrictions, Linear Multilinear Algebra, 70 (13) (2022),

2513–2532.
7 R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc., 51 (1955), 406–413.
8 S. Puntanen, G. P. H. Styan, J. Isotalo, Matrix Tricks for Linear Statistical Models: Our Personal Top Twenty, (2011), Springer, Heidelberg.
9 C. R. Rao, Representations of best linear unbiased estimators in the Gauss-Markoff model with a singular dispersion matrix, J. Multivariate Anal., 3 (1973),

276–292.
10 Y. Sun, H. Jiang, Y. Tian, A prediction analysis in a constrained multivariate general linear model with future observations, Commun. Stat. - Theory Methods,

50 (2) (2021), 345–357.

© CPOST 2023 123



11 Y. Tian, On properties of BLUEs under general linear regression models, J. Stat. Plan. Inference, 143 (2013), 771–782.
12 Y. Tian, Matrix rank and inertia formulas in the analysis of general linear models, Open Math., 15 (1) (2017a), 126–150.
13 Y. Tian, Transformation approaches of linear random-effects models, Stat. Methods Appl., 26 (4) (2017b), 583–608.
14 Y. Tian, C. Wang, On simultaneous prediction in a multivariate general linear model with future observations, Stat. Probab. Lett., 128 (2017), 52–59.
15 Y. Tian, S. Puntanen, On the equivalence of estimations under a general linear model and its transformed models, Linear Algebra Appl., 430 (2009), 2622–

2641.

124 © CPOST 2023



Conference Proceeding Science and Technology, 6(1), 2023, 125–127

6th International Conference on Mathematical Advances and Applications (ICOMAA 2023).

A New Transform Method and Its
Application

ISSN: 2651-544X
http://dergipark.gov.tr/cpost

Merve Yücel1,∗ Oktay Sh. Mukhtarov2,3 Kadriye Aydemir4
1Department of Mathematics, Faculty of Science and Arts, Hitit University, Çorum, Turkey, ORCID:0000-0001-7990-2821
2Department of Mathematics, Faculty of Science and Arts, Tokat Gaziosmanpaşa University, Tokat, Turkey, ORCID:0000-0001-7480-6857
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Abstract: Recently, various numerical or semi-analytical methods, such as Homotopy Perturbation Method, Adomian Decomposi-
tion Method, generalized Adams-Bashforth Moulton Method, Shooting Method, Differential Transformation Method, etc.have been
developed for solution of linear and nonlinear differential equations due to the complexity of searching for exact solutions. One of
these approximate methods is the differential transformation method (DTM, for short). This method was introduced by Zhou [1] in
1986, to solve boundary value problems appearing in modeling electrical circuits. The main goal of this work is to present a new
generalization of the DTM to find numerical and semi-analytical solutions of various type differential equations. Our own method,
which we call parameter dependent differential transform method (PdDTM, for short), depends on an auxiliary real parameter
p (0 ≤ p ≤ 1). It is important to note that in the special cases p = 0 and p = 1 the presented PdDTM reduced to the classical
DTM. We also solved an illustrative boundary value problem using PdDTM and drew a graph of the PdDTM-solution and exact
solution to justify the presented PdDTM. The results obtained, showed that the proposed parameter-dependent DTM can be alter-
native way to solve various type boundary value problems. Keywords: Boundary value problems, differential transform method,
numerical solution.

1 Introduction

Differential transformation method (DTM, for short) is one of the approximate methods, which enables to find an numerical solutions of
various type linear and nonlinear differential equations. Zhou [1] first developed DTM to solve differential equations appearing in modeling
electrical circuits. This method allows us to find not only numerical solutions, but also exact solutions in a closed form. We know that many
numerical and analytical methods are not effective enough in solving various discontinuous and/or singular boundary value problems, since
they may require complex algebraic calculations. However, the DTM can provide effective numerical solutions for most discontinuous and
singular boundary value problems, since it is based on a Taylor’s expansion. Chen and Ho [2] developed two dimensional DTM to solve linear
and nonlinear boundary value problems for partial differential equations. Ayaz [3] applied differential transform technique to the system of
differential equations. In [4], a differential transformation method is used to obtain the solution of momentum and heat transfer equations of
non-Newtonian fluid flow in an axisymmetric channel with porous wall. In [5], the DTM is applied to linear and nonlinear system of ordinary
differential equations. In [6], the DTM, is generalized to analyze the free vibration problem of pipes conveying fluid with several typical
boundary conditions.

In this study we propose a new generalization of the classical DTM, which we call parameter dependent differential transform method (Pd
DTM, for short) to solve initial and/or boundary value problems, as well as spectral problems.

2 The Main Properties of PdDTM

Let Ω = [a, b] be any finite interval and f : Ω → R is an analytic function, p (0 ≤ p ≤ 1) is a real parameter. Let Yk(f, x0) be k − th
Taylor’s coefficient of the function f, that is

Yk(f, x0) :=
1

k!

dkf

dxk
|x=x0 , k = 0, 1, 2, ... (1)

Definition 1. ([7]) The sequence Zp(f), defined by

Zp(f) = (Zp(f, 0), Zp(f, 1), ..., Zp(f, k), ...) (2)

is called parameter dependent differential transformation (PdDT, for short) of the function f, where

Zp(f, k) := pYk(f ; a) + (1− p)Yk(f ; b). (3)
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Definition 2. ([7]) The parameter dependent inverse differential transformation (PdIDT) of the sequence Zp(f), is defined as

Z−1
p (Zp(f)) :=

∞∑
k=0

Zp(f, k)(x− xp)
k, (4)

where xp := pa+ (1− p)b. The function f∗p (x) := Z−1
p (Zp(f)) is called the PdDTM- approximation of the function f.

Theorem 1. ([7]) For p = 0 and p = 1 the equality f∗p (x) = f(x) is hold.

Remark 1. ([7]) In solving many problems by PdDTM instead of f∗(x) it is convenient to introduced n-term parameter dependent
approximation of the function f(x) by

f∗p,n(x) = Z−1
p,n(Zp(f))

=

n∑
k=0

Zp(f, k)(x− xp)
k (5)

Theorem 2. ([7]) If f(x) is constant function then f∗p (x) = f(x) and f∗p,n(x) = f(x) for each n.

Theorem 3. ([7]) If f(x) = cg(x), c ∈ R, then Zp(f) = cZp(g) and f∗p (x) = cg∗p(x).

Theorem 4. ([7]) If f(x) = g(x)± h(x) then Zp(f) = Zp(g)± Zp(h) and f∗p (x) = g∗p(x)± h∗p(x).

Theorem 5. ([7]) Let f(x) = dmg
dxm and m ∈ N. Then

Zp(g, k) =
(k +m)!

k!
Zp(f, k +m)

and

(fmp )∗(x) =
∞∑
k=0

(k +m)!

k!
Zp(f, k +m)(x− xp)

k

where xp = pa+ (1− p)b.

Theorem 6. ([7]) Let f(x) = xm, m ∈ N. Then

Zp(f, k) =


(

m
k

)
(pam−k + (1− p)bm−k) for k < m

1 for k = m
0 for k > m

Theorem 7. ([7]) If f(x) = g(x)h(x) then Zp(f, k) =
k∑

m=0
[pZp(g,m)Zp(h; k −m) + (1− p)Zp(g,m)Zp(h; k −m)]

3 Justification of the PdDTM

Let us consider the equation

y′′(x) + xy′(x) +

(
1

4
x2 +

1

2

)
y(x) = 0, x ∈ [0, 1] (6)

with the boundary conditions
y(0) = 0, y(1) = 1. (7)

By using the fundamental operations of PdDTM, we have

(k + 1)(k + 2)Zp(y, k + 2) +

k∑
r=0

(k − r + 1)Zp(y, k − r + 1)δ(r − 1) +
1

4

k∑
r=0

Zp(y, k − r)δ(r − 2) +
1

2
Zp(y, k) = 0

Zp(y, k + 2) =
−1

(k + 1)(k + 2)
[

k∑
r=0

(k − r + 1)Zp(y, k − r + 1)δ(r − 1) +
1

4

k∑
r=0

Zp(y, k − r)δ(r − 2) +
1

2
Zp(y, k)] (8)

Denoting Zp(y, 0) = 0 and Zp(y, 1) = A then substituting in the recursive relation (8), we get Zp(y, 2) = 0, Zp(y, 3) =
−1
4 A,

Zp(y, 4) = 0, Zp(y, 5) =
−1
32 A, Zp(y, 6) = 0, Zp(y, 7) =

−A
384A, Zp(y, 8) = 0, ...
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Fig. 1: Comparison of the exact solution (blue line) and PdTM solution for α=1/2 (red line).

Thus we obtain

y = Ax+ (
−1

4
)Ax3 + (

1

32
)Ax5 + (

−1

384
)x7 + ...

By using the fundamental operations of PdDTM for x0 = 1 , we have

Zp(y, 0) = 1

Zp(y, 1) = B

2Zp(y, 2) + Zp(y, 1) + (
3

4
)Zp(y, 0) = 0

6Zp(y, 3) + 2Zp(y, 2) + (
7

4
)Zp(y, 1) + (

1

2
)Zp(y, 0) = 0 (9)

(k + 1)(k + 2)Zp(y, k + 2) + (k + 1)Zp(y, k + 1) + (k +
3

4
)Zp(y, k) +

1

2
Zp(y, k − 1) +

1

4
Zp(y, k − 2) = 0, k = 2, 3, ...

Then we can obtain Zp(y, 2) =
1
2 (

−3
4 −B), Zp(y, 3) =

1−3B
24 , Zp(y, 4) =

21+40B
384 , Zp(y, 5) =

−18+5B
1920 , ... Consequently we can write

y(x) =

n∑
k=0

Zp(y, k)(x− 1)k

= Zp(y, 0) + Zp(y, 1)(x− 1) + Zp(y, 2)(x− 1)2 + ...

= 1 +B(x− 1) +
1

2
(
−3

4
−B)(x− 1)2 +

1− 3B

24
(x− 1)3 +

21 + 40B

384
(x− 1)4 +

−18 + 5B

1920
(x− 1)5 + ...

Thus, we have

yp(x) = (1− p) + (pA+ (1− p)B)(x− (1− p)) + (1− p)
1

2
(
−3

4
−B)(x− (1− p))2

+ (p(
−A

4
) + (1− p)

1− 3B

24
)(x− (1− p))3 + (1− p)

21 + 40B

384
(x− (1− p))4

+ (p
A

32
+ (1− p)

−18 + 5B

1920
)(x− (1− p))5 (10)

Now, by using boundary conditions we find A = 2.9047 and B = −0.762363.

4 Conclusion

In this work we presented a new generalization of differential transformation method, which we call parameter dependent differential trans-
formation method (PdDTM). The presented method depends on an auxiliary parameter p (0 ≤ p ≤ 1). In the special cases p = 0 and p = 1
the PdDTM reduced to the well-know DTM. By applying the presented PdDTM we solved an illustrative differential equation. The results
obtained showed that the present new method is quite reliable and can be applied to various type boundary value problems.
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Abstract: In this paper, we introduced the concepts of semi-global domination numbers in product fuzzy graph, which is denoted
by γsg(G) and semi complimentary product fuzzy graph. We determine the semi-global domination number γsg(G) for several
classes of product fuzzy graph and obtain Nordhaus-Gaddum type results for this parameter. Further, some bounds of γsg(G) are
investigated. Also the relationship between γsg(G) and other known parameters in Product fuzzy graphs are investigated.
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1 Introduction

A graph is a mathematical representation of a network, and it describes the relationship between vertices and edges. Graph theory is used to
represent real-life phenomena, but sometimes graphs are not able to properly represent many phenomena because the uncertainty of different
attributes of the systems exists naturally. Many real-world phenomena provided motivation to define fuzzy graphs. Kauffman [4]. introduced
fuzzy graphs using Zadeh’s fuzzy relation [15]. The fuzzy-graph theory is growing rapidly, with numerous applications in many domains,
including networking, communication, data mining, clustering, image capturing, image segmentation, planning, and scheduling.

The origin of graph theory dates back to Euler’s solution to the puzzle of Koigsberg’s bridges in 1736 [1]. Graph theory has numerous
applications to problems in systems analysis, operations research, transportation, chemical structures, and economics [2, 3, 5, 7]. However, in
many cases, some aspects of a graph theoretic problem may be uncertain. For example, the vehicle travel time or vehicle capacity on a road
network may not be known exactly. In such cases, it is natural to deal with the uncertainty using fuzzy set theory. The fuzzy graph theory as
a generalization of Euler’s graph theory was first introduced by Rosenfeld in 1975 [12]. Up to the present, fuzzy graphs have been studied by
some researchers [8]-[9], [11] [13] [14]. For example, the concept of a semi-global dominating set in fuzzy graphs was introduced by A. Gani
et al. [10]. The concept of global domination number in product fuzzy graphs was introduced by H. Ahmed and M. Shubatah (2020) [6]. This
motivated us to introduce the concepts of semi-global dominating sets in product fuzzy graphs.

2 Definitions

In this section, we review briefly some definitions in Graphs, fuzzy graphs, product fuzzy graphs, semi domination number in a fuzzy graph
and global domination number in a product fuzzy graph.

A crisp graph G is a finite nonempty set of objects called vertices together with a set of unordered pairs of distinct vertices of G called edges.
The vertex sets and the edges set of G are denoted by V(G) and E(G) respectively.

A fuzzy graph G = (µ,ρ) is a set V with two function µ :V → [0,1] and ρ : E → [0,1] such that ρ({u, v}) ≤ µ(u) ∧ µ(v) for all u, v ∈ V .
We write ρ({u, v}) for ρ(u, v).
The order p and size q of a fuzzy graph G = (µ, ρ) are defined to be p =

∑
u∈V µ(u) and q =

∑
(u,v)∈E ρ(u, v).

A subset D of V is called a dominating set of G if for every v ∈ V −D there exists u ∈ D such that u dominates v.
A dominating set D of a fuzzy graph G is called a minimal dominating set if D − {v} is not dominating set of G for all v ∈ D.
The minimum fuzzy cardinality has taken over all minimal dominating set in a fuzzy graph G is called domination number of G and denoted

by γ(G).
A subset D of V in a fuzzy graph G is said to be global dominating set if D is a dominating set in bath G and complement of G.
The global dominating set D of a fuzzy graph G is said to be minimal global dominating set if D-{v} is not global dominating set of G for

all v ∈ D.
The minimum fuzzy cardinality taken over all minimal global dominating sets in a fuzzy graph is called the global domination number and

is denoted by γg(G).
A global dominating set D of fuzzy cardinality |D|={

∑
µ(u) for all u ∈ D} = γg(G) is denoted by γg − set.
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Let D be a γg − set then D is connected if the fuzzy subgraph < D > induced by D is connected.
The connected global domination number of a fuzzy graph G is the minimum cardinality taken over all connected global dominating set of G
and is denoted by γcg(G).

A global dominating set D of a fuzzy graph G is called an independent global dominating set if it is also independent.
The minimum fuzzy cardinality has taken over all an independent global dominating sets is called independent global domination number

and are denoted by γig(G).
An arc uv of a fuzzy graph is called a strong arc if COND−uv(u, v) ≥ ρ∝(u, v), where the COND−uv(u, v) is the strength of

connectedness between u and v.
Let G be a graph whose vertex set is V, µ be a fuzzy subset of V and ρ be a fuzzy subset of V× V, we call (µ, ρ) a product partial fuzzy

subgraph of G(in short, a product fuzzy graph) ifρ(u, v) ≤ µ(u)× µ(v) for all u, v ∈ V .
A product fuzzy graph G = (µ, ρ) is called complete product fuzzy graph if ρ(u, v) = µ(u)× µ(v) for all u, v ∈ V .
A product fuzzy graph G is said to be a bipartite product fuzzy graph if the vertex set V can be partitioned into two nonempty sets V1andV2

such that ρ(u, v) = 0 if u, v ∈ V1 or u, v ∈ V2.
We say that a bipartite product fuzzy graph is a complete bipartite product fuzzy graph if ρ({u, v}) = µ (u)×µ(v) for all u ∈ V1, v ∈ V2.

The complement of a product fuzzy graph G = (V, µ, ρ) is denoted by G = (V, µ, ρ) where µ = µ and ρ (u, v) = µ(u)× µ(v)− ρ(u, v).
Let G = (V, µ, ρ) be a product fuzzy graph and u, v ∈ V (G) then we say u dominates v if ρ(u, v) = µ(u)× µ(v) for all u, v ∈ V .
Let G = (V, µ, ρ) be a product fuzzy graph then a vertex subset D of V(G) is said to be dominating set of G if for every vertex v ∈ (V −D)

their exists a vertex u ∈ D such that ρ(u, v) = µ(u)× µ(v).
The dominating set D of a product fuzzy graph is called a minimal product dominating set if D − {v} is not dominating set of G, for all vertices
in D.

The minimum fuzzy cardinality that has taken over all minimal dominating sets in a product fuzzy graph G is called the domination number
of G and is denoted by γ(G). A dominating set D of a product fuzzy graph G is called an independent dominating set if D is independent.

The maximum fuzzy cardinality taken over all independent sets of a product fuzzy graph is called an independence number and is denoted
by β0(G). If e = (u, v) is an edge in a product fuzzy graph G. Then we say that u and v cover the edge e. A subset D of V is called a covering
set of a product fuzzy graph G if all edge in G their is a vertex v in D such that v cover e.

The minimum fuzzy cardinality taken over all covering sets of a product fuzzy graph is called a vertex covering number and is denoted by
α0(G).

A dominating set D of a product fuzzy graph G = (V, µ, ρ) is called connected dominating set of G if the fuzzy subgraph < D > induced
by D is connected.

The connected domination number of a product fuzzy graph G is the minimum cardinality taken over all connected dominating sets in G and
is denoted by γc(G).

A dominating set D of a product fuzzy graph G is called an independent dominating set if D is an independent.
The independence domination number of fuzzy graph G is the minimum fuzzy cardinality taken over all independent dominating sets in G

and is denoted by γi(G).
The independence domination number of a product fuzzy graph G is the minimum fuzzy cardinality taken over all independent dominating

sets in G and is denoted by γi(G). Let G = (V, µ, ρ) be any fuzzy product graph where a vertex subset D of V (G) is called global dominating
set of G if D is also a dominating set of the complement of G.

A global dominating set D of a product fuzzy graph G is called a minimal global dominating set if D − {v} is not global dominating set of
G for all v ∈ D.

The minimum fuzzy cardinality taken over all minimal global dominating sets in a product fuzzy graph G is called the global domination
number and is denoted by γg(G).

Let G = (V, µ, ρ) be any fuzzy graph. Then a semi-complementary fuzzy graph which is denoted by Gsc = (V, µsc, ρsc) defined as where
(i) µsc(v) = µ(v) and
(ii) ρsc =

{
xy ∈ ρ∗and ∃ u such that xu and uy in E. Then ρsc(x, y) = µ(x) ∧ µ(y).

Let G = (V, µ, ρ) be any fuzzy graph with strong arcs. A vertex subset D of V (G) is called semi-global dominating set of G if D is also a
dominating set of Gsc.

A semi-global dominating set D of a fuzzy graph G is called minimal semi global dominating set if D − {v} is not semi global dominating
set of G for all v ∈ D.

The minimum fuzzy cardinality taken over all minimal semi global dominating sets in a fuzzy graph G is called the semi global domination
number and is denoted by γsg(G).

The maximum fuzzy cardinality taken over all semi global dominating sets in a fuzzy graph G is called the upper semi global domination
number and is denoted by Γsg(G).

3 Semi Complementary Product Fuzzy Graph and Semi Complete Product Fuzzy Graph

The aim of this section is to introduce and study the concepts of semi complementary product fuzzy graph and semi complete product fuzzy
graph.

Definition 1. Let G = (V, µ, ρ) be any product fuzzy graph. Then a semi complementary product fuzzy graph which is denoted by Gsc =
(V, µsc, ρsc) defined as
(i) µsc(v) = µ(v) and
(ii) ρsc = { xy /∈ ρ∗and ∃ u such that xu and uy in E. Then ρsc(x, y) = µ(x)× µ(y)}.
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Example 1. Consider a product fuzzy graph and semi- complementary product fuzzy graph shown in Figure (1).
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Gsc-Complementary product fuzzy graphFigure 1- Product fuzzy graph (G)

Theorem 1. (i) If G = (µ, ρ) be a connected product fuzzy graph, but Gsc is not connected product fuzzy graph;
(ii) (Gc)c) = G, but (Gsc)c ̸= Gsc;
(iii) (Gsc)c) is spanning subgraph of G and |E(Gc)| ≥ |(E(Gsc)|;
(iv) every edge ρ(u, v) in (Gsc) is not neighbor in G;
(v) If G be complete product fuzzy graph. Then (Gsc) = Gc = null graph;
(vi) in (Gsc), all the edges are effective edges.

Her, we proved (i)

Proof: Let G = (V, µ, ρ) be connected product fuzzy graph. Then ∀ (u, v) ∈ ρ∗. ρ(u, v) = µ(u)× µ(v) and

ρsc =
{

xy /∈ ρ∗and ∃ u such that xu and uy in E. Then ρsc(x, y) = µ(x)× µ(y)

. Then ρ̄sc(u, v) = 0 for all (u, v) ∈ ρsc∗. Hence, the proof. □

Definition 2. Let G = (V, µ, ρ) be any strong product fuzzy graph. We say that G is a semi complete product fuzzy graph, if every pair of
vertices have a common neighbor in G.

Example 2. Consider a semi complete product fuzzy graph shown in Figure(2)
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Fig 2 Semi complete product fuzzy graph
.

Remark 1. Every complete product fuzzy graph is semi complete product fuzzy graph but the converse is not true.

Proof: Let G = (V, µ, ρ) be a complete product fuzzy graph. Then every pair of vertices have a common neighbor in G. Thus G is a semi
complete product fuzzy graph.
To show that the converse of the above theorem is not true we give the following example.

Example 3. Consider a semi complete product fuzzy graph shown in Figure 3
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Fig 3
.
From (Figure 3) we see that (G) is a semi-complete product fuzzy graph but is not a complete product fuzzy graph.
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□

4 Semi Global domination number in product fuzzy graph

Definition 3. Let G = (V, µ, ρ) be any strong product fuzzy graph. A vertex subset D of V (G) is called semi global dominating set of G if D
is also a dominating set of Gsc.

Definition 4. A semi global dominating set D of a product fuzzy graph G is called minimal semi global dominating set if D − {v} is not semi
global dominating set of G for all v ∈ D.

Definition 5. The minimum fuzzy cardinality taken over all minimal semi global dominating sets in a product fuzzy graph G is called the semi
global domination number and is denoted by γsg(G).

Definition 6. The maximum fuzzy cardinality taken over all semi global dominating sets in a product fuzzy graph G is called the upper semi
global domination number and is denoted by Γsg(G).

Example 4. Consider a product fuzzy graph and semi- complementary product fuzzy graph as shown in Figure (4).
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Figure 4- Product fuzzy graph G and Gsc

By (Figure 4) we see that γsg(G). = 0.6. and Γsg(G) = 0.8.

Corollary 1. The semi global dominating set in product fuzzy graph is not singleton

Proof: Let G be a semi product fuzzy graph and D a semi global dominating set. Since a semi global dominating set D is dominating set for
both G and Gsc. Then D contains at least two vertices. Thus (s. g. d. set) containing more than two vertices. Hence, the result. □

In the following results, we give γsg for some standard product fuzzy graphs we begin with the complete product fuzzy graph Kµ.

Theorem 2. If G = (µ, ρ) is a complete product fuzzy graph. Then

γsg(G) = p.

Proof: Let G = Kµ be a complete product fuzzy graph. Then every vertex of G has (n− 1) neighbors. Since the complement of G is the null
graph. Then V is only the semi global dominating set of G and Gsc. Hence, γsg(G) ≤ |v| = p. □

The following theorem gives γsg of the complete bipartite product fuzzy graphs Kn,m.

Theorem 3. If G = Kn,m is complete bipartite product fuzzy graph, where n = |V1| and m = |V2|. Then

γsg(G) = p.

Proof: Let G be a complete bipartite product fuzzy graph and let D is a minimal semi-global dominating set of G. Then D is a dominating set
of G and Gsc. Since V1 and V2 are independent. Then Gsc. is a null graph. Hence,

γsg(G) = p.

□

Theorem 4. For any product fuzzy graph G,
(i) γg(G) ≤ γsg(G);

(ii) γg(G) ≤ γsg(G).
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Proof: Let G be any product fuzzy graph and D be a minimal semi-global dominating set of G. Therefore, D is a global dominating set of G.
Hence, γg(G) ≤ |D| = γsg(G). Similarly, γg(G) ≤ γsg(G). □

The following corollary follows directly from theorem (4).

Corollary 2. : For any product fuzzy graph G,
γg + γg

2
≤ γsg(G) ≤ γg + γg.

For the semi-global domination number γsg(G) the following theorem gives a Nordhaus-Gaddum-type result

Theorem 5. For any product fuzzy graph G,
γsg(G) + γsg(Ḡ) ≤ 2p.

Further, equality holds if ρ(u, v) < µ(u)× µ(v) for all u, v ∈ V.

Proof: Let G be a product fuzzy graph. Since V itself is a semi global dominating set of G. Then γsg(G) ≤ |V | = p and γsg(Ḡ) ≤ |V | = p.
Therefore, γsg(G) + γsg(Ḡ) ≤ 2p. If ρ(u, v) < µ(u)× µ(v) for all u, v ∈ V . Then γsg(G) = γsg(Ḡ) = p. Hence, γsg(G) + γsg(Ḡ) =
2p. □

Proposition 1. Let D be a γ − set of a product fuzzy graph G, If there exists a vertex v in V −D adjacent to only vertices in D. Then

γsg(G) ≤ γ + µ(v).

Proof: This follows, since D ∪ {v} is a semi-global dominating set. □

Theorem 6. For any product fuzzy graph G of order p without isolates.

(i) γi(G) + γsg(G) ≤ p+ t;

(ii) γ(G) + γsg(G) ≤ p+ t.

Proof: Let D be a γi− set of a product fuzzy graph G and let v ∈ D such that, µ(u) = max {µ(u) for all u ∈ V (G)}. Then V −D ∪ {v} is
a semi-global domination set. Therefore, γsg(G) ≤ |V −D|+ µ(v) = p− γi(G) + t. Hence, γi(G) + γsg(G) ≤ p+ t. holds Since every
independent dominating set of G is a semi dominating set of G. Hence, (ii) holds. □

5 Conclusion

In this paper, we introduced the concept of semi-complementary and semi-global domination number in product fuzzy graphs. We obtained
the bounds and some properties for semi-global domination number of product fuzzy graphs. Relationships between semi-global domination
number on product fuzzy graphs and some other parameters were established.
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Abstract:
Topological descriptors are used to model various chemical and physical properties of molecules, such as boiling points, solubility,
reactivity, biological activity, etc. By analyzing the relationship between the values of these indices and the properties of interest,
QSPR and QSAR models can be developed to predict the properties of new molecules. Triphenylene is an aromatic hydrocarbon
with the molecular formula C18H12. It is a planar molecule consisting of three fused benzene rings. The benzenoid series of triph-
enylene consists of compounds derived from triphenylene by replacing one or more of its benzene rings with other aromatic rings.
In this study, we computed some topological descriptors of the benzenoid triphenylene series Sr, Moreover, polynomial formulae
for these topological descriptors were derived in terms of the number of the Triphenylene benzenoid rings (Sr) in the chain graph.

Keywords: Benzenoid triphenylene series, Molecular Graph, Topological Descriptors.
AMS Subject Classification 2020: 05C92, 05C90, 92E10.

1 Introduction

Topological indices and coindices are numerical quantities that are derived from the chemical graph of a molecule, which is a graph repre-
sentation of the molecular structure. These indices are important tools in the fields of quantitative structure-activity relationship (QSAR) and
quantitative structure-property relationship (QSPR) research. QSAR and QSPR studies aim to establish quantitative relationships between the
physicochemical properties or biological activities of molecules and their structural characteristics[1–3].

Some examples of commonly used topological indices include the Wiener index, the Zagreb index, the Randic index, and the Balaban index
[4–7]. In (1972) Gutman and Trinajstić [8, 9] presented the first degree-based structure descriptors (first and 2nd Zagreb indices) (1972). Došlić
(2008) introduced Zagreb coindices while computing weighted Wiener polynomials of certain composite graphs [33, 34]. They are defined as:

M1(Γ) =
∑

µν /∈E(Γ)

[δ(µ) + δ(ν)]

M2(Γ) =
∑

µν /∈E(Γ)

[δ(µ)δ(ν)]

Furtula et al. in (2015) introduced the forgotten index (F-index) [10, 11].
In 2016, N. De et al. [35, 36] introduce the F-coindex which is defined as follows.

F (Γ) =
∑

µν /∈E(Γ)

[δ2(µ) + δ2(ν)]

Alameri et al. [12] (2020) defined a new degree-based structure descriptor denoted by (Y-index). On the other hand, in the same year [37]
authors defined new degree-based descriptors, denoted by the (Y − coindex), and defined as:

Y (Γ) =
∑

µν /∈E(Γ)

[δ3(µ) + δ3(ν)]

In (2005) Li and Zheng [13] introduced the first general Zagreb index. Then, Shirdel and Sayadi [14] (2013) computed the Hyper-Zagreb
index of some graph operations. Wei et al. [15] (2016) studied the First and 2nd Zagreb and First and 2nd Hyper-Zagreb Indices of Carbon
Nanocones CNCk[n]. Also, the general Rendić index is defined by Li. and Gutman [16]. In (2013), Ranjini et al. Re-defined the Zagreb indices
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Topological indices Formulae of indices
1st Zagreb index (M1 − index) [8] M1(Γ) =

∑
µν∈E(Γ)

[δ(µ) + δ(ν)]

Forgotten index (F − index) [10] F (Γ) =
∑

µν∈E(Γ)

[δ2(µ) + δ2(ν)]

Yemen index (Y − index) [12] Y (Γ) =
∑

µν∈E(Γ)

[δ3(µ) + δ3(ν)]

1st general Zagreb index (Mα
1 ) [13] Mα

1 (Γ) =
∑

µν∈E(Γ)

[δα(µ) + δα(ν)]

2nd Zagreb index (M2 − index) [8] M2(Γ) =
∑

µν∈E(Γ)

[δ(µ) · δ(ν)]

Hyper-Zagreb index (HM − index) [14] HM(Γ) =
∑

µν∈E(Γ)

[δ(µ) + δ(ν)]2

2nd Hyper-Zagreb index (HM2 − index) [15] HM2(Γ) =
∑

µν∈E(Γ)

[δ(µ) · δ(ν)]2

General Rendić index (Rα − index) [16] Rα(Γ) =
∑

µν∈E(Γ)

[δ(µ) · δ(ν)]α

Redefined 1st Zagreb index ReZG1 [17] ReZG1(Γ) =
∑

µν∈E(Γ)

δ(µ) + δ(ν)

δ(µ)δ(ν)

Redefined 2nd Zagreb index ReZG2 [18] ReZG2(Γ) =
∑

µν∈E(Γ)

δ(µ) · δ(ν)
δ(µ) + δ(ν)

Redefined 3rd Zagreb index ReZG3 [18] ReZG3(Γ) =
∑

µν∈E(Γ)

[δ(µ) · δ(ν)][δ(µ) + δ(ν)]

Sombor index (SO − index) [19] SO(Γ) =
∑

µν∈E(Γ)

√
δ2(µ) + δ2(ν)

General sum-connectivity index χα [20] χα(Γ) =
∑

µν∈E(Γ)

[
δ(µ) + δ(ν)

]α
Geometric arithmetic index (GA) [22] GA(Γ) =

∑
µν∈E(Γ)

2
√

δ(µ)δ(ν)

δ(µ) + δ(ν)

Atom-bond connectivity index (ABC) [23] ABC(Γ) =
∑

µν∈E(Γ)

√
δ(µ) + δ(ν)− 2

δ(µ)δ(ν)

Table 1 Some well-known topological indices.

[17, 18], the Sombor index (SO) was introduced by Gutman [19], General Sum Connectivity index defined in [20, 21]. Geometric Arithmetic
index introduced by Ghorbani and Azimi [22], Atom-bond Connectivity (ABC) index defined by Estrada et al. [23].

In general, topological indices and coindices are powerful tools for understanding the structure-property relationships of molecules and are
widely used in QSAR and QSPR research.

Benzenoid systems such as phenylene, biphenylene, and triphenylene are important classes of polycyclic aromatic hydrocarbons (PAHs).
PAHs are a class of organic compounds composed of multiple aromatic rings. The benzenoid hydrocarbons are a subset of the alternant
PAHs, but are considered to include unstable or hypothetical compounds like triangulene or heptacene. More than 300 benzenoid hydrocarbons
have been isolated and characterized. These compounds are fully-conjugated hydrocarbons whose molecules are essentially planar with all
rings six-membered. The benzenoid hydrocarbons are largely a subset of the alternant PAHs. Benzenoid systems are important in drug design
and modeling studies and have been used to develop physicochemical descriptors of molecules that convey aromaticity-related character. The
benzenoid triphenylene series consists of polycyclic aromatic hydrocarbons (PAHs) composed of three fused benzene rings arranged in a planar,
disc-like structure. The general formula for these compounds is C18H12, and they have a molecular weight of 228.29 g/mol [24–30, 38].

The molecular structure of triphenylene can be represented in (Fig. 1):

2 Main results

In this section, the formulae for the 1st Zagreb, Forgotten, Yemen, general Zagreb, 2nd Zagreb, Hyper-Zagreb, 2nd Hyper-Zagreb, General
Rendić, Redefined 1st Zagreb, Redefined 2nd Zagreb, Redefined 3rd Zagreb, Sombor, General Sum Connectivity, Geometric Arithmetic, Atom
Bond Connectivity, Yemen-Sombor, the 2nd, 3rd, and Generalized General sum-connectivity of the chain molecular graph of Triphenylene Sr

have been investigated. Moreover, polynomial formulae for all the above-mentioned topological descriptors have been introduced.

Theorem 1. Let Sr be the rth level in the chain of the Benzenoid System (See Figure 1). Then

1. M1(Sr) = 78r + 24.

2. F (Sr) = 210r + 48.

3. Y (Sr) = 582r + 96.

4. Mα
1 (Sr) = 18n · 2α+1 + [20n+ 8] · 3α+1.
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Fig. 1: Molecular structure of the Benzenoid triphenylene Series

5. M2(Sr) = 276n+ 60.

6. HM(Sr) = 1128n+ 228.

7. HM2(Sr) = 1932n+ 636.

8. Rα(Sr) = 6(n+ 1)4α + 12(2n− 1)6α + 12(n+ 1)9α.

9. ReZG1(Sr) = 34n+ 4.

10. ReZG2(Sr) = 52.8n+ 9.6.

11. ReZG3(Sr) = 1464n+ 384.

12. SO(Sr) = 154.42n+ 24.62.

13. χα(Sr) = 4α[6(n+ 1)] + 5α[12(2n− 1)] + 6α[12(n+ 1)].

14. GA(Sr) = 65.52n+ 30.24.

15. ABC(Sr) = 29.21n+ 3.76.

16. Y S(Sr) = 12(r + 2) + 6
√
35r + 18

√
6r.

17. χα
2 (Sr) = (3r + 6) · 8α + 6r · 13α + 6r · 18α.

18. χα
3 (Sr) = (3r + 6) · 16α + 6r · 35α + 6r · 54α.

19. χα
α(Sr) = (3r + 6) · 2α

2+α + 6r[2α + 3α]α + 6r · 2α · 3α
2

.

Proof: We now consider the molecular graph Sr =Chain of Triphenylene Benzenoid System in rth level,(Fig. 1). It is easy to obtain the
|V (Sr)| = 6(6n+ 1) and |E(Sr)| = 6(7n+ 1), and the edge set of Sr can be divided into three edge sets as follows:

E2,2(Sr) = {st ∈ E(Sr) : δSr
(s) = 2, δSr

(t) = 2, δSr
(s) + δSr

(t) = 4, δSr
(s)δSr

(t) = 4},
E2,3(Sr) = {st ∈ E(Sr) : δSr

(s) = 2, δSr
(t) = 3, δSr

(s) + δSr
(t) = 5, δSr

(s)δSr
(t) = 6},

E3,3(Sr) = {st ∈ E(Sr) : δSr
(s) = 3, δSr

(t) = 3, δSr
(s) + δSr

(t) = 6, δSr
(s)δSr

(t) = 9},

The Cardinality of all types of edges is shown in (Table. 2),
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Table 2 The edge partition of Sr .

Edge partition E2,2 E2,3 E3,3

Cardinality 3r + 6 6r 6r

Now, by the concepts of the First-Zagreb index (M1 − index), Forgotten-Index (F − index), Yemen-Index (Y − index), First General-
Zagreb index (Mα

1 ), 2nd Zagreb index (M2 − index), Hyper-Zagreb index (HM − index), 2nd Hyper-Zagreb index (HM2 − index),
General-Rendić index (Rα − index), Redefined First-Zagreb index (ReZG1), Redefined 2nd Zagreb index (ReZG2), Redefined 3rd Zagreb
index (ReZG3), Sombor index(SO), General Sum Connectivity index, Geometric-Arithmetic index, Atom Bond Connectivity index (ABC),
Yemen-Sombor, the 2nd, 3rd, and Generalized General sum-connectivity indices respectively, we have

1. M1(Sr) =
∑

st∈E(Sr)

[δSr
(s) + δSr

(t)] =
∑

st∈E2,2

[δSr
(s) + δSr

(t)]

+
∑

st∈E2,3

[δSr
(s) + δSr

(t)] +
∑

st∈E3,3

[δSr
(s) + δSr

(t)]

= (2 + 2)|E2,2(Sr)|+ (2 + 3)|E2,3(Sr)|+ (3 + 3)|E3,3(Sr)|
= (2 + 2)[3r + 6] + (2 + 3)[6r] + (3 + 3)[6r]. □

2. F (Sr) =
∑

st∈E(Sr)

[δ2Sr
(s) + δ2Sr

(t)] =
∑

st∈E2,2

[δ2Sr
(s) + δ2Sr

(t)]

+
∑

st∈E2,3

[δ2Sr
(s) + δ2Sr

(t)] +
∑

st∈E3,3

[δ2Sr
(s) + δ2Sr

(t)]

= (22 + 22)|E2,2(Sr)|+ (22 + 32)|E2,3(Sr)|+ (32 + 32)|E3,3(Sr)|

= (22 + 22)[3r + 6] + (22 + 32)[6r] + (32 + 32)[6r]. □

3. Y (Sr) =
∑

st∈E(Sr)

[δ3Sr
(s) + δ3Sr

(t)] =
∑

st∈E2,2

[δ3Sr
(s) + δ3Sr

(t)]

+
∑

st∈E2,3

[δ3Sr
(s) + δ3Sr

(t)] +
∑

st∈E3,3

[δ3Sr
(s) + δ3Sr

(t)]

= (23 + 23)|E2,2(Sr)|+ (23 + 33)|E2,3(Sr)|+ (33 + 33)|E3,3(Sr)|

= (23 + 23)[3r + 6] + (23 + 33)[6r] + (33 + 33)[6r]. □

4. Mα
1 (Sr) =

∑
st∈E(Sr)

[δαSr
(s) + δαSr

(t)] =
∑

st∈E2,2

[δαSr
(s) + δαSr

(t)]

+
∑

st∈E2,3

[δαSr
(s) + δαSr

(t)] +
∑

st∈E3,3

[δαSr
(s) + δαSr

(t)]

= (2α + 2α)|E2,2(Sr)|+ (2α + 3α)|E2,3(Sr)|+ (3α + 3α)|E3,3(Sr)|
= (2α + 2α)[3r + 6] + (2α + 3α)[6r] + (3α + 3α)[6r]. □

5. M2(Sr) =
∑

st∈E(Sr)

[δSr
(s)δSr

(t)] =
∑

st∈E2,2

[δSr
(s)δSr

(t)] +
∑

st∈E2,3

[δSr
(s)δSr

(t)]

+
∑

st∈E3,3

[δSr
(s)δSr

(t)] = (2 · 2)|E2,2(Sr)|+ (2 · 3)|E2,3(Sr)|+ (3 · 3)|E3,3(Sr)|

= (2 · 2)[3r + 6] + (2 · 3)[6r] + (3 · 3)[6r]. □
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6. HM(Sr) =
∑

st∈E(Sr)

[δSr
(s) + δSr

(t)]2 =
∑

st∈E2,2

[δSr
(s) + δSr

(t)]2

+
∑

st∈E2,3

[δSr
(s) + δSr

(t)]2 +
∑

st∈E3,3

[δSr
(s) + δSr

(t)]2

= (2 + 2)2|E2,2(Sr)|+ (2 + 3)2|E2,3(Sr)|+ (3 + 3)2|E3,3(Sr)|

= (2 + 2)2[3r + 6] + (2 + 3)2[6r] + (3 + 3)2[6r]

= 1128n+ 228. □

7. HM2(Sr) =
∑

st∈E(Sr)

[δSr
(s)δSr

(t)]2 =
∑

st∈E2,2

[δSr
(s)δSr

(t)]2 +
∑

st∈E2,3

[δSr
(s)δSr

(t)]2

+
∑

st∈E3,3

[δSr
(s)δSr

(t)]2

= (2 · 2)2|E2,2(Sr)|+ (2 · 3)2|E2,3(Sr)|+ (3 · 3)2|E3,3(Sr)|

= (2 · 2)2[3r + 6] + (2 · 3)2[6r] + (3 · 3)2[6r]
= 1932n+ 636. □

8. Rα(Sr) =
∑

st∈E(Sr)

[δSr
(s)δSr

(t)]α =
∑

st∈E2,2

[δSr
(s)δSr

(t)]α +
∑

st∈E2,3

[δSr
(s)δSr

(t)]α

+
∑

st∈E3,3

[δSr
(s)δSr

(t)]α

= (2 · 2)α|E2,2(Sr)|+ (2 · 3)α|E2,3(Sr)|+ (3 · 3)α|E3,3(Sr)|
= (2 · 2)α[6(n+ 1)] + (2 · 3)α[12(2n− 1)] + (3 · 3)α[12(n+ 1)]

= (3r + 6)4α + 6r6α + 6r9α. □

9. ReZG1(Sr) =
∑

st∈E(Sr)

δSr
(s) + δSr

(t)

δSr
(s)δSr

(t)
=

∑
st∈E2,2

δSr
(s) + δSr

(t)

δSr
(s)δSr

(t)
+

∑
st∈E2,3

δSr
(s) + δSr

(t)

δSr
(s)δSr

(t)

+
∑

st∈E3,3

δSr
(s) + δSr

(t)

δSr
(s)δSr

(t)

=
2 + 2

2 · 2 |E2,2(Sr)|+
2 + 3

2 · 3 |E2,3(Sr)|+
3 + 3

3 · 3 |E3,3(Sr)|

=
2 + 2

2 · 2 [3r + 6] +
2 + 3

2 · 3 [6r] +
3 + 3

3 · 3 [6r]

= 34n+ 4. □

10. ReZG2(Sr) =
∑

st∈E(Sr)

δSr
(s)δSr

(t)

δSr
(s) + δSr

(t)
=

∑
st∈E2,2

δSr
(s)δSr

(t)

δSr
(s) + δSr

(t)
+

∑
st∈E2,3

δSr
(s)δSr

(t)

δSr
(s) + δSr

(t)

+
∑

st∈E3,3

δSr
(s)δSr

(t)

δSr
(s) + δSr

(t)

=
2 · 2
2 + 2

|E2,2(Sr)|+
2 · 3
2 + 3

|E2,3(Sr)|+
3 · 3
3 + 3

|E3,3(Sr)|

=
2 · 2
2 + 2

[3r + 6] +
2 · 3
2 + 3

[6r] +
3 · 3
3 + 3

[6r]

= 52.8n+ 9.6. □
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11. ReZG3(Sr) =
∑

st∈E(Sr)

[δSr
(s)δSr

(t)][δSr
(s) + δSr

(t)] =
∑

st∈E2,2

[δSr
(s)δSr

(t)][δSr
(s) + δSr

(t)]

+
∑

st∈E2,3

[δSr
(s)δSr

(t)][δSr
(s) + δSr

(t)] +
∑

st∈E3,3

[δSr
(s)δSr

(t)][δSr
(s) + δSr

(t)]

= [2 · 2][2 + 2]|E2,2(Sr)|+ [2 · 3][2 + 3]|E2,3(Sr)|+ [3 · 3][3 + 3]|E3,3(Sr)|
= [2 · 2][2 + 2][3r + 6] + [2 · 3][2 + 3][6r] + [3 · 3][3 + 3][6r]. □

12. SO(Sr) =
∑

st∈E(Sr)

√
δ2Sr

(s) + δ2Sr
(t) =

∑
st∈E2,2

√
δ2Sr

(s) + δ2Sr
(t)

+
∑

st∈E2,3

√
δ2Sr

(s) + δ2Sr
(t) +

∑
st∈E3,3

√
δ2Sr

(s) + δ2Sr
(t)

=
√

22 + 22|E2,2(Sr)|+
√

22 + 32|E2,3(Sr)|+
√

32 + 32|E3,3(Sr)|

=
√

22 + 22[3r + 6] +
√

22 + 32[6r] +
√

32 + 32[6r]

= 154.42n+ 24.62. □

13. χα(Sr) =
∑

st∈E(Sr)

[δSr
(s) + δSr

(t)]α =
∑

st∈E2,2

[δSr
(s) + δSr

(t)]α

+
∑

st∈E2,3

[δSr
(s) + δSr

(t)]α +
∑

st∈E3,3

[δSr
(s) + δSr

(t)]α

= (2 + 2)α|E2,2(Sr)|+ (2 + 3)α|E2,3(Sr)|+ (3 + 3)α|E3,3(Sr)|
= (2 + 2)α[6(n+ 1)] + (2 + 3)α[12(2n− 1)] + (3 + 3)α[12(n+ 1)]

= 4α[3r + 6] + 5α[6r] + 6α[6r]. □

14. GA(Sr) =
∑

st∈E(Sr)

2
√

δSr
(s)δSr

(t)

δSr
(s) + δSr

(t)
=

∑
st∈E2,2

2
√

δSr
(s)δSr

(t)

δSr
(s) + δSr

(t)
+

∑
st∈E2,3

2
√

δSr
(s)δSr

(t)

δSr
(s) + δSr

(t)

+
∑

st∈E3,3

2
√

δSr
(s)δSr

(t)

δSr
(s) + δSr

(t)

=
2
√
2 · 2

2 + 2
|E2,2(Sr)|+

2
√
2 · 3

2 + 3
|E2,3(Sr)|+

2
√
3 · 3

3 + 3
|E3,3(Sr)|

=
2
√
2 · 2

2 + 2
[3r + 6] +

2
√
2 · 3

2 + 3
[6r] +

2
√
3 · 3

3 + 3
[6r]. □

15. ABC(Sr) =
∑

st∈E(Sr)

√
δSr

(s) + δSr
(t)− 2

δSr
(s)δSr

(t)
=

∑
st∈E2,2

√
δSr

(s) + δSr
(t)− 2

δSr
(s)δSr

(t)

+
∑

st∈E2,3

√
δSr

(s) + δSr
(t)− 2

δSr
(s)δSr

(t)
+

∑
st∈E3,3

√
δSr

(s) + δSr
(t)− 2

δSr
(s)δSr

(t)

=

√
2 + 2− 2

2 · 2 |E2,2(Sr)|+
√

2 + 3− 2

2 · 3 |E2,3(Sr)|+
√

3 + 3− 2

3 · 3 |E3,3(Sr)|

=

√
2 + 2− 2

2 · 2 [3r + 6] +

√
2 + 3− 2

2 · 3 [6r] +

√
3 + 3− 2

3 · 3 [6r]. □
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16. Y S(Sr) =
∑

st∈E(Sr)

√
δ3Sr

(s) + δ3Sr
(t) =

∑
st∈E2,2(Sr)

√
δ3Sr

(s) + δ3Sr
(t)

+
∑

st∈E2,3(Sr)

√
δ3Sr

(s) + δ3Sr
(t) +

∑
st∈E3,3(Sr)

√
δ3Sr

(s) + δ3Sr
(t)

=
√

23 + 23|E2,2(Sr)|+
√

23 + 33|E2,3(Sr)|+
√

33 + 33|E3,3(Sr)|

= 12(r + 2) + 6
√
35r + 18

√
6r. □

17. χα
2 (Sr) =

∑
st∈E(Sr)

[
δ2Sr

(s) + δ2Sr
(t)

]α
=

∑
st∈E2,2(Sr)

[
δ2Sr

(s) + δ2Sr
(t)

]α
+

∑
st∈E2,3(Sr)

[
δ2Sr

(s) + δ2Sr
(t)

]α
+

∑
st∈E3,3(Sr)

[
δ2Sr

(s) + δ2Sr
(t)

]α
= [22 + 22]α|E2,2(Sr)|+ [22 + 32]α|E2,3(Sr)|+ [32 + 32]α|E3,3(Sr)|
= (3r + 6) · 8α + 6r · 13α + 6r · 18α. □

18. χα
3 (Sr) =

∑
st∈E(Sr)

[
δ3Sr

(s) + δ3Sr
(t)

]α
=

∑
st∈E2,2(Sr)

[
δ3Sr

(s) + δ3Sr
(t)

]α
+

∑
st∈E2,3(Sr)

[
δ3Sr

(s) + δ3Sr
(t)

]α
+

∑
st∈E3,3(Sr)

[
δ3Sr

(s) + δ3Sr
(t)

]α
= [23 + 23]α|E2,2(Sr)|+ [23 + 33]α|E2,3(Sr)|+ [33 + 33]α|E3,3(Sr)|
= (3r + 6) · 16α + 6r · 35α + 6r · 54α. □

19. χα
α(Sr) =

∑
st∈E(Sr)

[
δαSr

(s) + δαSr
(t)

]α
=

∑
st∈E2,2(Sr)

[
δαSr

(s) + δαSr
(t)

]α
+

∑
st∈E2,3(Sr)

[
δαSr

(s) + δαSr
(t)

]α
+

∑
st∈E3,3(Sr)

[
δαSr

(s) + δαSr
(t)

]α
= [2α + 2α]α|E2,2(Sr)|+ [2α + 3α]α|E2,3(Sr)|+ [3α + 3α]α|E3,3(Sr)|

= (3r + 6) · 2α
2+α + 6r[2α + 3α]α + 6r · 2α · 3α

2

. □

□

Corollary 1. Let Sr be the rth level in the Triphenylene chain. Then

1. M1(Sr, x) = (3r + 6)x4 + 6rx5 + 6rx6.

2. F (Sr, x) = (3r + 6)x8 + 6rx13 + 6rx18.

3. Y (Sr, x) = (3r + 6)x16 + 6rx35 + 6rx54.

4. Mα
1 (Sr, x) = (3r + 6)x2·2

α

+ (6r)x2
α+3α + 6rx2·3

α

.

5. M2(Sr, x) = (3r + 6)x4 + (6r)x6 + 6rx9.

6. HM(Sr, x) = (3r + 6)x16 + (6r)x25 + 6rx36.

7. HM2(Sr, x) = (3r + 6)x16 + (6r)x36 + 6rx81.

8. Rα(Sr, x) = (3r + 6)x4
α

+ (6r)x6
α

+ 6rx9
α

.

9. ReZG1(Sr, x) = (3r + 6)x+ (6r)x
5
6 + 6rx

2
3 .

10. ReZG2(Sr, x) = (3r + 6)x+ (6r)x
6
5 + 6rx

3
2 .
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11. ReZG3(Sr, x) = (3r + 6)x16 + (6r)x30 + 6rx54.

12. SO(Sr, x) = (3r + 6)x2
√
2 + 6rx

√
13 + 6rx3

√
2.

13. χα(Sr, x) = (3r + 6)x4
α

+ 6rx5
α

+ 6rx6
α

.

14. GA(Sr, x) = (9r + 6)x+ 6rx
2
√

6
5 .

15. ABC(Sr, x) = (9r + 6)x
1√
2 + 6rx

2
3 .

16. Y S(Sr, x) = (3r + 6)x4 + 6rx
√
35 + 6rx3

√
6.

17. χα
2 (Sr, x) = (3r + 6)x8

α

+ 6rx13
α

+ 6rx18
α

.

18. χα
3 (Sr, x) = (3r + 6)x16

α

+ 6rx35
α

+ 6rx54
α

.

19. χα
α(Sr, x) = (3r + 6)x2

α2+α

+ 6rx[2
α+3α]α + 6rx2

α·3α
2

.

3 Conclusion

This is interesting research on computing various topological descriptors and deriving their polynomial formulae for the Triphenylene benzenoid
chain molecular graphs. Some highlights:

• Topological descriptors are graph-based numerical parameters that correlate well with molecular properties and activities. They can be
used for structure-property relationship studies and molecular design.

• The study has computed a range of topological descriptors for the Triphenylene Benzenoid chain molecular graphs, including Zagreb
indices, Hyper-Zagreb indices, Rendic indices, sum connectivity indices, and others.

• Polynomial formulae for these topological descriptors were derived in terms of the number of the Triphenylene benzenoid rings (Sr) on
the chain graph. This allows the topological descriptors to be easily calculated for any Triphenylene benzenoid chain of a given size.

• The results provide useful information on the topological characteristics of the Triphenylene Benzenoid chain molecular graphs as a
function of their size. This can help in understanding how properties may change with the size of the Triphenylene benzenoid chains.

• The derived formulae could be applied in predictive models for the structure-property relationships and molecular design of the
Triphenylene benzenoid chain compounds.
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Abstract: The top cause of death for children worldwide, particularly in low- and middle-income nations, is cancer in childhood.
The nation in which they reside has a significant impact on their chances of survival. In high-income nations, the likelihood of treat-
ing childhood cancer is greater than 80%, compared to just 45% in low- and middle-income nations. Effective, evidence-based
therapy combined with compassionate care is the most effective strategy to lessen the impacts of childhood cancer. The current
risk assessment procedure will be addressed, and a new risk evaluation method will be presented. In order to cope with ambiguity
in the risk assessment process for pediatric cancer, the suggested strategy makes use of MCDM, which has a hybrid structure
made up of the Neutrosophic AHP and Fermatean Fuzzy AHP methods.

Keywords: Childhood cancer, cosine similarity, FF-AHP, NF-AHP, risk analysis

1 Introduction

Childhood cancer is the leading cause of mortality for children globally, particularly in low- and middle-income countries. The nation in which
they reside has a significant impact on their chances of survival. In high-income nations, the likelihood of treating childhood cancer is greater
than 80%, compared to just 45% in low- and middle-income nations. This discrepancy in cure rates is caused by a variety of variables, including
late diagnosis and cancer detected in its advanced stages due to a lack of resources, the expense of therapy (which is higher in the later stages of
the disease), inaccurate diagnosis, and unsuitable treatment. If low- and middle-income nations gain access to vital drugs and technology, the
survival rate could rise. In general, effective, evidence-based therapy combined with compassionate care is the most effective strategy to lessen
the impacts of childhood cancer.

If it is detected early and the proper therapy is given right away, the chances of curing children’s cancer and the cost of treatment with less
suffering can be improved. A proper diagnosis is necessary for effective treatment of children’s cancer with the appropriate measures, which
may include operations, radiation, and chemotherapy. The following three factors should be considered for early diagnosis:

• It is important for parents to be aware of children’s cancer so they can spot the signs and seek medical attention.
• To offer the best care, the medical expert must be qualified to look at the situation right away.
• The patient is given the appropriate care at the appropriate time.

Even with the least degree of physical and financial pain, if cancer is discovered early enough, there is a greater possibility of recovery and
survival. With the aid of qualified doctors, low- and middle-income nations should launch parental education initiatives to help parents react
quickly if their children exhibit signs. Both non-governmental groups and civil society must work together to complete this mission. The World
Health Organization started a global program on childhood cancer in 2018. They offered the government professional advice and support as
part of this campaign in order to keep up high-quality programs to combat childhood cancer. By 2030, they hope to enhance childhood cancer
survival rates, which should be at least 60%.

Any decision-making process must account for imprecision. To deal with the ambiguous environment of collective decision-making, many
tools and strategies have been proposed. Fermatean fuzzy sets (FFS) [14] are one of the newest techniques for coping with uncertainty. Com-
pared to the intuitionistic fuzzy sets(IFS) [3] and Pythagorean fuzzy sets(PFS) [18], [19], which are extensions of Zadeh’s fuzzy set [20], these
sets offer a larger range of applications. Recently, FFs have inspired many studies.([2], [8], [9], [10], [11], [12], [15], [16]).

Smarandache [17] extended the idea of IFSs to create neutrosophic sets(NS), which offer a fresh perspective on ambiguity, imprecision,
consistency, and vagueness. Smarandache [3] defined a NS by its three ingredient: truth membership, indeterminacy membership, and falsity
membership. Smarandache also added the degree of indeterminacy or neutrality as a new and independent ingredient of FSs. The intuitionistic
neutrosophic soft set has been defined and examined some properties by Broumi and Smarandache [6].

The AHP improved by Saaty [13] is among the most widely used MCDM techniques. Researchers can methodically specify the weight of the
criteria and alternatives. The traditional AHP approach has been expanded into a number of fuzzy variations due to inadequate information and
ambiguity. Since 2013, NSs have been widely utilized in decision-making procedures. To the best of our knowledge, Abdel-Basset et al. [1] and
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Radwan et al. [4] both published works on NF-AHP. Both interval-valued NF-AHP alone and interval-valued NF-AHP combined with a cosine
similarity measure are presented by Boltürk and Kahraman [5]. Based on Bhattacharya’s distance, Broumi and Smarandache [7] presented a
new cosine similarity between two interval-valued NSs. The FF-AHP was first introduced by Alkan et al. [2].

A measure of similarity between two vectors of n dimensions using the cosine of the angle between them is known as cosine similarity.
It compares simply the direction of two vectors to determine how similar they are. Each user is viewed as a vector of prior judgments in this
similarity. The cosine value of the angle between the two vectors in this instance expresses how similar the two vectors are to one another.
By dividing the inner product of the two vectors by the product of their lengths, the cosine similarity formula determines the angle between
the two vectors. The closeness between two users in cosine similarity ranges from 0 to 1. The likelihood of users increases as the result gets
closer to 1. A closeness in cosine similarity between two users does not mean that they rate things similarly; rather, it means that there is a
consistent correlation between their evaluations. The following formula is used to express the cosine similarity between two vectors, di and dj :

simcos(di, dj) =
−→
di .

−→
dj

∥
−→
di∥.∥

−→
dj∥

.

The originality: Risks according to childhood cancer are prioritized using an MCDM approach. The fuzzy approach employed in this work
captures the erroneous information that distinguishes decision-makers assessments. In conclusion, this study provides further insight into the
specific risk landscape for childhood cancer in the future. The strategy put forward in this study offers a sophisticated and enhanced manner of
managing uncertainty in risk prioritization. For MCDM, a hybrid technique based on FF-AHP, NF-AHP, and Cosine Similarity procedures has
been suggested in order to give physicians more dependable options. The suggested approach is a helpful tool that may be used to solve various
complicated choice issues with many competing criteria because of its adaptable structure.

2 Method

U , the initial universe set, will be used as a symbol throughout the article.

The FFS F is shown by F = {(u, ζF (u), ηF (u)) : u ∈ U}, where ζF : U → [0, 1] and ηF : U → [0, 1] and the inequality 0 ≤ ζ3F (u) +

η3F (u) ≤ 1 [14] is valid. It is defined as θF (u) = 3

√
1− (ζ3F (u) + η3F (u)) degree of indeterminacy of u to F .

Take three FFSs F = {ζF , ηF}, F1 = {ζF1
, ηF1

} and F2 = {ζF2
, ηF2

}. Then, some operations as follows [14]:

i. F1 ∩ F2 = (min{ζF1
, ζF2

},max{ηF1
, ηF2

});
ii. F1 ∪ F2 = (max(ζF1

, ζF2
),min(ηF1

, ηF2
));

iii. Ft = (ηF , ζF );
iv. F1 ⊞ F2 =

(
3

√
ζ3F1

+ ζ3F2
− ζ3F1

ζ3F2
, ηF1

ηF2

)
;

v. F1 ⊠ F2 =
(
ζ3F1

ζ3F2
, 3

√
η3F1

+ η3F2
− η3F1

η3F2

)
;

vi. µF =
(

3

√
1− (1− ζ3F )µ, ηµF

)
, µ > 0;

vii. Fµ =
(
ζ3F1

, 3

√
1− (1− η3F )µ

)
, µ > 0.

Definition 1. For two interval numbers t = [t−, t+] and s = [s−, s+], the operations

t+ s = [t− + s−, t+ + s+], t− s = [t− − s+, t+ − s−],

tn = [(t−)n, (t+)n], here t− ≥ 0, n ∈ N.

are called interval arithmetic.

The set A = {u, TA(u), IA(u), FA(u) : u ∈ U} is called a NS, where TA(u), IA(u), FA(u) : U → [0, 1] and 0 ≤ TA(u)3 + IA(u)3 +
FA(u)3 ≤ 3+.

Table 1 Scale for FF-AHP [2]
Linguistic Terms ζL ζU ηL ηU
Certainly low importance(CLI) 0 0 0.9 1
Very low importance(VLI) 0.1 0.2 0.8 0.9
Low importance(LI) 0.2 0.35 0.65 0.8
Below average importance(BAI) 0.35 0.45 0.55 0.65
Average importance(AI) 0.45 0.55 0.45 0.55
Above average importance(AAI) 0.55 0.65 0.35 0.45
High importance(HI) 0.65 0.8 0.35 0.2
Very high importance(VHI) 0.8 0.9 0.1 0.2
Certainly high importance(CHI) 0.9 1 0 0
Exactly equal(EE) 0.1965 0.1965 0.1965 0.1965

For the FF-AHP:

Step 1: Create the pairwise comparison matrix R = (rik)m×m using Table 1 to reflect the experts’ assessments.
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Table 2 Scale for NF-AHP
Linguistic Terms Neutrosophic values
Equal Importance ([0.5, 0.5], [0.5, 0.5], [0.5, 0.5])
Weakly More Importance ([0.5, 0.6], [0.35, 0.45], [0.4, 0.5])
Moderate Importance ([0.55, 0.65], [0.3, 0.4], [0.35, 0.45])
Moderately More Importance ([0.6, 0.7], [0.25, 0.35], [0.3, 0.4])
Strong Importance ([0.65, 0.75], [0.2, 0.3], [0.25, 0.35])
Strongly More Importance ([0.7, 0.8], [0.15, 0.25], [0.2, 0.3])
Very Strong Importance ([0.75, 0.85], [0.1, 0.2], [0.15, 0.25])
Very Strongly More Importance ([0.8, 0.9], [0.05, 0.1], [0.1, 0.2])
Extreme Importance ([0.9, 0.95], [0.0, 0.05], [0.05, 0.15])
Extremely High Importance ([0.95, 1.0], [0.0, 0.0], [0.0, 0.1])
Absolutely More Importance ([1.0, 1.0], [0.0, 0.0], [0.0, 0.0])

Step 2: Using the bottom and upper values of the membership and non-membership functions, calculate the differences matrix D =
(δik)m×m using:

δikL = µ3
ikL − ν3ikU (1)

δikU = µ3
ikU − ν3ikL. (2)

Step 3: Obtain the interval multiplicative matrix S = (σik)m×m by using:

σikL =
√

1000δikL (3)

σikU =
√

1000δikU . (4)

Step 4: Compute the determinacy value T = (ρik)m×m of the rik by employing:

ρik = 1− (µ3
ikL − ν3ikU )− (µ3

ikU − ν3ikL). (5)

Step 5: To get the weights matrix before Z = (ζik)m×m normalization, multiply the determinacy values by the S = (σik)m×m matrix
using:

ζik =
[σikL + σikU

2

]
ρik. (6)

Step 6: Compute the normalized priority weights ωi by adpting Equation 7:

ωi =

∑m
k=1 tik∑m

i=1

∑m
k=1 tik

. (7)

For the NF-AHP:

Step 1:Find the neutrosophic rating scale using interval values.

Step 2: Divide the issue into a hierarchy of objectives, criteria, sub-criteria, and alternatives.

Step 3: Use interval-valued neutrosophic sets to build the pairwise comparison matrices (P̃ ). The deneutrosophication equation has been
used to assess the consistency of the pairwise comparison matrices:

D(x) =

(
TL
x + TU

x

2
+

(
1− ILx + IUx

2

)
∗ IUx −

(
FL
x + FU

x

2

)
∗ (1− FU

x )

)
(8)

for a collection of IV-Neutrosophic number x̃j = ([TL
x , TU

x ], [ILx , IUx ], [FL
x , FU

x ]), (j = 1, 2, · · · , n). It follows that if the neutrosophic pair-
wise comparison matrix is consistent, so is the deneutrosophicated pairwise comparison matrix. There will be provided pairwise comparison
matrices for the criteria and options in relation to the aim.

Step 4: Utilize the proposed interval-valued neutrosophic evaluation scale to determine the normalized weights of the various criteria.
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Step 4.1: Sum the values in each column as in

S̃ij =

([
m∑

k=1

TL
kj
,

m∑
k=1

TU
kj

]
,

[
m∑

k=1

ILkj
,

m∑
k=1

IUkj

]
,

[
m∑

k=1

FL
kj
,

m∑
k=1

FU
kj

])
. (9)

Step 4.2: In Equation 9, choose the highest limit for each parameter. Then, divide each term by the appropriate element to get Ñij :

Ñkj =

([
TL
kj∑m

k=1 T
U
kj

,
TU
kj∑m

k=1 T
U
kj

]
,

[
ILkj∑m
k=1 I

U
kj

,
IUkj∑m
k=1 I

U
kj

]
,

[
FL
kj∑m

k=1 F
U
kj

,
FU
kj∑m

k=1 F
U
kj

])
. (10)

Step 4.3: To obtain the neutrosophic priority vector of the choices as in Equation 11, compute the average of each row.

ω̃A =


[∑m

k=1

TL
kj∑m

k=1 TU
kj

,
∑m

k=1

TU
kj∑m

k=1 TU
kj

]
m

,

[∑m
k=1

IL
kj∑m

k=1 IU
kj

,
∑m

k=1

IU
kj∑m

k=1 IU
kj

]
m

[∑m
k=1

FL
kj∑m

k=1 FU
kj

,
∑m

k=1

FU
kj∑m

k=1 FU
kj

]
m

(11)

Step 4.4: To produce neutrosophic weights vectors for each choice, repeat the previous stages with regard to each criterion. To get the
priority weights of the criterion, the same procedure is done.

Step 5: Build the Ψ̃ matrx whose rows are the weights of the alternatives ( ˜ωAi
) and the columns are the weights of the criteria ( ˜ωCj

) to get
the final combined priority weights.

Step 6: Equation 12 can be used to determine the final combined interval-valued neutrosophic weights of the alternatives.

Ψ̃A =
([

TωL
C1

, TωU
C1

]
,
[
IωL

C1
, IωU

C1

]
,
[
FωL

C1
, FωU

C1

])([
TωL

A1
, TωU

A1

]
,
[
IωL

A1
, IωU

A1

]
,
[
FωL

A1
, FωU

A1

])
(12)

+
([

TωL
C2

, TωU
C2

]
,
[
IωL

C2
, IωU

C2

]
,
[
FωL

C2
, FωU

C2

])([
TωL

A2
, TωU

A2

]
,
[
IωL

A2
, IωU

A2

]
,
[
FωL

A2
, FωU

A2

])
+ · · ·+

([
TωL

Cn
, TωU

Cn

]
,
[
IωL

Cn
, IωU

Cn

]
,
[
FωL

Cn
, FωU

Cn

])([
TωL

An
, TωU

An

]
,
[
IωL

An
, IωU

An

]
,
[
FωL

An
, FωU

An

])
.

Step 7: To get the crisp weights of alternatives, use Equation 8’s deneutrosophication formula.

Step 8: Normalize the crisp weights of alternatives.

Step 9: Choose the option with the most weight after ranking the alternatives.

3 Childhood Cancer Risk Assessment

3.1 Major Factors of Childhood Cancer

Many studies have tried to identify the causes of childhood cancer. Some factors are related to the environment, such as radiation exposure
and chemical exposure. Some are lifestyle-related, such as drugs, alcohol, cell phone use, and smoking. Some kids receive DNA alterations
from a parent that raise their risk of developing a particular kind of cancer. Here we list possible risk factors for childhood cancer with a small
description of each factor.

Gender (S1): Gender can be male or female. Age (S2): The age of a child is considered between 0 and 19 years.Height (S3): The height
of a child. BMI (S4): The body mass index (BMI) is a measure of body fat according to height and weight. Drugs (S5): A medication is a
drug used to diagnose, cure, treat, or prevent disease. Alcohal (S6): It is a substance that contains the recreational drug ethanol, alcohol is
made by fermentation of fruits, grains, or any source of sugar. Cell Phone Usage (S7): The use of cell phones on a daily basis. Pagets Disease
(S8): This bone condition prevents the body’s regular recycling process, which sees new bone tissue progressively replace old bone tissue.
Compromised bones may grow weak and deformed over time as a result of the disease. Genetic Disposition (S9): There is an increased chance
of acquiring a specific disease based on a person’s ancestral genes. Smoking (S10): The habit of inhaling and exhaling tobacco or drug smoke.
Blood Disorder (S11): These are conditions that affect the blood’s ability to function. Birth Defects (S12): It is a disease that, despite its cause,
is present at birth. Birth defects can appear as disabilities that can be physical, mental, or developmental in nature. Immunity (S13): Immunity is
the capability ofmulti-cellular organisms to resist harmful microorganisms. Auto Immune Diseases (S14): It is a disease in which your immune
system unintentionally attacks your body. Certain Syndromes(S15): Any syndrome already present in children such as Down syndrome, Li-
Fraumeni syndrome, etc. Race (S16): Identification of a group of people. Certain Radiation Exposure (S17): Exposed to certain electromagnetic
radiation, or living in the vicinity of a source of electromagnetic radiation. Certain Chemical Exposure (S18): Exposure to certain chemicals or
polluted groundwater used for drinking. Socioeconomic Status (S19): A family’s financial status in society.

3.2 Types of Childhood Cancers

Children and teenagers tend to get different types of childhood cancers. The most common childhood cancers are discussed below:
Leukemia (D1): It is bone marrow and blood cancer. Twenty-eight percent of childhood cancer cases fall into this category. Brain and spinal
cord tumors (D2): The second most common cancer in children is the brain and spinal cord cancer. In this type of cancer, abnormal growth in
tissues of the brain and spinal cord is seen causing headache, nausea, vomiting, blurred vision, and difficulty in walking and holding objects.
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About 26 children develop this type of cancer every year. Neuroblastoma (D3): Neuroblastoma begins in the early forms of nerve cells seen in a
developing egg or fetus. About 6 percent of cancers in adolescents are neuroblastomas. This type of cancer occurs in newborns and adolescents.
It is uncommon in children over 10 years of age. Neuroblastomas mostly occur in and around the adrenal glands. However, neuroblastomas
can develop in other areas of the stomach and ribs, neck, and near the spine where there are clusters of nerve cells. Wilms Tumor (D4): Wilms’
tumor begins in one or, rarely, both kidneys. It is usually found in children around 3 to 4 years of age and is rare in more mature children and
adults. Wilms’ tumor accounts for around 5 percent of childhood cancers. Its symptoms are fever, pain, nausea, or loss of appetite. Lymphomas
(D5): It is a disease that attacks infection-fighting cells in the immune system. These cells are called lymphocytes. These cells are found in
the lymph nodes, spleen, thymus gland, bone marrow, and other parts of the body. In this disease, abnormal growth of lymphocytes has been
observed. Symptoms include weight loss, fever, sweats, fatigue, and lumps under the skin in the neck, armpits, or groin area. Retinoblastoma
(D6): This type of cancer is related to the eyes. It is a rare type of cancer in which a child could not distinguish the colors of light, also had
impaired vision and sensitive eyes. The pupil of the eyes becomes large. Rhabdomyosarcoma (D7): It is an intrusive and very dangerous cancer
that originates from skeletal muscle cells. It is widely believed to be a childhood disease as the vast majority of cases found are under the age
of 18. It is about 3 percent of childhood cancers. Bone Cancer (D8): This type of cancer usually occurs in older children. This type of cancer
causes severe bone pain all the time. The bones become weak and can also be broken. In some cases, weight loss is also observed.

3.3 New Method

The new method involves the FF-AHP and NF-AHP methods. First, the FF-AHP steps are given:

Step 1: Establish the criteria and options before building the hierarchical structure.
Step 2: Consult the partners to organize these risks into a hierarchy, then convert the issue into a hierarchy of objectives and standards.
Step 3: Create binary comparison matrices for the criterion based on Table 1’s range-valued sets.
Step 4: Applying the suggested interval valuation scale, determine the normalized criteria weights:
Step 4.1: The matrix’s values are gathered for each of its columns.
Step 4.2: Each parameter is divided by the highest value chosen after choosing the maximum values for each parameter.
Step 4.3: In order to determine the priority vectors, compute the average of each sequence.
Step 4.4: Each criterion is subjected to the same procedures as before, and weight vectors are produced for each. To get the priority weights
for each criterion, these steps were repeated.
Step 5: Utilizing the prioritized weights that were collected, compute the cosine similarity between each alternative pair.
Step 6: The appropriate AHP score is determined using the linear regression algorithm.
Step 7: Based on the conventional AHP procedures, alternative weights were obtained.
Step 8: The probability and severity criteria of the alternatives are graded in accordance with alternative weights to enable the use of the L
matrix approach.
Step 9: Utilize the grades you have earned to apply the L matrix approach.

Second, the NF-AHP steps are given:

Step 1: Define the neutrosophic numbers, which are utilized in the proposed neutrosophic fuzzy AHP approach to compare various criteria and
correlate to the 1–9 Saaty scale.
Step 2: Determine the decision-making problem’s criteria, sub-criteria, and options. Next, create a hierarchy for the problem under
consideration.
Step 3: By comparing each criterion and sub-criterion pairwise, you may determine the neutrosophic preference. Compare the options under
each criterion or sub-criterion that are provided in accordance with the assessments of the experts based on Table 2.
Step 4: Construct the neutrosophic preference connection and ensure that each paired comparison is consistent. Utilizing the prioritized weights
that were collected, compute the cosine similarity between each alternative pair.
Step 5: Give the results of the calculation for each preference relation’s neutrosophic relative weight.
Step 6: Rank the overall weights.

3.4 Evaluations

The primary criteria, sub-criteria, and alternatives will be included in the hierarchical structure that will be established about the risks of children
cancer. Three doctors will assess these options and criteria for this study by building paired comparison matrices using linguistic concepts. A
consistency ratio will be supplied along with pairwise comparison matrices that include linguistic phrases for the major criteria, sub-criteria,
and alternatives. The steps of the created method will be presented but not shown due to space restrictions. According to the results obtained,
the rating of the disease was found as D1 = 1, D2 = 6, D3 = 5, D4 = 7, D5 = 2, D6 = 8, D7 = 4, D8 = 3.

4 Conclusion

According to the World Health Organization (WHO), around 400,000 children are diagnosed with cancer each year and the rate of cure in
low and middle-income countries is only 45 percent, which is highly unsatisfactory. To improve this percentage, WHO has launched a global
initiative and provided appropriate professional guidance and resources. Their goal is to increase the survival rate up to sixty percent by the
end of 2030. To help achieve this goal, we have proposed a novel model that allows doctors to diagnose the type of childhood cancer early so
that appropriate treatment can be given at the right time. This ultimately reduces the physical and financial suffering of the patient and their
parents. Our model takes nineteen symptoms as inputs and determines the type of cancer. We have used Fermatean fuzzy and Neutrosophic
fuzzy decision-making techniques for diagnostic purposes.
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Abstract: To minimize the negative repercussions of Autonomous Vehicle installation and optimize its benefits, risk assessment
is essential. Risk factors associated with transportation that affect public health will be presented first in this study, which will focus
on the favorable and negative effects of Autonomous Vehicles on public health. When uncertainty in hazard and risk assessment
for transport-related exposures and risk factors that may affect public health is encountered, a new approach will be developed
to overcome these issues. Examining the health consequences of Autonomous Vehicles, identifying hazards, and attempting to
decrease these risks will aid in the development of strategies that benefit overall public health.

Keywords: AHP, autonomous vehicles, MABAC, public health, risk assessment, TOPSIS.

1 Introduction

In 2000, roughly 47 percent of the population was predicted to reside in cities, with that percentage expected to rise to 60 percent by 2030.
As the global urbanization process proceeds, urban health is becoming a growing public concern. The aim of public health is the promotion
and control of a population’s general health within a region. Modern urban planning is becoming increasingly intertwined with public health
problems. In the early twentieth century, urban planners separated land use and development laws (e.g., public gardens and pollution) to help
improve public health. However, this segregation led in sprawling cities, which harmed population health [10]. The goal of public health is
to promote and safeguard the health of all individuals in all communities. This science-based, evidence-based field attempts to provide a safe
environment for everyone to live, learn, work, and play. The health-care business focuses on treating people who are sick, whereas public health
focuses on preventing people from becoming sick or wounded in the first place. Public health is also concerned with entire populations, whereas
health care is concerned with individual patients.

AVs powered by artificial intelligence were long thought to be a pipe dream for mainstream deployment. Recent advancements in AI
technology and early testing have made widespread adoption much more possible. The growing pervasiveness of AVs heralds a new era for
transportation networks. As earlier technological improvements in transportation have shown, they may suppress alternative types of move-
ment, particularly cycling. As a result, there would be fewer transportation options. A reduction in transportation options opposes social goals
such as addressing climate change, public health, and traffic congestion through cycling [3].

Since the introduction of AVs, several advantages and disadvantages have been projected. large potential benefits include reduced traffic-
related death and injury, improved pedestrian and bicycle safety, large reductions in emissions, increased mobility for the elderly and disabled,
and the liberation of parking spaces for other land uses. Among the potential drawbacks are increased traffic congestion (due to increased travel
overall due to improved availability and lower costs, as well as empty cars traveling the roads when collecting their owners or returning from
trips), privacy, security, insurance, and liability concerns, and job losses. The amount to which these positive and negative outcomes occur will
be heavily influenced by the most widely utilized AV applications [11]. Transportation-related technological improvements, for example, have
the potential to dramatically improve people’s health and well-being. Vehicle automation is fast advancing, with extensive experiments involv-
ing both personal and commercial vehicles taking place all over the world. Despite the rapid advancement of AV technology, most jurisdictions’
road rules have yet to be modified to allow the use of fully autonomous vehicles, and governments have yet to develop comprehensive policy
approaches to AVs in order to capitalize on the health benefits offered by this technology while also applying appropriate safety standards.
AVs are expected to significantly improve a range of health-related areas. Crash prevention, pollution reduction, improved mobility (and hence
quality of life) for people who cannot drive, stress reduction, and increased bicycle safety are all examples. Despite the fact that these are serious
health issues that contribute to disease burden and demand greater preventative efforts, there is little recognition among public health profession-
als of the role that AVs can play in their amelioration. Recent initiatives to draw attention to the need for the health sector to realize the potential
for AVs to make major contributions to public health and to build effective methods to manage the adoption process to optimize these results
are instances of exceptions. The public health benefits of AVs will be realized when all vehicles are automated, leading to calls for governments
to develop strategies to promote rapid adoption. Because public support is an important factor in governments’ decisions to implement new
policies, the relative newness of AVs and a general lack of understanding among the general public about the extent of their health-enhancing
potential may pose significant barriers to governments and businesses proactively developing policies and programs to accelerate adoption [12].
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Many decision-makers and professionals are curious about how AVs will affect future travel and, as a result, demand for public transporta-
tion, parking lots, and roadways. They also want to know what public policies might be put in place to mitigate these issues while maximizing
the benefits of this new technology. Optimists predict that by 2030, AVs will have replaced the majority of driving, resulting in significant cost
and benefit savings. However, there are compelling reasons to remain cautious. The development of AVs, their benefits and drawbacks, the
effects they will have on travel, and customer demand are all fraught with uncertainty.

Any decision-making(DM) process must account for imprecision. To deal with the ambiguous environment of collective DM, many tools
and strategies have been proposed. Fermatean fuzzy sets (FFS) [13] are one of the newest techniques for coping with uncertainty. Compared
to the intuitionistic fuzzy sets(IFS) [2] and Pythagorean fuzzy sets(PFS) [17], [18], which are extensions of Zadeh’s fuzzy set [19], these sets
offer a larger range of applications. Recently, FFs have inspired many studies.([1], [4], [5], [7], [8], [9], [14], [15]).

The goal of this research is to compile a list of the public health risks posed by AVs. Prioritizing risks is a multi-criteria DM (MCDM) chal-
lenge that necessitates taking into account a variety of potential solutions as well as competing tangible and intangible elements. An integrated
MCDM technique over FFSs is proposed to address this MCDM difficulty. This proposed method addresses the prioritization of AV-related
public health problems in a Fermatean turbid environment by introducing unique integrated MCDM methodologies based on AHP, TOPSIS,
and MABAC.

2 Preliminaries

Let E be a universal set. The set F = {(e,mF (e), nF (e)) : e ∈ E} is called the FFS with 0 ≤ m3
F + n3

F ≤ 1 and mF , nF ∈ [0, 1]. The
hesitation degree has been shown with θF = (1−m3

F + n3
F )1/3 [13].

Let Int[0, 1] show the set of all closed subintervals of [0, 1]. The set F = {(e,mF (e), nF (e)) : e ∈ E} is called an IVFFS on a set E ̸= ∅,
where mF (e), nF (e) ∈ Int[0, 1] with the condition 0 < supe(mF (e))3 + supe(nF (e))3 ≤ 1 [5].

Furthermore, F can be written as: F = {(e, [mFL
(e),mFU

(e)], [nFL
(e), nFU

(e)]) : e ∈ E} with 0 ≤ (mFU
(e))3 + (nFU

(e))3 ≤ 1.

Choose the three IVFFSs F = ([mFL
(e),mFU

(e)], [nFL
(e), nFU

(e)]), F1 = ([mF1L
(e),mF1U

(e)], [nF1L
(e), nF1U

(e)]), F2 =
([mF2L

(e),mF2U
(e)], [nF2L

(e), nF2U
(e)]). Then [5],

• F1 ∪ F2 = ([max(mF1L
,mF2L

),max(mF1U
,mF2U

)], [min(mF1L
,mF2L

),min(mF1U
,mF2U

)])
• F1 ∩ F2 = ([min(mF1L

,mF2L
),min(mF1U

,mF2U
)], [max(mF1L

,mF2L
),max(mF1U

,mF2U
)])

• F c = ([nFL
, nFU

], [mFL
,mFU

])

• F1 ⊕ F2 =

([
3
√

(mF1L
(e))3 + (mF2L

(e))3 − (mF1L
(e))3.(mF2L

(e))3, 3
√

(mF1U
(e))3 + (mF2U

(e))3 − (mF1U
(e))3.(mF2U

(e))3
]
,

[nF1L
nF2L

, nF1U
nF2U

]

)

• F1 ⊗ F2 =

(
[mF1L

mF2L
,mF1U

mF2U
] ,
[

3
√

(nF1L
(e))3 + (nF2L

(e))3 − (nF1L
(e))3.(nF2L

(e))3,

3
√

(nF1U
(e))3 + (nF2U

(e))3 − (nF1U
(e))3.(nF2U

(e))3
])

• λF =

([
3

√
1−

(
1−m3

FL

)λ
,

3

√
1−

(
1−m3

FU

)λ]
,
[
nλ
FL

, nλ
FU

])

• Fλ =

([
mλ

FL
,mλ

FU

]
,

[
3

√
1−

(
1− n3

FL

)λ
,

3

√
1−

(
1− n3

FU

)λ])

Let F = ([mFL
(e),mFU

(e)], [nFL
(e), nFU

(e)]), F1 = ([mF1L
(e),mF1U

(e)], [nF1L
(e), nF1U

(e)]), and
F2 = ([mF2L

(e),mF2U
(e)], [nF2L

(e), nF2U
(e)]) be three IVFFSs. Then, for λ, λ1, λ2 > 0 [5],

• F1 ⊕ F2 = F2 ⊕ F1
• F1 ⊗ F2 = F2 ⊗ F1
• λ(F1 ⊕ F2) = λF1 ⊕ λF2
• (λ1 + λ2)F = λ1F + λ2F
• (F1 ⊗ F2)

λ = Fλ
1 ⊗ Fλ

2
• Fλ1 ⊗ Fλ2 = Fλ1+λ2

3 Method

The equation CRT = CIX
RIX is called the consistency ratio, where CIX = λmax

n−1 , RIX is the consistency index and λmax is the random
index, and principal eigenvalue for CRT , respectively.

The IVFFWG aggregation operation is used to combine the pairwise comparison matrix that each professional represents. Let Uk =
{U1, U2, · · · , Uk}, (k = 1, 2, · · · ,K), show the set of professional having influence weights ωk for every Ek;

∑K
k=1 ωk = 1.
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Table 1 Scale Values according to IVFF
Linguistic Terms ζL ζU ηL ηU
Certainly High Importance(CH) 0.95 1 0 0
Very High Importance(VH) 0.8 0.9 0.1 0.2
High Importance(H) 0.7 0.8 0.2 0.3
Slightly More Importance(SM) 0.6 0.65 0.35 0.4
Equally Importance(E) 0.5 0.5 0.5 0.5
Slightly Less Importance(SL) 0.35 0.4 0.6 0.65
Low Importance(L) 0.2 0.3 0.7 0.8
Very Low Importance(VL) 0.1 0.2 0.8 0.9
Certainly Low Importance(CL) 0 0 0.95 1

IV FFWG(c1, c2, · · · , ck) =

([
K∏

k=1

(
ζLk

)ωk

,

K∏
k=1

(
ζUk

)ωk

]
,

 3

√√√√(1− K∏
k=1

(
1− (ζLk )3

)ωk

)
, 3

√√√√(1− K∏
k=1

(
1− (ζUk )3

)ωk

)) (1)

The difference matrix F = (fij)m×m between the upper and lower points of the MF and NF:

fikL
= ζ3ikL

− η3ikU
(2)

fikU
= ζ3ikU

− η3ikL
. (3)

The interval multiplicative matrix M = (mij)m×m:

mikL
=

3
√

1000fL (4)

mikU
=

3
√

1000fU . (5)

The indeterminacy value T = (tij)m×m of the cij :

tij = 1−
(
ζ3ijU − ζ3ijL

)
−
(
η3ijU − η3ijL

)
. (6)

Multiply the indeterminacy degrees with S = (sij)m×m matrix to obtain the matrix of unnormalized weights R = (rij)m×m:

rij =

(
mikL

+mikU

2

)
tij . (7)

The normalized priority weights ωi:

ωi =

∑m
j=1 rij∑m

i=1

∑m
j=1 rij

(8)

PIS and NIS are determined as

P1 =

([
max

(
ζ
′

L11, · · · , ζ
′

Lm1

)
,max

(
ζ
′

U11, · · · , ζ
′

Um1

)]
,
[
min

(
η
′

L11, · · · , η
′

Lm1

)
,min

(
η
′

U11, · · · , η
′

Um1

)])
(9)

...

Pn =

([
max

(
ζ
′

L1n, · · · , ζ
′

Lmn

)
,max

(
ζ
′

U1n, · · · , ζ
′

Umn

)]
,
[
min

(
η
′

L1n, · · · , η
′

Lmn

)
,min

(
η
′

U1n, · · · , η
′

Umn

)])

N1 =

([
min

(
ζ
′

L11, · · · , ζ
′

Lm1

)
,min

(
ζ
′

U11, · · · , ζ
′

Um1

)]
,
[
max

(
η
′

L11, · · · , η
′

Lm1

)
,max

(
η
′

U11, · · · , η
′

Um1

)])
(10)

...

Nn =

([
min

(
ζ
′

L1n, · · · , ζ
′

Lmn

)
,min

(
ζ
′

U1n, · · · , ζ
′

Umn

)]
,
[
max

(
η
′

L1n, · · · , η
′

Lmn

)
,max

(
η
′

U1n, · · · , η
′

Umn

)])
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The Euclidean distance for IVFFSs and the distances between alternative Fi and PIS, NIS are defined as

DIV FF (F1, F2) =

{(
ζ3F1L

− ζ3F2L

)2
+
(
ζ3F1U

− ζ3F2U

)2
+
(
η3F1L

− η3F2L

)2
+
(
η3F1U

− η3F2U

)2
)

6
(11)

+

(
+(1− ζ3F1U

− η3F1U
− (1− ζ3F2U

− η3F2U
)
)2

+
(
(1− ζ3F1L

− η3F1L
)− (1− ζ3F2L

− η3F2L
)
)2

6

}1/2

d+i (Fi, Pn) =

n∑
j=1

(
DIV FF (c

′

ij , Pj)
)
, (12)

d−i (Fi, Nn) =

n∑
j=1

(
DIV FF (c

′

ij , Nj)
)

(13)

Relative closeness is specified as

ξ(Fi) =
d−i (Fi, Nn)

d+i (Fi, Pn) + d−i (Fi, Nn)
. (14)

For the pairwise comparison matrix C = (cij)m×n, the normalized matrix of the decision matrix is constructed as:

nij =


cij−c−i
c+i −c−i

, for beneficial criteria

cij−c+i
c−i −c+i

, for non-beneficial criteria
(15)

where c+i = max(ci1, ci2, · · · , cim) and c+i = min(ci1, ci2, · · · , cim).

The weighted normalized of the decision matrix V = [vij ]m×n is computed as:

vij = ωj(nij + 1) (16)

The BAA matrix is determined as:

G = [gj ]1×n = [g1, g2, · · · , gn] (17)

gj =

(
m∏
i=1

vij

)1/m

(18)

Calculate the distance from the BAA as:

D = V −G = [dij ]m×n


d11 d12 · · · d1m
d21 d22 · · · d2m

...
...

. . .
...

dm1 dm2 · · · dmm

 =


v11 − g1 v12 − g2 · · · v1n − gn
v21 − g1 v22 − g2 · · · v2n − gn

...
...

. . .
...

vm1 − g1 vm2 − g2 · · · vmn − gn

 (19)

The total distance from the BAA is determined as:

Si =
n∑

j=1

dij . (20)

3.1 Algorithms

IVFF-AHP Algorithm:
1. Determine the criteria and options before constructing the hierarchical structure.
2. Using Table 1, create the pairwise comparison matrix.
3. Examine each pairwise comparison matrix for consistency.
4. Add together professional opinions.
5. Calculate the difference matrix using the Equations (2), (3).
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6. Compute the multiplicative matrix using the Equations (4), (5).
7. Obtain the indeterminacy value of the cij using the Equation (6).
8. Obtain the matrix of un-normalized weights using the Equation (7).
9. Determine the normalized priority weights using the Equation (8).
Output: Normalized priority weights.

IVFF-TOPSIS Algorithm:
1. Build the decision matrix using the Table 1.
2. To generate the aggregated IVFF decision matrix, add the decision matrices together.
3. Normalize the decision matrix that has been aggregated.
4. Determine the weighted decision matrix C

′
= (c

′

ij) with c
′

ij = cijωj .
5. Compute the PIS and NIS using the Equations 9, 10
6. Compute the distances between an alternative with PIS and NIS using the Euclidean distance equation 11and the Equations 12, 13.
7. Calculate the relative closeness using the Equation 14.
Output: Relative closeness of an alternative.

IVFF-MABAC Algorithm:
1. Build the decision matrix according to Table 1.
2. Determine the normalized matrix of the decision-matrix using the Equation 15.
3. Compute the weighted normalized of the decision matrix using the Equation 16.
4. Calculate the BAA matrix using the Equations 17, 18.
5. Calculate the distance from the BAA using the Equation 19.
6. Identify the total distance from the BAA using 20.
Output: Comprehensive evaluation result.

3.2 Problem and Computations

Risk analysis purposes to characterize the risks that impact the public health of AVs. Criteria and sub-criteria for this study were selected from
the Detrimental to Health section of the Transportation and Health Conceptual Model in the study of Khreis et al. [6] and from Table 1 in the
study of Sohrabi et al. [16].
A1 - Losing transportation-related job; A11 - Social Exclusion
A2 - Transportation Equity; A21 - Community severance, A22 - Contamination, A23 - Greenhouse gases
A3 - Land Use and Built Environment; A31 - Heat, A32 - Noise, A33 - Air Pollution
A4 - Traffic Flow; A41 - Stress
A5 - Trip, mode, and route choice; A51 - Physical Inactivate, A52 - Electromagnetic Field
A6 - Traffic safety; A61 - Motor vehicle crashes

In the first stage, the weights of the criterion must be computed using the IVFF-AHP approach while taking into account fuzzy linguis-
tic variables and pairwise comparisons. The IVFFS can tolerate severe fuzziness, ambiguity, and imprecision throughout the DM process. In
addition, an FFS is selected to assess the risks associated with AVs using TOPSIS and MABAC. The primary objective of using an FFS is to
decrease computation complexity and calculation execution time while improving how AV dangers are ranked in hybrid MCDM approaches.

Table 2 contains the rating scales, which three experts are asked to use to evaluate their pairwise judgments of the dangers. The pairwise
comparison matrices consisting of linguistic terms for the main criteria, sub-criteria, and alternatives are computed. The pairwise comparison
matrix’s expert ratings are evaluated using the consistency check to see if they are fair. The CRTs of each matrix are calculated. Due to space
constraints, sub-criteria tables are not provided. The IVFFSs for the primary criteria that correlate to the linguistic words in Table 1 are denoted
in Table 3. Using the Equations 2 and 3, the matrix F is obtained 4. Equations 2 and 3 are then employed to compute the difference matrix D
of the primary criterion between the higher and lower values of the MF and NF, which is denoted in Table 4. Equations 4 and 5 are employed
to build the interval multiplicative matrix in Table 5. The weights before normalization are displayed in Table 6 and were calculated using
Equation 7. The results of all these computations were also implemented to the sub-criteria, and Table 7 provides the final priority weights for
both the primary and secondary criteria. The findings show that, with a weight of 0.338, the information security requirements are the most
crucial. Nonetheless, with a weight of 0.04, the criteria for social development are the least significant.

Table 2 Pairwise comparison matrix of main criteria
A1 A2 A3 A4 A5 A6

A1 E SM SM VH H H
A2 SL E SM VH SM H
A3 SL SL E H SM SM
A4 VL VL L E L SM
A5 L SL SM H E H
A6 L L SL SL L E

Table 3 IVFF values for main criteria
A1 A2 A3 A4 A5 A6

A1 ([0.5, 0.5], [0.5, 0.5]) ([0.5, 0.65], [0.35, 0.40]) ([0.5, 0.65], [0.35, 0.4]) ([0.8, 0.9], [0.1, 0.2]) ([0.65, 0.8], [0.2, 0.35]) ([0.65, 0.8], [0.2, 0.35])
A2 ([0.35, 0.4], [0.5, 0.65]) ([0.5, 0.5], [0.5, 0.5]) ([0.5, 0.65], [0.35, 0.4]) ([0.8, 0.9], [0.1, 0.2]) ([0.5, 0.65], [0.35, 0.4]) ([0.65, 0.8], [0.2, 0.35])
A3 ([0.35, 0.4], [0.5, 0.65]) ([0.35, 0.4], [0.5, 0.65]) ([0.5, 0.5], [0.5, 0.5]) ([0.65, 0.8], [0.2, 0.35]) ([0.4, 0.5], [0.4, 0.5]) ([0.5, 0.65], [0.35, 0.4])
A4 ([0.1, 0.2], [0.8, 0.9]) ([0.1, 0.2], [0.8, 0.9]) ([0.2, 0.35], [0.65, 0.8]) ([0.5, 0.5], [0.5, 0.5]) ([0.2, 0.35], [0.65, 0.8]) ([0.5, 0.65], [0.35, 0.4])
A5 ([0.2, 0.35], [0.65, 0.8]) ([0.35, 0.4], [0.5, 0.65]) ([0.4, 0.5], [0.4, 0.5]) ([0.65, 0.8], [0.2, 0.35]) ([0.5, 0.5], [0.5, 0.5]) ([0.65, 0.8], [0.2, 0.35])
A6 ([0.2, 0.35], [0.65, 0.8]) ([0.2, 0.35], [0.65, 0.8]) ([0.35, 0.4], [0.5, 0.65]) ([0.35, 0.4], [0.5, 0.65]) ([0.2, 0.35], [0.65, 0.8]) ([0.5, 0.5], [0.5, 0.5])
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Table 4 The matrix F for main criteria
A1 A2 A3 A4 A5 A6

A1 (0.0, 0.0) (0.061, 0.232) (0.061, 0.232) (0.504, 0.728) (0.232, 0.504) (0.232, 0.504)
A2 (−0.232, 0.061) (0.0, 0.0) (0.061, 0.232) (0.504, 0.728) (0.061, 0.232) (0.232, 0.504)
A3 (−0.232,−0.061) (−0.232,−0.061) (0.0, 0.0) (0.232, 0.504) (−0.061,−0.061) (0.061, 0.232)
A4 (−0.728,−0.504) (−0.728,−0.504) (−0.504,−0.232) (0.0, 0.0) (−0.504,−0.232) (0.061, 0.232)
A5 (−0.504,−0.232) (−0.504,−0.232) (−0.061,−0.061) (−0.232,−0.061) (0.0, 0.0) (0.232, 0.504)
A6 (−0.504,−0.232) (−0.504,−0.232) (−0.232,−0.061) (−0.232,−0.061) (−0.504,−0.232) (0.0, 0.0)

Table 5 The matrix M
A1 A2 A3 A4 A5 A6

A1 (1.0, 1.0) (1, 235, 2, 228) (1, 235, 2, 228) (5.702, 12, 36) (2.228, 5.702) (2.228, 5.702)
A2 (0.45, 1.235) (1.0, 1.0) (1.235, 2.228) (5.702, 12.36) (1.235, 2.228) (2.228, 5.702)
A3 (0.45, 0.81) (0.45, 0.81) (1.0, 1.0) (2.228, 5.702) (0.45, 0.45) (1.235, 2.228)
A4 (0.081, 0.1754) (0.081, 0.1754) (0.1754, 0.45) (1.0, 1.0) (0.1754, 0.45) (1, 235, 2.228)
A5 (0.1754, 0.45) (0.1754, 0.45) (1.235, 1.235) (0.45, 1.235) (1.0, 1.0) (2.228, 5.702)
A6 (0.1754, 0.45) (0.1754, 0.45) (0.45, 1.235) (0.45, 1.235) (0.1754, 0.45) (1.0, 1.0)

Table 6 Weights
A1 A2 A3 A4 A5 A6

A1 1.0 1.96 1.94 9.32 4.55 4.55
A2 0.52 1.0 1.94 9.32 1.96 4.55
A3 0.52 0.52 1.0 4.55 1.02 1.96
A4 0.09 0.09 0.22 1.0 0.22 1.96
A5 0.22 0.52 1.02 4.55 1.0 4.55
A6 0.22 0.22 0.52 0.52 0.22 1.0

Table 7 Priority weights

Criteria Main Criteria
Weight Sub-Criteria Criteria Weight

Losing transportation-related job 0.148 Social Exclusion 0.08
Transportation Equity 0.09 Community severance 0.06

Contamination 0.064
Greenhouse gases 0.07

Land Use and Built Environment 0.327 Heat 0.15
Noise 0.1
Air Pollution 0.17

Traffic Flow 0.07 Stress 0.06
Trip, mode, and route choice 0.132 Physical Inactivate 0.077

Electromagnetic Field 0.079
Traffic safety 0.233 Motor vehicle crashes 0.09

IVFF-TOPSIS and IVFF-MABAC are used in the second step to compare and rank these hazards. The opinions of three experts are
requested about how the evaluation criteria rate the dangers associated with SDVs. Experts’ relative weights are assigned using the formula
ωi = (0.35, 0.40, 0.25). Experts’ relative weights are assigned using the formula ωi = (0.35, 0.40, 0.25). As indicated in Table 8, the expert
panel assessed the risks using linguistic characteristics and associated FFNs.

Table 8 FF linguistic scale for evaluating risks
Linguistic Term FFNs
Very High(VH) (0.85, 0.15)
HighH (0.75, 0.25)
Mid HighMH (0.65, 0.35)
MediumM (0.50, 0.45)
Mid LowML (0.35, 0.65)
LowL (0.25, 0.75)
Very LowVL (0.15, 0.85)

After also applying the IVFF-TOPSIS and IVFF-MABAC methods, the risk assessment results were obtained as follows: A3 > A6 > A1 >
A5 > A4 > A2.

4 Conclusion

Given that the study of the AVDS’s impact on public health involves both qualitative and quantitative data, the best method for evaluating it is
to incorporate uncertainty notions into the mathematical operations of the technique used to obtain appropriate results. In this study, interval-
valued Fermatean fuzzy sets are combined with an integrated DM technique to construct a domain area that can simulate both data imprecision
and decision-makers’ hesitancy. The AHP, TOPSIS, and MABAC methodologies were employed in the integrated methodology to develop
compromise solutions based on the evaluation structure of the threats of AVDSs to public health. The proposed technique for Public Health
risk assessment of AVs can be an effective DM tool for generating important inferences and judgments for systems with unclear data through
the outputs of practices and subsequent analysis.

Companies interested in producing these vehicles might consider these concerns while keeping public health in mind. The interaction of the
environment with AVs can result in a number of dangers. This article provides a hybrid technique for ranking these hazards. It is obvious that
the AV business would suffer if these public health concerns and hazards were not addressed by developers. Deep learning and machine learn-
ing are examples of artificial intelligence technologies that can enhance a system’s security. Before implementing self-driving cars, companies
should consider functional testing in production. This article discusses the dangers of AVs for decision-makers, corporations, physicians, and
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administrators.

Policy outcomes play a vital role in another part of the implementation of the risk assessment method of AVs from a Public health perspective.
Governments should consider the concept of AVs that benefit society in terms of public health, transportation and cost-effective procedures, as
well as creating an efficient system that results in improvements. It is obvious that the AV business would suffer if these public health concerns
and hazards are not addressed by developers. Deep learning and machine learning are examples of artificial intelligence technologies that can
enhance a system’s security. Before implementing self-driving cars, companies should consider functional testing in production. This article
discusses the dangers of AVs for decision makers, corporations, physicians, and administrators.
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Abstract: The general linear group obtained by the matrix representations of the linear transformations is denoted by GL(n). This
group is deformed in two ways. In the classical and deformed cases, a matrix T belonging to the group GL(n) can be written
as T = TLTDTU , where TL, TD and TU are a lower triangular, a diagonal, and an upper triangular matrices, respectively. In the
literature, it has been shown that this case is also valid for a matrix belonging to the quantum group GLq(n) and the quantum
supergroup GLq(m|n).
In this study, we show that the Gauss decomposition is valid for the Z3-graded quantum group G̃Lq(2) as well. When the Gauss
decomposition of a matrix in the quantum group G̃Lq(2) is performed, two new Z3-graded quantum subgroups will emerge and the
properties of these quantum subgroups will be examined: If T ∈ G̃Lq(2), we can write T = TLTDTU . Then, it can be seen that the
product matrices TLTD and TDTU form both Z3-graded quantum groups. The coordinate algebras of both quantum subgroups
have a Z3-graded Hopf algebra structure. Finally, it has been seen that the product of three matrices in the Gauss decomposition
of a matrix belonging to the quantum group G̃Lq(2) also admits a Hopf algebra structure.

Keywords: Z3-graded Hopf algebra, Z3-graded quantum group, Gauss decomposition.

1 Introduction

After quantum groups were first introduced by Drinfeld [1] as a deformation of classical Lie algebras, Manin [2] defined quantum groups as a
deformed space and its dual, and recovered them as the group of matrices acting on them. In the same process, Manin [3] introduced quantum
superspaces (or Z2-graded spaces) and obtained quantum supergroups (or Z2-graded groups) as groups of matrices acting on these spaces.
These spaces are an extension of quantum spaces. These two works by Manin have allowed both quantum spaces and quantum superspaces to
be studied in depth. In fact, both types of spaces have been studied by both mathematicians and physicists for about 35 years. There are many
studies on quantum spaces in the literature.

In recent years, not so much, but as an expansion of Z2-graded structures Z3-graded structures have started to be considered and thus, a
new field of study in Mathematics and Mathematical Physics has emerged. The first work on this subject was done by Chung [4] on 1+1-space.
Later, Celik [5, 6] developed Z3-graded versions of both quantum plane and quantum superplane. Furthermore, Celik [7] defined a Z3-graded
deformation of (2+1)-space and constructed a differential calculus on this Hopf algebra, showing that the algebra of functions on this quantum
space is a Hopf algebra. A study on ZN -graded structures was given by Dubois-Violett [8]. The quantum group of Z3-graded 2x2-matrices and
its properties were introduced by Celik [9, 10] and left-covariant differential calculus was developed on this group [11].

2 Z3-graded Structures

For the sake of completeness, we will mention Z3-graded algebras and Z3-graded Hopf algebras as much as we need in this section. The
information in this section is taken from Celik [9, 11].

Definition 1. A Z3-graded vector space V is a vector space over a field K together with three subspaces V0, V1 and V2 of V such that
V = V0 ⊕ V1 ⊕ V2. Each subspace Vi is called the i-grade part of V , and its elements are of grade i. The grade of an element v ∈ V is
denoted by p(v) and is equal to 0, 1, or 2. All elements of V are collectively said to be homogeneous.

Definition 2. An algebra A over K is called a Z3-graded algebra if it is a Z3-graded vector space over K, with a bilinear map A× A → A
such that Ai · Aj ⊂ Ai+j for i, j = 0, 1, 2.

Definition 3. If A and B are two Z3-graded algebras, then the product rule in the Z3-graded algebra A⊗ B is defined by

(a1 ⊗ b1)(a2 ⊗ b2) = qp(b1)p(a2)(a1a2 ⊗ b1b2). (1)
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where ai’s and bi’s are the homogeneous elements in algebras A and B, respectively.

Definition 4. A Z3-graded Hopf algebra is a Z3-graded vector space A over K with three linear map ∆, ϵ and S such that

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆,

m ◦ (ϵ⊗ id) ◦∆ = id = m ◦ (id⊗ ϵ) ◦∆, (2)

m ◦ (S ⊗ id) ◦∆ = η ◦ ϵ = m ◦ (id⊗ S) ◦∆,

together with ∆(1) = 1⊗ 1, ϵ(1) = 1 and S(1) = 1, where m is the product map, id is the identity map, and η : K −→ A. The coproduct
∆ is an algebra homomorphism from A to A⊗ A, and the counit ϵ is an algebra homomorphism from A to K.

Definition 5. An n× n matrix T over a Z3-graded algebra A is a Z3-graded matrix whose entries are the elements of A and which has the
form T = T0 + T1 + T2, where T0, T1, and T2 are of grades 0, 1 and 2, respectively.

3 The Z3-graded Quantum Group G̃Lq(2)

Let A be a Z3-graded algebra and a, β, γ and d be generators of A, where p(a) = 0 = p(d), p(γ) = 1 and p(β) = 2. We denote the Z3-graded
polynomial algebra K[a, β, γ, d] by O(M̃(2,A)) := O(M̃(2)). A matrix T ∈ M̃(2,A) can be written as

T =

(
a β
γ d

)
=

(
a 0
0 d

)
+

(
0 0
γ 0

)
+

(
0 β
0 0

)
.

Definition 6. [9] The Z3-graded quantum algebra O(M̃q(2)) is an associative algebra with the generators a, β, γ, d satisfying the following
relations

aβ = βa, aγ = qγa, ad = da+ (q − 1)βγ,

dβ = βd, dγ = q2γd, βγ = γβ, β3 = 0 = γ3, (3)

where q3 = 1.

Theorem 1. [9] There exists a bialgebra structure on the algebra O(M̃q(2)) with the costructures

∆ : O(M̃q(2)) −→ O(M̃q(2))⊗O(M̃q(2)), ∆(tij) =

3∑
k=1

tik ⊗ tij ,

ϵ : O(M̃q(2)) −→ C, ϵ(tij) = δij

where t11 = a, t12 = β, t21 = γ, and t22 = d. In addition, we have ∆(1) = 1⊗ 1, and ϵ(1) = 1.

The Z3-graded quantum determinant is defined by [9]

Dq := ad− qβγ = da− βγ. (4)

Remark 1. The Z3-graded quantum determinant is a group-like element belonging to the center of the algebra O(M̃q(2)). Using the quantum
determinant Dq belonging to the center of the algebra O(M̃q(2)), we can define a Hopf algebra by adding the inverse D−1

q to O(M̃q(2)). Let
O(G̃Lq(2)) be the quotient of the algebra O(M̃q(2)) by the two-sided ideal generated by the element tDq − 1. In short, we write

O(G̃Lq(2) := O(M̃q(2))[t]/⟨tDq − 1⟩

Then, the algebra O(G̃Lq(2)) is again a bialgebra.

Theorem 2. [9] The bialgebra O(G̃Lq(2)) is a Z3-graded Hopf algebra. The antipode S of O(G̃Lq(2)) is given by

S(a) = dD−1
q , S(β) = −βD−1

q , S(γ) = −qγD−1
q , S(d) = aD−1

q . (5)

In addition, we have S(1) = 1.

Definition 7. The Z3-graded Hopf algebra O(G̃Lq(2)) is called the coordinate algebra of the Z3-graded quantum group G̃Lq(2).

4 Lower and Upper Triangular Z3-graded Matrices

Let A and B, both of degree 0, be elements of a Z3-graded algebra. Let M̃d(2) be defined as the Z3-graded polynomial algebra K[A,B]. It
will sometimes be convenient and more illustrative to write a point (A,B) of M̃d(2) in the matrix form TD = (Aij) as a diagonal matrix, that
is, Aij = δijAj . We will also assume the invertibility of the generators A and B (or add the generators A−1and B−1 to the list of generators,
too).
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4.1 Group of Lower Triangular Z3-graded Matrices

Let ξ be element of a Z3-graded algebra and p(ξ) = 1. We denote Z3-graded polynomial algebra K[A,B, ξ] by M̃ l(2). Let us write

T l = TLTD =

(
A 0
Aξ B

)
(6)

where TL is a lower triangular matrix and TD is a diagonal matrix. Such product matrices form a Z3-graded group, where A and B are
invertible. We will denote this Z3-graded group by G̃L

l
(2).

4.2 Group of Upper Triangular Z3-graded Matrices

Let η be element of a Z3-graded algebra where the generator η is of grade 2. We denote Z3-graded polynomial algebra K[A,B, η] by M̃u(2).
Let us write

Tu = TDTU =

(
A Aη
0 B

)
(7)

where TU is a upper triangular matrix and TD is a diagonal matrix. Such product matrices form a Z3-graded group, where A and B are
invertible. We will denote this Z3-graded group by G̃L

u
(2).

5 The Gauss Decomposition of Z3-graded Quantum Group G̃Lq(2)

A matrix T of type n× n can be written as T = TLTDTU where TL is a lower triangular matrix, TU is a upper triangular matrix and TD is a
diagonal matrix. Now, let us write the matrix T ∈ G̃Lq(2) as

T =

(
a β
γ d

)
= TLTDTU

where

TL =

(
1 0
ξ 1

)
, TD =

(
A 0
0 B

)
, TU =

(
1 η
0 1

)
.

In this case, really the degree of ξ is 1 and the degree of η is 2. The decomposition above gives the "new" set of generators for Z3-graded
quantum groups, which have more simple commutation rules than relations given in Definition 6 for original generators.

5.1 Lower Triangular Z3-graded Quantum Group G̃L
l
q(2)

If we write T l = TLTD , we can find q-commutation relations between the matrix elements of the matrix T l using the commutation relations
given in (3) provided by the matrix elements of matrix T ∈ G̃Lq(2).

Theorem 3. The matrix elements of the matrix T l satisfy the following commutation relations

AB = BA, Aξ = qξA, Bξ = q2ξB, ξ3 = 0. (8)

The quantum determinant of the matrix T l is defined by

Dq(T
l) = AB,

which belongs to the center of the algebra. Let us denote the lower triangular Z3-graded quantum group by G̃L
l
q(2). The Z3-graded algebra

O(G̃L
l
q(2)) is the coordinate algebra of the Z3-graded quantum group G̃L

l
q(2).

Theorem 4. The Z3-graded algebra O(G̃L
l
q(2)) is a Z3-graded Hopf algebra with the following costructures:

(1) the coproduct ∆ : O(G̃L
l
q(2)) → O(G̃L

l
q(2))⊗O(G̃L

l
q(2)) acts on the generators of O(G̃L

l
q(2)) as follows

∆(A) = A⊗A, ∆(B) = B ⊗B, ∆(ξ) = ξ ⊗ 1+BA−1 ⊗ ξ, (9)

(2) the counit ϵ : O(G̃L
l
q(2)) → C acts on the generators of O(G̃L

l
q(2)) as follows

ϵ(A) = 1, ϵ(B) = 1, ϵ(ξ) = 0, (10)

(3) the coinverse S : O(G̃L
l
q(2)) → O(G̃L

l
q2(2)) acts on the generators of O(G̃L

l
q(2)) as follows

S(A) = A−1, S(B) = B−1, S(ξ) = −qB−1ξA. (11)
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Proof: For this we need to show that the identities in Definition 4 hold and that the relations in Theorem 3 are preserved by the maps ∆, ϵ and
S. The first is not difficult to show. As an example for the latter, let us show that ∆(ξ3) = 0. Using the equality in (9) and the relations (8), we
can write

∆(ξ2) = (ξ ⊗ 1+BA−1 ⊗ ξ)(ξ ⊗ 1+BA−1 ⊗ ξ)

= ξ2 ⊗ 1+ ξBA−1 ⊗ ξ + q BA−1ξ ⊗ ξ +B2A−2 ⊗ ξ2

= ξ2 ⊗ 1− q ξBA−1 ⊗ ξ +B2A−2 ⊗ ξ2.

Now we have

∆(ξ3) = (ξ ⊗ 1+BA−1 ⊗ ξ)(ξ2 ⊗ 1− q ξBA−1 ⊗ ξ +B2A−2 ⊗ ξ2)

= −q ξ2BA−1 ⊗ ξ + ξB2A−2 ⊗ ξ2 + q2 BA−1ξ2 ⊗ ξ − q2 BA−1ξBA−1 ⊗ ξ2

= 0,

ϵ(ξ3) = [ϵ(ξ)]3 = 0,

S(ξ2) = q S(ξ)S(ξ) = q (−AB−1ξ)(−AB−1ξ) = q2 A2B−2ξ2,

S(ξ3) = q2 S(ξ)S(ξ2) = q2 (−AB−1ξ)(q2 A2B−2ξ2)

= A3B−1ξ3 = 0,

as expected. □

5.2 Upper Triangular Z3-graded Quantum Group G̃L
u
q (2)

If we write Tu = TDTU , we can find q-commutation relations between the matrix elements of matrix Tu using the commutation relations
given in (3) provided by the matrix elements of matrix T ∈ G̃Lq(2).

Theorem 5. The matrix elements of the matrix Tu satisfy the following commutation relations

AB = BA, Aη = qηA, Bη = ηB, η3 = 0. (12)

The quantum determinant of the matrix Tu is defined by

Dq(T
u) = AB,

which belongs to the center of the algebra. Let us denote the upper triangular Z3-graded quantum group by G̃L
u
q (2). The Z3-graded algebra

O(G̃L
u
q (2)) is the coordinate algebra of the Z3-graded quantum group G̃L

u
q (2).

Theorem 6. The Z3-graded algebra O(G̃L
u
q (2)) is a Z3-graded Hopf algebra with the following costructures:

(1) the coproduct ∆ : O(G̃L
u
q (2)) → O(G̃L

u
q (2))⊗O(G̃L

u
q (2)) acts on the generators of O(G̃L

u
q (2)) as follows

∆(A) = A⊗A, ∆(B) = B ⊗B, ∆(ξ) = 1⊗ η + η ⊗BA−1, (13)

(2) the counit ϵ : O(G̃L
u
q (2)) → C acts on the generators of O(G̃L

u
q (2)) as follows

ϵ(A) = 1, ϵ(B) = 1, ϵ(η) = 0, (14)

(3) the coinverse S : O(G̃L
u
q (2)) → O(G̃L

u
q2(2)) acts on the generators of O(G̃L

u
q (2)) as follows

S(A) = A−1, S(B) = B−1, S(η) = −B−1Aη. (15)

6 Z3-graded Quantum Group G̃Lq(2) with New Generators

In this section we will discuss the situations that arise with the new generators A, B, ξ and η. If we write a matrix T ∈ G̃Lq(2) as T =
TLTDTU then we have

A = a, ξ = γa−1, η = a−1β, B = d− γa−1β (16)

in terms of the new generators. The commutation relations between these new generators were given in Theorem 3 and Theorem 5 with the
additional relation ηξ = q2ξη. The following theorem gives the general action of co-maps on generators A, B, ξ and η.

Theorem 7. The Z3-graded algebra O(G̃Lq(2)) has a Z3-graded Hopf algebra structure with the new generators as follows
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(1) the coproduct ∆ : O(G̃Lq(2)) → O(G̃Lq(2))⊗O(G̃Lq(2)) acts on the generators of O(G̃Lq(2)) as follows

∆(A) = A⊗A+Aη ⊗ ξA,

∆(ξ) = ξ ⊗ 1+BA−1 ⊗ ξ − q2 BA−1η ⊗ ξ2,

∆(η) = 1⊗ η + η ⊗A−1B − q2 η2 ⊗A−1ξB,

∆(B) = B ⊗B −Bη ⊗ ξB +Bη2 ⊗ ξ2B, (17)

(2) the counit ϵ : O(G̃Lq(2)) → C acts on the generators of O(G̃Lq(2)) as follows

ϵ(A) = 1, ϵ(B) = 1, ϵ(ξ) = 0, ϵ(η) = 0, (18)

(3) the coinverse S : O(G̃Lq(2)) → O(G̃Lq(2)) acts on the generators of O(G̃Lq(2)) as follows

S(A) = A−1 + ηB−1ξ,

S(B) = B−1 − q2 B−1AB−1ξη +B−1AB−1AB−1ξ2η2,

S(ξ) = q2AB−1AB−1ξ2η −AB−1ξ,

S(η) = AB−1AB−1ξη2 −AB−1η. (19)
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Abstract: In this paper, we first consider the linear demand function

p = a− bx

where
a, b > 0

and p is the unit price with respect to the demand quantity x. Then we use the parabolic demand function

p = a− bx− cx2,

where a, b, c > 0. After the coefficients a, b and c are fuzzified by interval-valued fuzzy numbers, we calculate maximum revenue.

Keywords: Demand function; Revenue function; Trapezoidal fuzzy number; Interval-valued trapezoidal fuzzy number; Graded
mean defuzzification method.

1 Introduction and Preliminaries

The revenue maximization is one of the basic problem of microeconomic theory. Let p(x) be the demand function. Then

R(x) = xp(x)

gives the revenue obtained from the sale of the x units. Chang and Yao [1] studied the revenue maximization using the type 1 fuzzy numbers.
They obtained better results than the crisp case. On the other hand, interval-valued fuzzy numbers are generalization of type 1 fuzzy numbers.
The aim of this paper is to move this microeconomic problem to the theory of interval-valued fuzzy numbers. Hence we use interval-valued
fuzzy numbers to fuzzify the demand function. Then we calculate the maximum revenue using the fuzzified revenue function.

An interval valued fuzzy set (an IV fuzzy set) on the set of real numbers is given by

≈
A =

{(
x,

[
µ≈
A
(x), µ≈

A
(x)

])}
, x ∈ R,

where µ≈
A

and µ≈
A

are fuzzy numbers on R, where µ≈
A
(x) ≤ µ≈

A
(x) for all x2 ∈ R [4, 10].

If we choose the fuzzy sets of µ≈
A

and µ≈
A

as trapezoidal fuzzy numbers, then we get the definition of an interval-valued trapezoidal fuzzy
number [9]. In this paper we will use interval-valued fuzzy number Chiao [3] uses as interval-valued general trapezoidal fuzzy number, that is
if we choose the upper and lower membership functions as

µ≈
A
(x) =


x−a
m1−a
1

x−d
m2−d
0

,a ≤ x ≤ m1
,m1 ≤ x ≤ m2
,m2 ≤ x ≤ d
, otherwise

,

µ≈
A
(x) =


x−b
m1−b
1

x−c
m2−c
0

,b ≤ x ≤ m1
,m1 ≤ x ≤ m2
,m2 ≤ x ≤ c
, otherwise
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then
≈
A is called an interval-valued trapezoidal (briefly, IV TR) fuzzy number and is denoted as

≈
A = ([a, b],m1,m2, [c, d]). We denote the set

of all IV TR fuzzy numbers by F(IV TR)[3].
Now we recall the arithmetic operations on the set F(IV TR). Let

≈
x1 = ([a, b],m1

1,m
1
2, [c, d]) and

≈
x2 = ([e, f ],m2

1,m
2
2, [g, h]). Then we

have

≈
x1 +

≈
x2 = ([a+ e, b+ f ],m1

1 +m2
1,m

1
2 +m2

2, [c+ g, d+ h]),

≈
x1 − ≈

x2 =
≈
x1 + (−≈

x2) = ([a− h, b− g],m1
1 −m2

2,m
1
2 −m2

1, [c− f, d− e])

and

k
≈
x1 = k · ≈

x1 =

{
([ka, kb], km1

1, km
1
2, [kc, kd])

([kd, kc], km1
2, km

1
1, [kb, ka])

,k > 0
,k < 0

.

The operations that enable converting an IV fuzzy numbers into trapezoidal fuzzy numbers and maintaining, at least partially, pieces of
information stored in the former one, are frequently needed. This kind of operation is called type reduction by Karnik and Mendel [5, 6] and
Mendel [7]. In 2006 Niewiadomski et al. [8] have defined different type-reductions methods such as

TII(
≈
A) = µ≈

A
(y), y ∈ R

TIK(
≈
A) = µ≈

A
(y), y ∈ R

TIO(
≈
A) =

µ≈
A
(y) + µ≈

A
(y)

2
, y ∈ R

provided that w1 + w2 = 1.
If Ã ∈ F (T ) then the graded mean of Ã = (a, b, c, d) is defined as [2]:

G
(
Ã
)
=

1
2

1∫
0

[AL (α) +AR (α)] dα

1∫
0

αdα

=
1

6
(a+ 2b+ 2c+ d) .

2 Fuzzy Revenue for Linear Demand Function

In this section, we use the demand function

p = a− bx, 0 ≤ x ≤ a

b
,

where a, b > 0 and p is the unit price with respect to the demand quantity x. In this case the revenue function is

R = ax− bx2

where 0 ≤ x ≤ a
b . It is clear that x∗ = a

2b is the maximum point of the function R. Hence, the maximum revenue is R = a2

4b .
Let us fuzzify the positive coefficients of demand and revenue functions as

ã =
([
ā− δaLO, ā− δaLI

]
, ā− δaL, ā+ δaR,

[
ā+ δaRI , ā+ δaRO

])
b̃ = (

[
b̄− δbLO, b̄− δbLI

]
, b̄− δbL, b̄+ δbR,

[
b̄+ δbRI , b̄+ δbRO

]
)

where

0 < δaL < δaLI < δaLO < ā, 0 < δbL < δbLI < δbLO < b̄

0 < δaR < δaRI < δaRO < ā, 0 < δbR < δbRI < δbRO < b̄

Now we are ready to calculate the interval-valued trapezoidal fuzzy demand function and interval-valued trapezoidal fuzzy revenue function:

p̃ = ã− b̃x

=

 [
ā− δaLO −

(
b̄+ δbRO

)
x, ā− δaLI −

(
b̄+ δbRI

)
x
]
, ā− δaL −

(
b̄+ δbR

)
x,

ā+ δaR −
(
b̄− δbL

)
x,

[
ā+ δaRI −

(
b̄− δbLI

)
x, ā+ δaRO −

(
b̄− δbLO

)
x
] 

and

R̃ = ãx− b̃x2

=

 [
(ā− δaLO)x−

(
b̄+ δbRO

)
x2, (ā− δaLI)x−

(
b̄+ δbRI

)
x2

]
, (ā− δaL)x−

(
b̄+ δbR

)
x2,

(ā+ δaR)x−
(
b̄− δbL

)
x2,

[
(ā+ δaRI)x−

(
b̄− δbLI

)
x2, (ā+ δaRO)x−

(
b̄− δbLO

)
x2

]  .
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Then we have the trapezoidal fuzzy numbers using the type reductions as

TIO (p̃) =

 ā−δaLO−(b̄+δbRO)x
2 +

ā−δaLI−(b̄+δbRI)x
2 , ā− δaL −

(
b̄+ δbR

)
x,

ā+ δaR −
(
b̄− δbL

)
x,

ā+δaRI−(b̄−δbLI)x
2 +

ā+δaRO−(b̄−δbLO)x
2



=

 (
ā− b̄x

)
− (δaLO+δaLI)+(δ

b
RO+δbRI)x

2 ,
(
ā− b̄x

)
−

(
δaL + δbRx

)
,(

ā− b̄x
)
+

(
δaR + δbLx

)
,
(
ā− b̄x

)
+

(δaRO+δaRI)+(δ
b
LO+δbLI)x

2


and

TIO

(
R̃
)

=

 (ā−δaLO)x−(b̄+δbRO)x
2

2 +
(ā−δaLI)x−(b̄+δbRI)x

2

2 , (ā− δaL)x−
(
b̄+ δbR

)
x2,

(ā+ δaR)x−
(
b̄− δbL

)
x2,

(ā+δaRI)x−(b̄−δbLI)x
2

2 +
(ā+δaRO)x−(b̄−δbLO)x

2

2



=

 (
āx− b̄x2

)
− (δaLO+δaLI)x+(δ

b
RO+δbRI)x

2

2 ,
(
āx− b̄x2

)
−

(
δaL + δbRx

)
,(

āx− b̄x2
)
+

(
δaRx+ δbLx

2
)
,
(
āx− b̄x2

)
+

(δaRO+δaRI)x+(δ
b
LO+δbLI)x

2

2

 .

We observe that

TIO

(
R̃
)
= [TIO (p̃)]x.

Graded mean of the trapezoidal fuzzy number TIO (p̃) is

Mp̃ (x) =
1

6


[(

ā− b̄x
)
− (δaLO+δaLI)+(δ

b
RO+δbRI)x

2

]
+ 2

[(
ā− b̄x

)
−

(
δaL + δbRx

)]
+

2
[(
ā− b̄x

)
+

(
δaR + δbLx

)]
+

[(
ā− b̄x

)
+

(δaRO+δaRI)+(δ
b
LO+δbLI)x

2

]


=
(
ā− b̄x

)
+

1

12
(∆1 −∆2x)

where

∆1 = −δaLO − δaLI − 4δaL + 4δaR + δaRI + δaRO

∆2 = −δbLO − δbLI − 4δbL + 4δbR + δbRI + δbRO.

It is clear that

Mp̃ (x) = G (TIO (p̃))

= G (ã) +G
(
b̃
)
x.

Similarly, graded mean of the trapezoidal fuzzy number TIO
(
R̃
)

is

MR̃ (x) =
1

6


[(

āx− b̄x2
)
− (δaLO+δaLI)x+(δ

b
RO+δbRI)x

2

2

]
+ 2

[(
āx− b̄x2

)
−

(
δaL + δbRx

)]
+

2
[(

āx− b̄x2
)
+

(
δaRx+ δbLx

2
)]

+

[(
āx− b̄x2

)
+

(δaRO+δaRI)x+(δ
b
LO+δbLI)x

2

2

]


= x
(
ā− b̄x

)
+

x

12
(∆1 −∆2x) .

It is clear that

MR̃ (x) = G
(
TIO

(
R̃
))

= G (ã)x+G
(
b̃
)
x2

and
MR̃ (x) =

[
Mp̃ (x)

]
x.

Here, we obtain

G
(
TIO

(
R̃
))

= x ·G (TIO (p̃)) .
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Now we calculate the maximum value of the function G
(
TIO

(
R̃
))

. Since

d

dx
G
(
TIO

(
R̃
))

=
d

dx

[(
āx− b̄x2

)
+

1

12

(
∆1x−∆2x

2
)]

=

[(
ā− 2b̄x

)
+

1

12
(∆1 − 2∆2x)

]
,

we have

x = x∗ =
1

2

(
12ā+∆1

12b̄+∆2

)
.

Then the point x∗ is the maximum point of the function G
(
TIO

(
R̃
))

because

d2

dx2
G
(
TIO

(
R̃
))

=
d

dx

[(
ā− 2b̄x

)
+

1

12
(∆1 − 2∆2x)

]
=

−1

6

(
12b̄+∆2

)
< 0,

Hence the maximum value is

G
(
TIO

(
R̃
))

= x∗

[(
ā− b̄x∗

)
+

1

12
(∆1 −∆2x∗)

]
.

Example 1. Let the demand function be p = 24− 4x, where 0 ≤ x ≤ 6. Then the revenue function is R = 24x− 4x2. Then the maximum
revenue in the crisp case is R = 36 where x∗ = 3.

We now fuzzify the coefficients a and b as

ã =
([
24− δaLO, 24− δaLI

]
, 24− δaL, 24 + δaR,

[
24 + δaRI , 24 + δaRO

])
b̃ = (

[
4− δbLO, 4− δbLI

]
, 4− δbL, 4 + δbR,

[
4 + δbRI , 4 + δbRO

]
).

We calculate the maximum revenues for the following cases:

Cases δaRO − δaLO δaRI − δaLI δaR − δaL δbLO δbLI δbL δbR δbRI δbRO ∆1 ∆2

1 −1 −1.4 −1.6 3.4 3.2 3.0 0.2 0.4 1.4 −8.8 −16.0
2 −1 −1.4 −1.6 3.0 2.8 2.6 0.2 0.4 1.4 −8.8 −13.6
3 −1 −1.4 −1.6 3.0 2.8 2.4 0.2 0.4 1.4 −8.8 −12.8

Case 1. Since

∆1 = −δaLO − δaLI − 4δaL + 4δaR + δaRI + δaRO

∆2 = −δbLO − δbLI − 4δbL + 4δbR + δbRI + δbRO.

x∗ =
1

2

(
12ā+∆1

12b̄+∆2

)
= 4.36

we obtain

MR̃ (x∗) = G
(
R̃ (x∗)

)
=

(
āx∗ − b̄x2∗

)
+

1

12

(
∆1x∗ −∆2x

2
∗
)

= 50.75.

Case 2. Since

x∗ =
1

2

(
12ā+∆1

12b̄+∆2

)
= 4.05

we obtain

MR̃ (x∗) = G
(
R̃ (x∗)

)
=

(
āx∗ − b̄x2∗

)
+

1

12

(
∆1x∗ −∆2x

2
∗
)

= 47.20.

Case 3. Since

x∗ =
1

2

(
12ā+∆1

12b̄+∆2

)
= 3.96
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we obtain

MR̃ (x∗) = G
(
R̃ (x∗)

)
=

(
āx∗ − b̄x2∗

)
+

1

12

(
∆1x∗ −∆2x

2
∗
)

= 46.13.

3 Fuzzy Revenue for Parabolic Demand Function

In this section, we consider the demand function
p = a− bx− cx2, 0 ≤ x ≤ x∗,

where a, b, c > 0 and p is the unit price with respect to the demand quantity x. Then we obtain the revenue function as

R = ax− bx2 − cx3

where 0 ≤ x ≤ x∗. In the crisp case, R
′
= a− 2bx− 3cx2, is the marginal revenue and R

′′

= −2b− 6cx < 0. Therefore x∗ =
√
3ac+b2−b

3
is the maximum point of the function R. So, we have the maximum revenue

R =
1

(27c2)

[
(6ac+ 2b2)

√
3ac+ b2 − 9abc− 2b3

]
.

Let us fuzzify the positive coefficients of demand and revenue functions as

ã =
([
ā− δaLO, ā− δaLI

]
, ā− δaL, ā+ δaR,

[
ā+ δaRI , ā+ δaRO

])
b̃ = (

[
b̄− δbLO, b̄− δbLI

]
, b̄− δbL, b̄+ δbR,

[
b̄+ δbRI , b̄+ δbRO

]
)

c̃ = (
[
c̄− δcLO, c̄− δcLI

]
, c̄− δcL, c̄+ δcR,

[
c̄+ δcRI , c̄+ δcRO

]
)

where

0 < δaL < δaLI < δaLO < ā, 0 < δbL < δbLI < δbLO < b̄, 0 < δcL < δcLI < δcLO < c̄

0 < δaR < δaRI < δaRO < ā, 0 < δbR < δbRI < δbRO < b̄, 0 < δcR < δcRI < δcRO < c̄

Then the interval-valued trapezoidal fuzzy demand function and interval-valued trapezoidal fuzzy revenue function are given by

p̃ = ã− b̃x− c̃x2

=


[
ā− δaLO −

(
b̄+ δbRO

)
x− (c̄+ δcRO)x2, ā− δaLI −

(
b̄+ δbRI

)
x− (c̄+ δcRI)x

2
]
,

ā− δaL −
(
b̄+ δbR

)
x− (c̄+ δcR)x2, ā+ δaR −

(
b̄− δbL

)
x− (c̄− δcL)x

2,[
ā+ δaRI −

(
b̄− δbLI

)
x− (c̄− δcLI)x

2, ā+ δaRO −
(
b̄− δbLO

)
x− (c̄− δcLO)x2

]


and

R̃ = ãx− b̃x2 − c̃x3

=


[
(ā− δaLO)x−

(
b̄+ δbRO

)
x2 − (c̄+ δcRO)x3, (ā− δaLI)x−

(
b̄+ δbRI

)
x2 − (c̄+ δcRI)x

3
]
,

(ā− δaL)x−
(
b̄+ δbR

)
x2 − (c̄+ δcR)x3, (ā+ δaR)x−

(
b̄− δbL

)
x2 − (c̄− δcL)x

3,[
(ā+ δaRI)x−

(
b̄− δbLI

)
x2 − (c̄− δcLI)x

3, (ā+ δaRO)x−
(
b̄− δbLO

)
x2 − (c̄− δcLO)x3

]


respectively.
We have the trapezoidal fuzzy numbers using the type reduction as

TIO (p̃) =


ā−δaLO−(b̄+δbRO)x−(c̄+δcRO)x2

2 +
ā−δaLI−(b̄+δbRI)x−(c̄+δcRI)x

2

2 ,

ā− δaL −
(
b̄+ δbR

)
x− (c̄+ δcR)x2,

ā+ δaR −
(
b̄− δbL

)
x− (c̄− δcL)x

2,

ā+δaRI−(b̄−δbLI)x−(c̄−δcLI)x
2

2 +
ā+δaRO−(b̄−δbLO)x−(c̄−δcLO)x2

2



=



(
ā− b̄x− c̄x2

)
− (δaLO+δaLI)+(δ

b
RO+δbRI)x+(δcRO+δcRI)x

2

2 ,(
ā− b̄x− c̄x2

)
−

(
δaL + δbRx+ δcRx2

)
,(

ā− b̄x− c̄x2
)
+

(
δaR + δbLx+ δcLx

2
)
,(

ā− b̄x− c̄x2
)
+

(δaRO+δaRI)+(δ
b
LO+δbLI)x+(δcLO+δcLI)x

2

2
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and

TIO

(
R̃
)

=


(ā−δaLO)x−(b̄+δbRO)x

2−(c̄+δcRO)x3

2 +
(ā−δaLI)x−(b̄+δbRI)x

2−(c̄+δcRI)x
3

2 ,

(ā− δaL)x−
(
b̄+ δbR

)
x2 − (c̄+ δcR)x3,

(ā+ δaR)x−
(
b̄− δbL

)
x2 − (c̄− δcL)x

3,

ā+δaRI−(b̄−δbLI)x−(c̄−δcLI)x
2

2 +
ā+δaRO−(b̄−δbLO)x−(c̄−δcLO)x2

2



=



[(
ā− b̄x− c̄x2

)
− (δaLO+δaLI)+(δ

b
RO+δbRI)x+(δcRO+δcRI)x

2

2

]
x,[(

ā− b̄x− c̄x2
)
−

(
δaL + δbRx+ δcRx2

)]
x,[(

ā− b̄x− c̄x2
)
+

(
δaR + δbLx+ δcLx

2
)]

x,[(
ā− b̄x− c̄x2

)
+

(δaRO+δaRI)+(δ
b
LO+δbLI)x+(δcLO+δcLI)x

2

2

]
x


.

Graded mean functions of TIO (p̃) and TIO

(
R̃
)

are

Mp̃ (x) = G (TIO (p̃))

= G (ã)−G
(
b̃
)
x−G (c̃)x2

Mp̃ (x) =
1

6



(
ã− b̃x− c̃x2

)
− (δaLO+δaLI)+(δ

b
RO+δbRI)x+(δcRO+δcRI)x

2

2 +

2
[(

ã− b̃x− c̃x2
)
−

(
δaL + δbRx+ δcRx2

)]
+

2
[(

ã− b̃x− c̃x2
)
+

(
δaR + δbLx+ δcLx

2
)]

+(
ã− b̃x− c̃x2

)
+

(δaRO+δaRI)+(δ
b
LO+δbLI)x+(δcLO+δcLI)x

2

2


=

(
ā− 2b̄x− c̃x2

)
+

1

12

(
∆1 −∆2x−∆3x

2
)

and

MR̃ (x) = G
(
TIO

(
R̃
))

= G (ã)x−G
(
b̃
)
x2 −G (c̃)x3

MR̃ (x) =
1

6



[(
ā− b̄x− c̄x2

)
− (δaLO+δaLI)+(δ

b
RO+δbRI)x+(δcRO+δcRI)x

2

2

]
x+

2x
[(

ā− b̄x− c̄x2
)
−

(
δaL + δbRx+ δcRx2

)]
+

2x
[(

ā− b̄x− c̄x2
)
+

(
δaR + δbLx+ δcLx

2
)]

+[(
ā− b̄x− c̄x2

)
+

(δaRO+δaRI)+(δ
b
LO+δbLI)x+(δcLO+δcLI)x

2

2

]
x


=

[(
ā− b̄x− c̄x2

)
+

1

12

(
∆1 −∆2x−∆3x

2
)]

x

=
[
Mp̃ (x)

]
x

where

∆1 = −δaLO − δaLI − 4δaL + 4δaR + δaRI + δaRO

∆2 = −δbLO − δbLI − 4δbL + 4δbR + δbRI + δbRO

∆3 = −δcLO − δcLI − 4δcL + 4δcR + δcRI + δcRO.

Hence, we obtain

G
(
TIO

(
R̃
))

= x ·G (TIO (p̃)) .

G
(
TIO

(
R̃
))

are estimates of the unit price and of the revenue in fuzzy sense with respect to demand quantity x. Now we calculate the

maximum value of the function G
(
TIO

(
R̃
))

. We have

d

dx
G
(
TIO

(
R̃
))

=
d

dx

[(
āx− b̄x2 − c̄x3

)
+

1

12

(
∆1x−∆2x

2 −∆3x
3
)]

=
1

12

(
A− 2Bx− 3Cx2

)
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where

A = 12ā+∆1

B = 12b̄+∆2

C = 12c̄+∆3

If we take
0 = A− 2Bx− 3Cx2

then we have

x = x∗ =

√
3AC +B2

9C2
− B

3C
.

Hence

D =
[
−2

(
12b̄+∆2

)]2 − 4 [−3 (12c̄+∆3) (12ā+∆1)]

= (−2B)2 − 4 (−3C)A

= 4B2 + 12AC.

If D < 0, the equation has no real roots.
If D = 0, the equation is a perfect square expression. There are two equal roots.
If D > 0, the equation has two different real roots.
If D = 4B2 + 12AC and D ≤ 0;

D ≤ 0 =⇒ 4B2 + 12AC ≤ 0

D ≤ 0 =⇒ B2 + 3AC ≤ 0

If D ≤ 0, x∗ will be undefined since the square root will not be zero or less than zero.
Since

d2

dx2
G
(
TIO

(
R̃
))

=
d

dx

[(
ā− 2b̄x− 3c̄x2

)
+

1

12

(
∆1 − 2∆2x− 3∆3x

2
)]

= −
[
2
(
b̄+ 3c̄x

)
+

1

6
(∆2 + 3∆3x)

]
< 0,

the point x∗ is the maximum point of the function G
(
TIO

(
R̃
))

. Hence

G
(
TIO

(
R̃
))

= x∗

[(
ā− b̄x∗ − c̄x2∗

)
+

1

12

(
∆1 −∆2x∗ −∆3x

2
∗
)]

is the maximum value of the revenue in fuzzy sense.

Example 2. Let the demand function be p = 3− 4x− x2, where 0 ≤ x ≤ 1
3 . Then the revenue function is R = 24x− 4x2. Hence the

maximum revenue in the crisp case is R = 14
27 where

x∗ =

√
3ac+ b2 − b

3
=

1

3
.

We now fuzzify the coefficients a, b and c as

ã =
([
3− δaLO, 3− δaLI

]
, 3− δaL, 3 + δaR,

[
3 + δaRI , 3 + δaRO

])
b̃ = (

[
4− δbLO, 4− δbLI

]
, 4− δbL, 4 + δbR,

[
4 + δbRI , 4 + δbRO

]
)

c̃ = (
[
1− δcLO, 1− δcLI

]
, 1− δcL, 1 + δcR,

[
1 + δcRI , 1 + δcRO

]
)

where

0 < δaL < δaLI < δaLO < ā, 0 < δbL < δbLI < δbLO < b̄, 0 < δcL < δcLI < δcLO < c̄

0 < δaR < δaRI < δaRO < ā, 0 < δbR < δbRI < δbRO < b̄, 0 < δcR < δcRI < δcRO < c̄

and

∆1 = −δaLO − δaLI − 4δaL + 4δaR + δaRI + δaRO

∆2 = −δbLO − δbLI − 4δbL + 4δbR + δbRI + δbRO

∆3 = −δcLO − δcLI − 4δcL + 4δcR + δcRI + δcRO.
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A = 12ā+∆1 = 12 (3) + ∆1 = 36 +∆1

B = 12b̄+∆2 = 12 (4) + ∆2 = 48 +∆2

C = 12c̄+∆3 = 12 (1) + ∆3 = 12 +∆3

For the sake of harmony we choose ∆1 = −27.0,∆2 = −45.0 and ∆3 = −11.
Since A = 9, B = 3 and C = 1 we have

D = 4B2 + 12AC > 0

x∗ =

√
3AC +B2

9C2
− B

3C

x∗ = 1.

Then we obtain

M2 (x∗) = G
(
R̃ (x∗)

)
= x∗

[(
ā− b̄x∗ − c̄x2∗

)
+

1

12

(
∆1 −∆2x∗ −∆2

3x∗
)]

= 0.41.

4 Conclusion

In this paper, revenue function is maximized by using linear demand and quadratic demand functions. Similarly, maximum revenue can be
calculated by repeating the steps in Section 3 for qubic demand function.
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1 Introduction

Let (E, ∥·∥) be a Hilbert space. For all x, y ∈ C, T : C → C is called

i. L−Lipschitzian if there exists a constant L > 0 , such that

∥Tx− Ty∥ ≤ L ∥x− y∥ .

ii. contraction if there exists a constant 0 < δ < 1 such that,

∥Tx− Ty∥ ≤ δ ∥x− y∥ .

ii. nonexpansive if for all x, y ∈ C such that
∥Tx− Ty∥ ≤ ∥x− y∥ .

Recall some iteration methods in the literature.
Picard iteration method [1] is given below: {

x0 ∈ X
xn+1 = Txn.

(1)

Mann introduced the Mann iteration method in [2] as follows:{
x0 ∈ X

xn+1 = (1− αn)xn + αnTxn
(2)

in which {αn}∞n=0⊂[0, 1].
Ishikawa introduced the Ishikawa iteration method in [3] as follows:{

xn+1 = (1− αn)xn + αnTyn
yn = (1− βn)xn + βnTxn

(3)

in which {αn}∞n=0, {βn}
∞
n=0⊂[0, 1].

The following iteration method is called Noor iteration method [4]: xn+1 = (1− αn)xn + αnTyn
yn = (1− βn)xn + βnTzn
zn = (1− γn)xn + γnTxn

(4)
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in which {αn}∞n=0, {βn}
∞
n=0, {γn}

∞
n=0⊂[0, 1].

Agarwal S iteration method [5] is given below {
xn+1 = (1− αn)Txn + αnTyn

yn = (1− βn)xn + βnTxn
(5)

in which {αn}∞n=0, {βn}
∞
n=0⊂[0, 1].

Iteration Method 1 ([6]). Let X be a Banach space and let T be a selfmap of X . M-iterative method is defined by
x0 ∈ X

xn+1 = Tyn,

yn = Tzn,

zn = (1− αn)xn + αnTxn

(6)

in which 0 ≤ αn < 1.

Definition 1 ([7]). Let X be a metric space and ∅ ̸= C1, C2 ⊆ X . We say x ∈ C1 and y ∈ C2 are altering points of mappings T1 : C1 → C2
and T2 : C2 → C1 if {

T1(x) = y,

T2(y) = x.
(7)

Sahu [7] has analyzed some convergence results using Picard, Mann, and S-algorithms constructed with Lipschitz continuous mappings with
altering points.

Iteration Method 2 ([8]). Let X be a Banach space and let T be a selfmap of X . A normal S-iterative method is defined by
x0 ∈ X

xn+1 = Tyn,

yn = (1− αn)xn + αnTxn

(8)

in which 0 ≤ αn < 1.

Sahu [7] has introduced the parallel-S algorithm to reach the altering points of nonlinear mappings as under:

Iteration Method 3. 
(x1, y1) ∈ (C1 × C2)

xn+1 = T2[(1− αn)yn + αnT1xn]

yn+1 = T1[(1− αn)xn + αnT2yn]

(9)

in which {αn}∞n=1 ∈ [0, 1].

Using Iteration Method 3, Sahu et al. [9] have obtained the solution of the general system of generalized variational inequalities (SGVI) as
follows:

⟨t1(µ1F1 − s1V1)(x∗) + y∗ − g1(x∗), g1(y)− y∗⟩ ≥ 0,

⟨t2(µ2F2 − s2V2)(y∗) + x∗ − g2(y∗), g2(x)− x∗⟩ ≥ 0,
(10)

in which ti, si, and µi are constants and H is a Hilbert space, gi : H → H and Vi, Fi : Ci → H are mappings for i = {1, 2}.
Sahu et al. also have introduced a parallel Mann algorithm as follows:

Iteration Method 4. 
(x1, y1) ∈ (C1 × C2)

xn+1 = (1− αn)xn + αnT2yn

yn+1 = (1− αn)yn + αnT1xn

(11)

The authors in [9] have obtained the strong convergence of the sequences obtained from Iteration Method 3 and Iteration Method 4. They
have showed that rate of convergence of Iteration Method 3 is better than Iteration Method 4 through a numerical example. In addition, studies
on parallel fixed point iterations have been carried out (see:[10–12]).

Using the information mentioned above, in this study, a parallel fixed point algorithm based on the M algorithm [6] is defined as follows:

Iteration Method 5. 
(x1, y1) ∈ (C1 × C2)

xn+1 = T2T1zn yn+1 = T1T2un

zn = T2wn un = T1vn

wn = (1− αn)yn + αnT1xn vn = (1− αn)xn + αnT2yn

(12)
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The convergence of these algorithms is examined under suitable conditions, and it is shown through a numerical example that Iteration
Method 5 has a better convergence speed than Iteration Method 3. In addition, the data dependency result of this algorithm is examined.

Definition 2 ([13]). Let T , S : X → X be two operators. S is called an approximate operator of T for all x ∈ X and a fixed ε > 0 if
∥Tx− Sx∥ ≤ ε.

We give some lemmas to obtain our main results.

Lemma 1 ([14]). Let {an}∞n=1 be a nonnegative real sequence and there exists n0 ∈ N such that for all n ≥ n0 satisfying the following
condition:

an+1 ≤ (1− µn)an + µnηn,

where µn ∈ (0,1) such that
∞∑

n=1
µn = ∞ and ηn ≥ 0. Then the following inequality holds:

0 ≤ lim
n→∞

sup an ≤ lim
n→∞

sup ηn.

.

Lemma 2 ([15]). Let {bn}∞n=0 and {dn}∞n=0 be nonnegative real sequences satisfying the following inequality:

bn+1 ≤ (1− rn) bn + dn

where rn ∈ (0, 1) for all n ∈ N,
∞∑

n=0
rn = ∞ and limn→∞

dn
rn

= 0. Then bn → 0 as n → ∞ .

2 Main Results

Theorem 1. Let C1 and C2 be nonempty closed subsets of a Banach space X and let T1 : C1 → C2 and T2 : C2 → C1 be two Lipschitz
continuous mappings with Lipschitz constants δ1 and δ2 such that δ1δ2 < 1. Then, we have the following:

i. There exists a unique point (x, y) ∈ C1 × C2 such that x and y are altering points of mappings T1 and T2, respectively.
ii. For arbitrary x1 ∈ C1, a sequence {(xn, yn)} ∈ C1 × C2 generated by Iteration Method 1 converges to (x, y) with the following estimate:

∥xn+1 − x∥ ≤ (δ1δ2)
2 ∥xn − x∥ .

Remark 1. Define the norm ∥ · ∥∗ on X ×X by ∥(x, y)∥∗ = ∥x∥+ ∥y∥ for all (x, y) ∈ X ×X . Note that (X ×X, ∥ · ∥∗) is a Banach
space.

Theorem 2. Let C1, C2, X , T1, and T2 be the same as in Theorem 1. Let δ1 and δ2 be Lipschitz constants such that δ1δ2 < 1. Then, the
sequence {(xn, yn)}∞n=0 in C1 × C2 generated by a Iteration Method 5 converges strongly to a unique point (x, y) in C1 × C2 so that x and
y are altering points of mappings T1 and T2, respectively with the following estimate:

∥(xn+1, yn+1)− (x, y)∥∗ ≤ (δ1δ2) ∥(xn, yn)− (x, y)∥∗ .

Proof: By Theorem 1, there exists a unique point (x, y) in C1 × C2 so that x and y are altering points of mappings T1 and T2, respectively.
Using Iteration Method 5 and Iteration Method 1, we obtain

∥xn+1 − x∥ = ∥T2T1zn − x∥
= ∥T2T1zn − T2y∥
≤ δ2 ∥T1zn − y∥
= δ2 ∥T1zn − T1x∥
≤ δ1δ2 ∥zn − x∥

(13)

and
∥zn − x∥ = ∥T2wn − x∥

= ∥T2wn − T2y∥
≤ δ2 ∥wn − y∥

(14)

and
∥wn − y∥ = ∥(1− αn)yn + αnT1xn − y∥

= ∥(1− αn)yn + αnT1xn − T1x∥
≤ (1− αn) ∥yn − y∥+ αnδ1 ∥xn − x∥

(15)
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Substituting (15) and (14) in (13), we have

∥xn+1 − x∥ ≤ δ1δ
2
2(1− αn) ∥yn − y∥+ δ1δ

2
2αnδ1 ∥xn − x∥

= δ1δ
2
2 ((1− αn) ∥yn − y∥+ αn ∥xn − x∥)

(16)

The following inequalities can be obtained similar to the above processes.

∥vn − x∥ ≤ (1− αn) ∥xn − x∥+ αnδ2 ∥yn − y∥ (17)

and

∥un − y∥ ≤ δ1 ∥vn − x∥ (18)

and we obtain

∥yn+1 − y∥ ≤ δ21δ2 ((1− αn) ∥xn − x∥+ αn ∥yn − y∥) (19)

and we have

∥(xn+1, yn+1)− (x, y)∥∗ ≤ (δ1δ2) ∥(xn, yn)− (x, y)∥∗ .

□

Example 1. Let C1 = C2 = [−1, 1]. Define T1 : C1 → C2 and T2 : C2 → C1, by

T1x =
1

21
e−x

T2x =
1

5
ln(x),

(20)

respectively. It can be seen these operators satisfy the Lipschitz condition for δ1 = 0.35 and δ2 = 0.15 with unique altering points
(x, y) = (−0.50742040628724, 0.07909528362691). Choose αn = 1

n+1 and an initial point (0.5, 0.5) ∈ C1 × C2 for the Iteration Method
5, Iteration Method 4, and Iteration Method 3. From the following table and graphs, it can be seen that Iteration Method 5 has a better
convergence speed than the other algorithms.

Table 1 Convergence behavior of some iterative algorithms for the initial point (0.5, 0.5).
Algor. Steps Iteration Method 5 Iteration Method 4 Iteration Method 3

1 (0.5, 0.5) (0.5, 0.5) (0.5, 0.5)
2 (−0.55569903413461, 0.09076505776739) (0.18068528194401, 0.26444120618363) (−0.26602726705038, 0.03974752437612)
3 (−0.51176913446048, 0.07873210751000) (0.03178109894588, 0.18954331224779) (−0.61063416823454, 0.07049897710778)
4 (−0.50732612840741, 0.07904006820061) (−0.05932106178566, 0.15368984861914) (−0.51859274784532, 0.08595434827964)
5 (−0.50742056888618, 0.07909559314802) (−0.12236959652207, 0.13305774432209) (−0.49358569038701, 0.07954036254896)
...

...
...

...
12 (−0.50742040628720, 0.07909528362690) (−0.32461385703072, 0.08830661008990) (−0.50741196566715, 0.07909486229905)
13 (−0.50742040628724, 0.07909528362691) (−0.33609772888165, 0.08670476486392) (−0.50742151614022, 0.07909466972169)
...

...
...

...
39 (−0.50742040628724, 0.07909528362691) (−0.44826924861428, 0.07676159759384) (−0.50742040628724, 0.07909528362691)
...

...
...

...

Theorem 3. Let C1, C2, X , T1, and T2 be the same as in Theorem 1 and δ1 and δ2 be Lipschitz constants such that δ1δ2 < 1
2 . Let S1, S2

be approximate operators of T1 and T2, respectively. Let {xn}∞n=0 and {yn}∞n=0 be iterative sequences generated by Iteration Method 5 and
define iterative sequences {an}∞n=0 and {bn}∞n=0 as follows:


an+1 = S2S1cn bn+1 = S1S2kn

cn = S2dn kn = S1hn

dn = (1− αn)bn + αnS1an hn = (1− αn)an + αnS2bn

(21)

in which {αn}∞n=0 and {βn}∞n=0 are real sequences in [0, 1]. In addition, we suppose that there exist nonnegative constants ε1 and ε2 such
that ∥T1ϑ− S1ϑ∥ ≤ ε1 and ∥T2σ − S2σ∥ ≤ ε2 for all ϑ ∈ C1 and σ ∈ C2. If (x, y) ∈ C1 × C2, which are altering points of mappings T1
and T2, and (a, b) ∈ C1 × C2, which are altering points of mappings S1 and S2, such that (an, bn) → (a, b) as n → ∞, then we have

∥(x, y)− (a, b)∥∗ = ∥x− a∥+ ∥y − b∥ ≤ (1 + δ1δ2 + αnδ1δ
2
2)ε1 + (1 + δ1δ2 + αnδ

2
1δ2)ε2

1− (δ1δ2)
.
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Proof: Using Iteration Method 3 and 21 iteration method, we have

∥xn+1 − an+1∥ ≤ ∥T2T1zn − S2S1cn∥
≤ ∥T2T1zn − T2S1cn∥+ ∥T2S1cn − S2S1cn∥
≤ ∥T2T1zn − T2S1cn∥+ ε2

≤ δ2 ∥T1zn − S1cn∥+ ε2

≤ δ2 ∥T1zn − T1cn∥+ δ2 ∥T1cn − S1cn∥+ ε2

≤ δ1δ2 ∥zn − cn∥+ δ2ε1 + ε2

(22)

we have
∥zn − cn∥ = ∥T2wn − S2dn∥

≤ ∥T2wn − T2dn∥+ ∥T2dn − S2dn∥
≤ δ2 ∥wn − dn∥+ ε2

(23)

we have
∥wn − dn∥ = ∥(1− αn)yn + αnT1xn − (1− αn)bn − αnS1an∥

≤ (1− αn) ∥yn − bn∥+ αn ∥T1xn − S1an∥
≤ (1− αn) ∥yn − bn∥+ δ1αn ∥xn − an∥+ αnε1

(24)

Substituting (24) and (23) in (22), we have

∥xn+1 − an+1∥ ≤ δ1δ2 ∥zn − cn∥+ δ2ε1 + ε2

≤ δ1δ
2
2 ∥wn − dn∥+ δ1δ2ε2 + δ2ε1 + ε2

≤ δ1δ
2
2(1− αn) ∥yn − bn∥+ αnδ

2
1δ

2
2 ∥xn − an∥

+ δ1δ
2
2αnε1 + δ1δ2ε2 + δ2ε1 + ε2

(25)

By doing calculations similar to the above inequalities, we obtain

∥yn+1 − bn+1∥ ≤ δ1δ2 ∥un − kn∥+ δ1ε2 + ε1

≤ δ21δ2 ∥vn − hn∥+ δ1δ2ε1 + δ1ε2 + ε1

≤ (1− αn)δ
2
1δ2 ∥xn − an∥+ αnδ

2
1δ

2
2 ∥yn − bn∥+ δ1δ2ε1 + δ1ε2 + ε1 + αnδ

2
1δ2ε2

(26)

There exists a real number δ ∈ (0, 1) such that 1− δ = (δ1 · δ2) < 1. Hence, we have

∥xn+1 − an+1∥+ ∥yn+1 − bn+1∥

≤ (1− δ) [∥xn − an∥+ ∥yn − bn∥] + δ
(1 + δ1δ2 + αnδ1δ

2
2)ε1 + (1 + δ1δ2 + αnδ

2
1δ2)ε2

δ

(27)

Denote that
un = ∥xn − an∥+ ∥yn − bn∥
µn =δ ∈ (0, 1)

ηn =
(1 + δ1δ2 + αnδ1δ

2
2)ε1 + (1 + δ1δ2 + αnδ

2
1δ2)ε2

δ
.

It is now easy to check that (27) satisfies all the requirements of Lemma 1. □

3 Conclusion

In this work, we investigate some fixed point theorems such as convergence and data dependency by using Iteration Method 5 for Lipschitz
continuous mappings. We have also provided a numerical example to support the Theorem 1.
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1 Introduction and Definitions

Let M represent the class of meromorphic funtions f in the form of

f(z) =
1

z
+

∞∑
n=0

anz
n, (1)

which are analytic in the punctured disc
◦
U = {z : 0 < |z| < 1} = U/ {0} , where U =

◦
U ∪ {0}. For the two functions f (z) and g (z)

belonging to the class M, there exists a Schwartz function w, which is analytic in U with |w (z)| ≤ |z| and w (0) = 0, such that f (z) =
g (w (z)) , and the function f is subordinate to g, written as f ≺ g. The following relationship holds if g is univalent:

f ≺ g ⇔ f (0) = g (0) , and f
(

◦
U
)

⊆ g

(
◦
U
)
. (2)

Because of its use in a variety of mathematical sciences, the study of q−calculus (quantum calculus) has fascinated and motivated many
scholars. One of the primary contributors among all the mathematicians who introduced the concept of q−calculus theory was Jackson [12, 13].
The formulation of this concept is widely used to investigate the natüre of different structures of function theory, such as q−calculus was used
in other branches of mathematics.
Though the authors of the first article [11] discussed the geometric nature q−starlike functions, Srivastava [23] laid a solid foundation fort he
use of q−calculus in the context of function theory. Also, in [22], Srivastava provided a brief overview of basic or q−calculus operators and
fractional q−calculus operators, as well as their applications in the geometric function theory of complex analysis. Later, the authors [1, 4, 5]
investigated a number of useful properties for the newly defined q−linear differential operator, and Mehmood and Sokol [17] discussed the
Ruscheweyh q−differential aperator, while Srivastava et al. [24] introduced a generalized operator for meromorphic harmonic functions by
using the idea of convolution.
Let 0 < q < 1. For any nonnegative integer n, the q−integer number n is defined by

[n]q =
1− qn

1− q
= 1 + q + q2 + ...+ qn+1, [0]q = 0.

In general, we will denote

[δ]q =
1− qδ

1− q
,

for a noninteger number δ. Also, the q−number shifted factorial is defined by

[n]q! = [n]q[n− 1]q...[2]q[1]q, [0]q! = 1.

Clearly,
lim

q→1−
[n]q = n and lim

q→1−
[n]q! = n!.
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Let a, q ∈ C (|q| < 1) and n ∈ N0 = N ∪ {0}. Then the q−shifted factorial (a; q)n is defined by

(a; q)0 = 1, (a; q)n =

n∏
j=1

(
1− aqj−1

)
, n ∈ N.

Let x ∈ C− {−n : n ∈ N0} . Then q−gamma function is as follows:

Γq (x) =
(q; q)∞
(qx; q)∞

(1− q)1−x, 0 < q < 1.

In a subset of C, the q−derivative (or q−difference) operator Dqf of function f is defined by

(Dqf) (z) =

{
f(z)−f(qz)

z(1−q)
, z ̸= 0

f ′ (0) , z = 0

}
(3)

provided that f ′ (0) exists. We can easily observe from the definition of (3) that (Dqf) (z)limq→1−
= f ′ (z) .

Suppose that q ∈ [0, 1] , then q−analog derivative of f as

Dqf (z) =
f (z)− f (qz)

z (1− q)
, (z ∈ U) ,

(Dqf) (z) = − 1

qz2
+

∞∑
n=1

[n]qanz
n.

In 1967, Mac Gregor [16] introduced the Notion of majorization as follows.

Definition 1. Let complex-valued functions f and g be analytic in U . We say that f is majorized by g in U and write

f (z) ≪ g (z) (z ∈ U) (4)

if there exists a function φ (z) (complex-valued function in U) satisfying

|φ (z)| ≤ 1 and f (z) = φ (z) g (z) (z ∈ U) . (5)

Majorization (4) is closely related to the concept of quasi-subordination between analytic functions in U . Several researchers have published
articles on this topic; for example, Tang et al. [27] gave the concept of majorization for subclasses of starlike functions based on the sine
and cosine functions, Arif et al. [6] discussed majorization for various new defined classes, Cho et al. [8] obtained coefficient estimates for
majorization, and Tang and Deng [26] defined the majorization problem connected with Liu-Owa integral operator and exponential function.
This concept is also defined for p−valent function by Altıntaş and Srivastava [2] and for complex order by Altıntaş et al. [3].
The basic goal of this article is to examine and explain the idea of majorization in the context of the meromorphic function. Many researchers
have shown their interest in this site. Goyal and Goswami, Dhuria and Mathur [9, 10] studied this concept for majorization for meromorphic
function with the integral operator, Tang et al. [27] discussed it for meromorphic sin and cosine functions, Bulut et al, Tang et al, and Janani
[7, 14, 25] explained this concept for meromorphic multivalent functions, Rasheed et al. [20] investigated a majorization problem for the class
of meromorphic spiral-like functions related with a convolution operator, and Panigrahi and El-Ashwah [19] defined majorization for subclasses
of multivalent meromorphic functions through iterations and combinations of the Liu–Srivastava operator and Cho–Kwon–Srivastava operator
and much more. In addition, there are several other articles on this topic [10].
Here is the definition of our main function.

Definition 2. A function f (z) ∈ M is said to be in the class MSq (γ) of meromorphic functions of complex order γ ̸= 0 in
◦
U , if

1− 1

γ

[
zqDqf (z)

f (z)
+ 1

]
≺ ψ (z) .

Now, we are going to choose a particular function instead of ψ (z) . This choice is

ψ (z) =
1 +Az

1 +Bz
, − 1 ≤ B < A ≤ 1,

and by applying the above-mentioned concept, we now consider the following class:

MSq
J (γ) =

{
f (z) ∈ M : 1− 1

γ

[
zDqf (z)

f (z)
+ 1

]
≺ 1 +Az

1 +Bz

}
.

This class is related with well-known the Janowski class [15]. In the present work, we discussed majorization problem for the above-defined
class of MSq

J (γ).
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2 Main Results

We state the following q−analogue of the result given by Nehari [18] and Salvakumaran et al. [21].

Lemma 1 (See [28]). If the function φ (z) is analytic and |φ (z)| < 1 in U , then

|Dqφ (z)| ≤ 1− |φ (z)|2

1− |z|2
. (6)

Theorem 1. Let −1 ≤ B < A ≤ 1, the function f (z) ∈ M and suppose g ∈ MSq
J (γ) if f (z) is majorized byg (z) in

◦
U , i.e.,

f (z) ≪ g (z) .

Then, for |z| ≤ r1,

|qzDqf (z)| ≤ |qzDqg (z)| , (7)

where r1 is the smallest positive root of the following equation:

(
1− r2

)
(1− |γ (A−B) +B| r)− 2rq (1 + |B| r) = 0. (8)

Proof: Since g ∈ MSq
J (γ) , we readily obtained from definition (7) that

1− 1

γ

[
zqDqg (z)

g (z)
+ 1

]
≺ ψ (z) ,

z ∈
◦
U and

ψ (z) =
1 +Az

1 +Bz
.

By Lemma 1, there exists a bounded analytic function w in U and

1− 1

γ

[
zqDqg (z)

g (z)
+ 1

]
=

1 +Aw (z)

1 +Bw (z)
, (9)

with w (∞) = ∞. From (9), we obtain

zqDqg (z)

g (z)
= − [γ (A−B) +B]w (z) + 1

1 +Bw (z)
, (10)

where w (z) is the well-known class of bounded anlytic functions in U such that

|w (z)| ≤ |z| (z ∈ U) . (11)

From (10) and making use of (11), we obtain

|g (z)| ≤ 1 + |B| |z|
1− |γ (A−B) +B| |z| |zqDqg (z)| . (12)

Since f (z) is majorized by g (z) in
◦
U , from (5),

f (z) = φ (z) g (z) .

By applying q−derivative on the previous equation write z as in [28] and then multiplying by qz, we have

qzDqf (z) = qzDqφ (z) g (z) + qzφ (z)Dqg (z) = qzDqg (z)

[
φ (z) +

Dqφ (z) g (z)

Dqg (z)

]
. (13)

Noting that φ (z) is the Schwartz function, so Re (φ (z)) > 0 in
◦
U , φ (z) ̸= 0 for all z ∈

◦
U , satisfies the q−analogue result given by [18]

proved in Lemma 1.
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Now, using (12) and (6) in (13), we have

|qzDqf (z)| ≤ |qzDqg (z)|

[
|φ (z)|+ 1− |φ (z)|2

1− |z|2
rq (1 + |B| |z|)

1− |γ (A−B) +B| |z|

]
.

Let us take |z| = r < 1 and |φ (z)| = ζ, (0 ≤ ζ ≤ 1) ; we obtain

|qzDqf (z)| ≤ Y (r, ζ) |qzDqg (z)| .

We define

Y (r, ζ) = ζ +
rq

(
1− ζ2

)
(1 + |B| r)

(1− r2) (1− |γ (A−B) +B| r)
, (0 ≤ ζ ≤ 1, 0 < r < 1) .

To determine r1, it is sufficient to choose

r1 = max {r ∈ [0, 1) : Y (r, ζ) ≤ 1, ∀ζ ∈ [0, 1]} ,

equivalently,
r1 = max

{
r ∈ [0, 1) : Y ∗ (r, ζ) ≥ 0, ∀ζ ∈ [0, 1]

}
,

where
Y ∗ (r, ζ) =

(
1− r2

)
(1− |γ (A−B) +B| r)− rq (1 + ζ) (1 + |B| r) .

Clearly, when ζ = 1, the above function Y ∗ (r, ζ) assumes its minimum value, namely,

min
{
Y ∗ (r, ζ) : ζ ∈ [0, 1]

}
= Y ∗ (r, 1) = ψ∗ (r) ,

where
ψ∗ (r) =

(
1− r2

)
(1− |γ (A−B) +B| r)− 2rq (1 + |B| r) .

Next, we obtained the following inequalities:

ψ∗ (0) = 1 > 0 and ψ∗ (1) = −2q (1 + |B|) < 0,

there exists r1 such that ψ∗ (r) ≥ 0 for all r ∈ [0, r1] , where r1 is the smallest positive root of (8). The proof of Theorem 1 is completed. □

Putting A = 1 and B = −1 in Theorem, we get the following result.

Corollary 1. Let the function f (z) ∈ M and suppose g ∈ MSq
J (γ) if f (z) is majorized by g (z) in

◦
U , i.e.,

f (z) ≪ g (z) .

Then, for |z| ≤ r2,

|qzDqf (z)| ≤ |qzDqg (z)| ,

where r2 is the smallest positive root of the following equation:

(1− r) (1− |2γ − 1| r)− 2rq = 0.

3 Conclusion

By making use of q−differential operators, many distinct subclasses of analytic and meromorphic functions have already been defined and
investigated from numerous perspectives. The object of this paper is to investigate a majorization problem for a certain subclass of meromorphic
functions defined in the punctured unit disk

◦
U = {z : 0 < |z| < 1} = U/ {0} , defined by q−differential operator. In recent years, many

authors have studied and investigated majorization results for different subclasses of analytic functions. Researchers can investigate majorization
problems by defining well-known or different new subclasses.
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1 Introduction

The class A is well-known family of analytic functions ℏ of the form

ℏ(σ) = σ +

∞∑
κ=2

aκσ
κ (1)

in the open unit disk U = {σ ∈ C : |σ| < 1} . Also, let S be the class of univalent functions in A. It is common knowledge that for ℏ ∈ S,∣∣∣a3 − a22

∣∣∣ ≤ 1. A traditional theorem of Fekete-Szegö [9] expresses that for ℏ ∈ S given by (1)

∣∣∣a3 − δa22

∣∣∣ ≤


3− 4δ if δ ≤ 0,
1 + 2 exp

(
−2δ
1−δ

)
if 0 < δ < 1,

4δ − 3 if δ ≥ 1.

This inequality is sharp because there is a function in S that ensures equality for each δ. Pfluger [23] proved this inequality for the complex δ
values as follows: ∣∣∣a3 − δa22

∣∣∣ ≤ 1 + 2

∣∣∣∣exp( −2δ

1− δ

)∣∣∣∣ .
Till now, a number of authors have sought to apply the forementioned inequality to broader classes of analytical functions.
The classes of starlike and convex functions of order α given by, respectively

S∗(α) =

{
ℏ ∈ S : ℜ

(
σℏ′(σ)
ℏ(σ)

)
> α, 0 ≤ α < 1, σ ∈ U

}

and

C(α) =
{
ℏ ∈ S : ℜ

(
1 +

σℏ′′(σ)
ℏ′(σ)

)
> α, 0 ≤ α < 1, σ ∈ U

}
.

In particular, the classes S∗(0) and C = C(0) are the familiar classes of starlike and convex functions in U , respectively. Nasr and Aouf [19],
Wiatrowski [27], Nasr and Aouf [18] defined these classes for complex order α.
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2 Material and Methods

Let ℏ(σ) = σ +
∞∑
κ=2

aκσ
κ and g(σ) = σ +

∞∑
κ=2

bκσ
κ be analytic functions in U . The Hadamard product of ℏ and g, denoted by ℏ ∗ g is

defined by

(ℏ ∗ g)(σ) = σ +

∞∑
κ=2

aκbκσ
κ = (g ∗ ℏ)(σ) (σ ∈ U) .

Deniz and Özkan [8] introduced the following differential operator for T m
η ℏ as follows

T 0
η ℏ(σ) = ℏ(σ)

T 1
η ℏ(σ) = ησ3ℏ′′′(σ) + (2η + 1)σ2ℏ′′(σ) + σℏ′(σ) = Tηℏ(σ)

T 2
η ℏ(σ) = Tη

(
T 1
η ℏ(σ)

)
...

T m
η ℏ(σ) = Tη

(
T m−1
η ℏ(σ)

)
(m ∈ N = {1, 2, 3, . . .}) ,

where η ≥ 0. We note that

T m
η ℏ(σ) = σ +

∞∑
κ=2

κ2m(η (κ− 1) + 1)maκσ
κ (m ∈ N0 = N ∪ {0}) , (2)

with T m
η ℏ(0) = 0.

Denote by

Rς :=
σ

(1− σ)ς+1
∗ ℏ(σ) (ς ∈ N0) .

Then implies that

Rςℏ(σ) =
σ
(
σς−1ℏ(σ)

)(ς)
ς!

(ς ∈ N0) .

The operator Rςℏ is called Ruscheweyh derivative operator [25]. Noor [20] defined and investigated an integral operator N ς : A → A analo-
gous to Rςℏ as follows.
Let ℏς(σ) = σ

(1−σ)ς+1 , ς ∈ N0, and let ℏ(−1)
ς be defined such that

ℏς(σ) ∗ ℏ(−1)
ς (σ) =

σ

1− σ
.

Then

N ςℏ(σ) = ℏ(−1)
ς (σ) ∗ ℏ(σ) =

[
σ

(1− σ)ς+1

](−1)

∗ ℏ(σ) = σ +

∞∑
κ=2

Γ(ς + 1)κ!

Γ(ς + κ)
aκσ

κ := ζ(σ). (3)

For the function ζ(σ) given by (3), we define the following convolution operator:

K0
ηζ(σ) = ζ(σ),

K1
ηζ(σ) = Kηζ(σ) = ησ3ζ′′′(σ) + (2η + 1)σ2ζ′′(σ) + σζ′(σ)

= σ +

∞∑
κ=2

κ2 (η (κ− 1) + 1)
Γ(ς + 1)κ!

Γ(ς + κ)
aκσ

κ,

...

Km
η ζ(σ) = Kη(Km−1

η ζ(σ)) (m ∈ N) .

It can be easily seen that

Km
η ζ(σ) = σ +

∞∑
κ=2

κ2m(η (κ− 1) + 1)m
Γ(ς + 1)κ!

Γ(ς + κ)
aκσ

κ, (4)

where m, ς ∈ N0 and η ≥ 0.
Here the letters m and ς are related to the Deniz-Özkan differential operator and the Noor integral operator, respectively.
We now define new subclasses of analytic functions using the operator Km

η ζ(σ), as follows.

Definition 1. Let ϑ ∈ C\ {0} , and let ℏ be an univalent function of the form (1). We say that ℏ belongs to Sm
η (ϑ, ς) if

ℜ

(
1 +

1

ϑ

(
σ
(
Km

η ζ(σ)
)′

Km
η ζ(σ)

− 1

))
> 0 (m, ς ∈ N0, η ≥ 0, σ ∈ U) ,

where ζ(σ) := N ςℏ(σ) is given by (3).
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Definition 2. Let ϑ ∈ C\ {0} , and let ℏ be an univalent function of the form (1). We say that ℏ belongs to Cmη (ϑ, ς) if

ℜ

(
1 +

1

ϑ

σ
(
Km

η ζ(σ)
)′′(

Km
η ζ(σ)

)′
)

> 0 (m, ς ∈ N0, η ≥ 0, σ ∈ U) ,

where ζ(σ) := N ςℏ(σ) is given by (3).

The following significant subclasses have been examined by numerous writers in earlier publications, taking precise values to the parameters
ϑ, ς, η and ξ, for example, Sm

η (1, 1) = S∗
m(0, η), Cmη (1, 1) = Cm(0, η) [8], S0(1, ς) = M(n, 0) Sokol and Bansal (see: [26]), S0(ϑ, ς =

n) = N∗
(n) Noor (see: [20]).

In fact, many authors have studied the Fekete-Szegö inequality for various a variety of sublasses of A, the upper bound for
∣∣∣a3 − δa22

∣∣∣ is
studied by a variety of authors (see: [1, 2, 4, 5, 14–17]) and (see also recent research on this subject by [3, 6, 7, 10–13, 21, 22]).
We focus on the coefficient estimates and the Fekete-Szegö inequality for the subclasses Sm

η (ϑ, ς) and Cmη (ϑ, ς) in this paper.

3 Results And Discussion

We denote by P a class of analytic function in U with p(0) = 1 and ℜp(σ) > 0. The following lemma is required to prove our main results.

Lemma 1 ([24]). Let p ∈ P with p(σ) = 1 + c1σ + c2σ
2 + · · · , then |cn| ≤ 2, for n ≥ 1. If |c1| = 2 then p(σ) ≡ p1(σ) = (1 +

γ1σ)/(1− γ1σ) with γ1 = c1/2. Inversely, if p (σ) ≡ p1 (σ). for some |γ1| = 1, then c1 = 2γ1 and |c1| = 2. Additionally, we have∣∣∣c2 − c21
2

∣∣∣ ≤ 2− |c1|2
2 . Additionally, we have ∣∣∣∣c2 − c21

2

∣∣∣∣ ≤ 2− |c1|2

2
.

If |c1| < 2 and
∣∣∣c2 − c21

2

∣∣∣ = 2− |c1|2
2 , then p (σ) ≡ p2 (σ), where

p2(σ) =
1 + σ γ2σ+γ1

1+γ̄1γ2σ

1− σ γ2σ+γ1
1+γ̄1γ2σ

,

and γ1 = c1/2, γ2 =
2c2−c21
4−|c1|2

. Conversely, if p(σ) ≡ p2(σ) for some |γ1| < 1 and |γ2| = 1 then γ1 = c1/2, γ2 =
2c2−c21
4−|c1|2

and
∣∣∣c2 − c21

2

∣∣∣ 2−
|c1|2
2 .

Then, we present the result that follows.

Theorem 1. Let m, ς ∈ N0, η ≥ 0 and ϑ ∈ C\ {0} . If ℏ of the form (1) is in Sm
η (ϑ, ς), then

|a2| ≤
|ϑ| (ς + 1)

[4 (η + 1)]m
, (5)

|a3| ≤
|ϑ| (ς + 1) (ς + 2)

6[9 (2η + 1)]m
max {1, |1 + 2ϑ|} . (6)

Consider the functions

σ
(
Km

η ζ(σ)
)′

Km
η ζ(σ)

= 1 + ϑ (p1(σ)− 1) , (7)

σ
(
Km

η ζ(σ)
)′

Km
η ζ(σ)

= 1 + ϑ (p2(σ)− 1) (8)

where p1 and p2 are given in Lemma 1. In equalities (5) and (6) are satisfied for the functions (7) and (8), respectively.

Proof: Denote Km
η ζ(σ) = σ +∆2σ

2 +∆3σ
3 + · · · , then

∆2 =
2[4 (η + 1)]m

ς + 1
a2 and ∆3 =

6[9 (2η + 1)]m

(ς + 1) (ς + 2)
a3. (9)

We get by equating the coefficients of both sides

∆2 = ϑc1 and ∆3 =
ϑ2c21
2

+
ϑc2
2

, (10)

so that, on account of (9) and (10)

a2 =
ϑc1 (ς + 1)

2[4 (η + 1)]m
and a3 =

ϑ
(
ϑc21 + c2

)
(ς + 1) (ς + 2)

12[9 (2η + 1)]m
. (11)
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Taking (11) and Lemma 1 into account, we get

|a2| =
∣∣∣∣ ϑc1 (ς + 1)

2[4 (η + 1)]m

∣∣∣∣ |ϑ| (ς + 1)

[4 (η + 1)]m
, (12)

and

|a3| =
∣∣∣∣ϑ (ς + 1) (ς + 2)

12[9 (2η + 1)]m

[
c2 − c21

2
+

(1 + 2ϑ) c21
2

]∣∣∣∣
≤ |ϑ| (ς + 1) (ς + 2)

12[9 (2η + 1)]m

[
2− |c1|2

2
+

|1 + 2ϑ| |c1|2

2

]

=
|ϑ| (ς + 1) (ς + 2)

12[9 (2η + 1)]m

[
2 +

(|1 + 2ϑ| − 1) |c1|2

2

]

≤ |ϑ| (ς + 1) (ς + 2)

6[9 (2η + 1)]m
max {1, [1 + |1 + 2ϑ| − 1]} .

Thus, we have

|a3|
|ϑ| (ς + 1) (ς + 2)

6[9 (2η + 1)]m
max {1, |1 + 2ϑ|} .

We can now calculate the sharpness of the estimates in (5) and (6).
Firstly, in (5) the equality holds if c1 = 2. Alternatively, we have p(σ) ≡ p1(σ) = (1 + σ) / (1− σ) .
As a result, the extremal function in Sm

η (ϑ, ς) is given by

σ
(
Km

η ζ(σ)
)′

Km
η ζ(σ)

=
1 + (2b− 1)σ

1− σ
. (13)

Next, in (6), for first case, the equality holds if c1 = c2 = 2. Therefore, the extremal functions in Sm
η (ϑ, ς) is given by (13) and for second

case, the equality holds if c1 = 0, c2 = 2. Equivalently, we have p(σ) ≡ p2(σ) = (1 + σ2)/(1− σ2). Therefore, the extremal function in
Sm
η (ϑ, ς) is given by

σ
(
Km

η ζ(σ)
)′

Km
η ζ(σ)

=
1 + (2ϑ− 1)σ2

1− σ2
.

□

Putting ς = 1 in Theorem 1, we get the following result.

Corollary 1. Let m ∈ N0, η ≥ 0 and ϑ ∈ C\ {0} . If ℏ of the form (1) is in Sm
η (ϑ, 1) then

|a2| ≤
2 |ϑ|

[4 (η + 1)]m
,

and

|a3| ≤
|ϑ|

[9 (2η + 1)]m
max {1, |1 + 2ϑ|} .

Firstly, we think functional
∣∣∣a3 − δa22

∣∣∣ for ϑ ∈ C\ {0} and δ ∈ C.

Theorem 2. Let m, ς ∈ N0, η ≥ 0, ϑ ∈ C\ {0} and ℏ ∈ Sm
η (ϑ, ς) . Then for δ ∈ C

∣∣∣a3 − δa22

∣∣∣ ≤ |ϑ| (ς + 1) (ς + 2)

6[9 (2η + 1)]m
max

{
1,

∣∣∣∣∣1 + 2ϑ− 6δϑ (ς + 1) [9 (2η + 1)]m

(ς + 2) [(4 (η + 1))]2m

∣∣∣∣∣
}
.

There is a function Sm
η (ϑ, ς) that ensures equality for each δ.
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Proof: From (11), we have

a3 − δa22 =
ϑ (ς + 1) (ς + 2)

12[9 (2η + 1)]m

[
c2 + ϑc21

]
− δ

ϑ2c21(ς + 1)2

4[4 (η + 1)]2m

=
ϑ (ς + 1) (ς + 2)

12[9 (2η + 1)]m

[
c2 + ϑc21 − 3δϑ (ς + 1) [9 (2η + 1)]m

(ς + 2) [4 (η + 1)]2m
c21

]

=
ϑ (ς + 1) (ς + 2)

12[9 (2η + 1)]m

[
c2 − c21

2
+

c21
2

(
1 + 2ϑ− 6δϑ (ς + 1) [9 (2η + 1)]m

(ς + 2) [4 (η + 1)]2m

)]
.

Then, with the help of Lemma 1, we get

∣∣∣a3 − δa22

∣∣∣ ≤ |ϑ| (ς + 1) (ς + 2)

12[9 (2η + 1)]m

2−
∣∣∣c21∣∣∣
2

+

∣∣∣c21∣∣∣
2

∣∣∣∣∣1 + 2ϑ− 6δϑ (ς + 1) [9 (2η + 1)]m

(ς + 2) [4 (η + 1)]2m

∣∣∣∣∣


=
|ϑ| (ς + 1) (ς + 2)

12[9 (2η + 1)]m

2 +
∣∣∣c21∣∣∣
2

(∣∣∣∣∣1 + 2ϑ− 6δϑ (ς + 1) [9 (2η + 1)]m

(ς + 2) [4 (η + 1)]2m

∣∣∣∣∣− 1

)
≤ |ϑ| (ς + 1) (ς + 2)

6[9 (2η + 1)]m
max

{
1,

∣∣∣∣∣1 + 2ϑ− 6δϑ (ς + 1) [9 (2η + 1)]m

(ς + 2) [4 (η + 1)]2m

∣∣∣∣∣
}
.

□

For ς = 1 in Theorem 2, we get the following result.

Corollary 2. Let m ∈ N0, η ≥ 0 and ϑ ∈ C\ {0} . If ℏ of the form (1) is in Sm
η (ϑ, 1) , then for δ ∈ C∣∣∣a3 − δa22

∣∣∣ ≤ |ϑ|
[9 (2η + 1)]m

max

{
1,

∣∣∣∣∣1 + 2ϑ− 4δϑ[9 (2η + 1)]m

[4 (η + 1)]2m

∣∣∣∣∣
}
.

We consider the case where δ and ϑ are real. Then we have:

Theorem 3. Let m, ς ∈ N0, η ≥ 0, ϑ > 0 and ℏ ∈ Sm
η (ϑ, ς) . Then for δ ∈ R we have

∣∣∣a3 − δa22

∣∣∣ ≤


ϑ(ς+1)(ς+2)
6[9(2η+1)]m

[
1 + 2ϑ

(
1− 3δ(ς+1)[9(2η+1)]m

(ς+2)[9(2η+1)]2m

)]
if δ ≤ A ≤ B,

ϑ(ς+1)(ς+2)
6[9(2η+1)]m

if A < δ < B,
ϑ(ς+1)(ς+2)
6[9(2η+1)]m

[
2ϑ
(
3δ(ς+1)[9(2η+1)]m

(ς+2)[4(η+1)]2m
− 1
)
− 1
]

if δ ≥ B,

where A =
(ς+2)[4(η+1)]2m

3(ς+1)[9(2η+1)]m
and B =

(1+2ϑ)(ς+2)[4(η+1)]2m

6ϑ(ς+1)[9(2η+1)]m
. There is a function Sm

η (ϑ, ς) such that equality holds for each δ.

Proof: First, let δ ≤ (ς+2)[4(η+1)]2m

3(ς+1)[9(2η+1)]m
≤ (1+2ϑ)(ς+2)[4(η+1)]2m

6ϑ(ς+1)[9(2η+1)]m
. In this case, (11) and Lemma 1 give

∣∣∣a3 − δa22

∣∣∣ ≤ ϑ (ς + 1) (ς + 2)

12[9 (2η + 1)]m

2−
∣∣∣c21∣∣∣
2

+

∣∣∣c21∣∣∣
2

(
1 + 2ϑ− 6δϑ (ς + 1) [9 (2η + 1)]m

(ς + 2) [4 (η + 1)]2m

)
≤ ϑ (ς + 1) (ς + 2)

6[9 (2η + 1)]m

[
1 + 2ϑ

(
1− 3δ (ς + 1) [9 (2η + 1)]m

(ς + 2) [4 (η + 1)]2m

)]
.

Now, let (ς+2)[4(η+1)]2m

3(ς+1)[9(2η+1)]m
< δ <

(1+2ϑ)(ς+2)[4(η+1)]2m

6ϑ(ς+1)[9(2η+1)]m
. Then, using the above calculations, we obtain∣∣∣a3 − δa22

∣∣∣ ≤ ϑ (ς + 1) (ς + 2)

6[9 (2η + 1)]m
.

Finally, if δ ≥ (1+2ϑ)(ς+2)[4(η+1)]2m

6ϑ(ς+1)[9(2η+1)]m
, then

∣∣∣a3 − δa22

∣∣∣ ≤ ϑ (ς + 1) (ς + 2)

12[9 (2η + 1)]m

2−
∣∣∣c21∣∣∣
2

+

∣∣∣c21∣∣∣
2

(
6δϑ (ς + 1) [9 (2η + 1)]m

(ς + 2) [4 (η + 1)]2m
− 2ϑ− 1

)
≤ ϑ (ς + 1) (ς + 2)

6[9 (2η + 1)]m

[
2ϑ

(
3δ (ς + 1) [9 (2η + 1)]m

(ς + 2) [4 (η + 1)]2m
− 1

)
− 1

]
.

□
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Taking ς = 1 in Theorem 3, we get the following result.

Corollary 3. Let m ∈ N0, η ≥ 0 and ϑ > 0. If ℏ of the form (1) is in Sm
η (ϑ, 1) , then for δ ∈ R

∣∣∣a3 − δa22

∣∣∣ ≤


ϑ
[9(2η+1)]m

[
1 + 2ϑ

(
1− 2δ[9(2η+1)]m

[4(η+1)]2m

)]
if δ ≤ A ≤ B,

ϑ
[9(2η+1)]m

if A < δ < B,

ϑ
[9(2η+1)]m

[
2ϑ
(
2δ[9(2η+1)]m

[4(η+1)]2m
− 1
)
− 1
]

if δ ≥ B,

where A =
[4(η+1)]2m

2[9(2η+1)]m
and B =

(1+2ϑ)[4(η+1)]2m

4ϑ[9(2η+1)]m
.

We now get a solution of the Fekete-Szegö inequality and coefficients bounds of functions in Cmη (ϑ, ς) .

Theorem 4. Let m, ς ∈ N0, η ≥ 0, δ ∈ C and ϑ ∈ C\ {0} . If ℏ of the form (1) is in Cmη (ϑ, ς), then

|a2| ≤
|ϑ| (ς + 1)

2[4 (η + 1)]m
, |a3| ≤

|ϑ| (ς + 1) (ς + 2)

18[9 (2η + 1)]m
max {1, |1 + 2ϑ|} .

and ∣∣∣a3 − δa22

∣∣∣ ≤ |ϑ| (ς + 1) (ς + 2)

18[9 (2η + 1)]m
max

{
1,

∣∣∣∣∣1 + 2ϑ− 9δϑ (ς + 1) [9 (2η + 1)]m

(ς + 2) [4 (η + 1)]2m

∣∣∣∣∣
}
.

Proof: Denote Km
η ζ(σ) = σ +∆2σ

2 +∆3σ
3 + · · · , then

∆2 =
2[4 (η + 1)]m

ς + 1
a2 and ∆3 =

6[9 (2η + 1)]m

(ς + 1) (ς + 2)
a3. (14)

According to the definition of the class Cmη (ϑ, ς) , there exists p ∈ P such that

σ
(
Km

η ζ(σ)
)′′(

Km
η ζ(σ)

)′ = 1 + ϑ (p(σ)− 1) ,

so that
σ (2∆2 + 6∆3σ + · · · )

1 + 2∆2σ + 3∆3σ2 + · · ·
= ϑ

(
1 + c1σ + c2σ

2 + · · ·
)
− ϑ.

We get by equating the coefficients of both sides

∆2 =
ϑc1
2

and 6∆3 − 4∆2
2 = ϑc2, (15)

so that, on account of (14) and (15)

a2 =
ϑc1 (ς + 1)

4[4 (η + 1)]m
and a3 =

ϑ
(
ϑc21 + c2

)
(ς + 1) (ς + 2)

36[9 (2η + 1)]m
. (16)

From (16) and Lemma 1, we get

|a2| =
∣∣∣∣ ϑc1 (ς + 1)

4[4 (η + 1)]m

∣∣∣∣ |ϑ| (ς + 1)

2[4 (η + 1)]m
, (17)

and

|a3| =
∣∣∣∣ϑ (ς + 1) (ς + 2)

36[9 (2η + 1)]m

[
c2 − c21

2
+

(1 + 2ϑ) c21
2

]∣∣∣∣
≤ |ϑ| (ς + 1) (ς + 2)

36[9 (2η + 1)]m

[
2− |c1|2

2
+

|1 + 2ϑ| |c1|2

2

]

=
|ϑ| (ς + 1) (ς + 2)

36[9 (2η + 1)]m

[
2 +

(|1 + 2ϑ| − 1) |c1|2

2

]

≤ |ϑ| (ς + 1) (ς + 2)

18[9 (2η + 1)]m
max {1, [1 + |1 + 2ϑ| − 1]} .

Thus, we have

|a3|
|ϑ| (ς + 1) (ς + 2)

18[9 (2η + 1)]m
max {1, |1 + 2ϑ|} .
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Then, with the help of Lemma 1, we get

∣∣∣a3 − δa22

∣∣∣ ≤ |ϑ| (ς + 1) (ς + 2)

36[9 (2η + 1)]m

2−
∣∣∣c21∣∣∣
2

+

∣∣∣c21∣∣∣
2

∣∣∣∣∣1 + 2ϑ− 9δϑ (ς + 1) [9 (2η + 1)]m

(ς + 2) [4 (η + 1)]2m

∣∣∣∣∣


=
|ϑ| (ς + 1) (ς + 2)

36[9 (2η + 1)]m

2 +
∣∣∣c21∣∣∣
2

(∣∣∣∣∣1 + 2ϑ− 9δϑ (ς + 1) [9 (2η + 1)]m

(ς + 2) [4 (η + 1)]2m

∣∣∣∣∣− 1

)
≤ |ϑ| (ς + 1) (ς + 2)

18[9 (2η + 1)]m
max

{
1,

∣∣∣∣∣1 + 2ϑ− 9δϑ (ς + 1) [9 (2η + 1)]m

(ς + 2) [4 (η + 1)]2m

∣∣∣∣∣
}
.

□

Putting ς = 1 in Theorem 4, we get the following result.

Corollary 4. Let m ∈ N0, η ≥ 0, δ ∈ C and ϑ ∈ C\ {0} . If ℏ of the form (1) is in Cmη (ϑ, 1), then

|a2| ≤
|ϑ|

[4 (η + 1)]m
, |a3| ≤

|ϑ|
3[9 (2η + 1)]m

max {1, |1 + 2ϑ|}

and ∣∣∣a3 − δa22

∣∣∣ ≤ |ϑ|
3[9 (2η + 1)]m

max

{
1,

∣∣∣∣∣1 + 2ϑ− 6δϑ[9 (2η + 1)]m

[4 (η + 1)]2m

∣∣∣∣∣
}
.

4 Conclusion

In our present study, we have introduced and studied the coefficient problems related with each of the two new subclasses Sm
η (ϑ, ς) and

Cmη (ϑ, ς) of the class of analytic functions defined by the combination of Deniz-Özkan differential and Noor integral operators in the open unit
disk. We have studied some interesting results such as the Fekete-Szegö inequalities according to the case of δ. Also, for certain values of the
parameters, we re-obtain some special classes studied earlier by various authors.
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Abstract: In this paper, we focus on the best proximity point theorems to prove their uniqueness on a b - metric space endowed
with a graph. We also furnish some numerical examples to support our claims. We derive fixed point result as a result of our
observations. As an application of our main result, we find the solution of a nonlinear integral equation.
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1 Section title

2 Introduction and Preliminaries

For a nonself mapping g : E1 → E2, where E1 and E2 are nonempty subsets of a metric space (ℵ, b′), the idea of a fixed point is not
appropriate when the intersection of E1 and E2 is empty. If a mapping g has a solution and intersection of E1 and E2 is nonempty, then g
has a fixed point. In other words, if the fixed point equation gd = d, has no exact solution for nonself mappings, then it is fascinating to find
an approximate solution d such that the error b′(d, gd) is minimum. In view of the fact that b′(d, gd) ≥ b′(E1, E2) for all d ∈ E1, an optimal
approximate solution is an element d for which the error b′(d, gd) attains the least possible value b′(E1, E2). The existence of such point d,
known as the best proximity point of a nonself mapping g, satisfying the condition

b′(d, gd) = b′(E1, E2) = inf{b′(d, f) : d ∈ E1, f ∈ E2}.

In contemporary years, many authors studied the best proximity point problems in metric space or normed space (see [1–3, 6, 7] and references
cited therein). Recently, the best proximity point and fixed point theory have crucial role in graph theory. Jachymski [11] considered metric
spaces with the structure of a graph as a part where the symmetry condition is preserved in relation to the fixed point theory of contractive-type
mappings. In 2017, Shukla et al. [14] gave the notion of graphical metric space in which the triangular inequality replace by weaker condition.
Notably, the triangular inequality is fulfilled by only those points positioned on some path involved in graphical structure related with the space.
In 2019, Chuensupantharat et al. [4] introduced the notion of a graphical b-metric which is generalization of b- metric spaces and prove some
interesting results on fixed point theory appeared in the graphical b-metric space. Graph theory have various applications in allied sciences,
such as computer science and engineering (see [4, 8, 12, 13, 15] and references cited therein).
Motivated by the importance of graph theory and its application, we focus on the best proximity point theorems in b - metric spaces endowed
with a graph in this paper. We derive fixed point result as a result of our observations which appeared in the literature. We also furnish some
numerical examples to support our claims. As an application of our main result, we find the solution of a nonlinear integral equation.
Let E1, E2 ∈ CB(ℵ) where CB(ℵ) be the families of all nonempty closed and bounded subsets of a b- metric space (ℵ, b). Define

B(E1, E2) = sup {b(d,E2) : d ∈ E1} ,where

b(d,E2) = inf {b(d, f) : f ∈ E2} ,
E10 = {d ∈ E1 : there exists some f ∈ E2 such that b(d, f) = d(E1, E2)} ,
E20 = {f ∈ E2 : there exists some d ∈ E1 such that b(d, f) = d(E1, E2)} ,
Hb = max {B(E1, E2), B(E2, E1)} ,

which is known as the Pompeiu- Hausdorff b- metric induced by b-metric.
We recall some basic concepts of graph theory which we will use later.
Let (ℵ, b) be a graphical b- metric space and △ = ℵ × ℵ. A graph G is determined by the given of a pair (V,E), where V = V (G) is a
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Fig. 1

x1

x4

x2

x3

set of vertices coinciding with ℵ and E = E(G) the set of its edges such that △ ⊂ E(G). Additionally, we assume that graph G does not
contain parallel edges. Let G−1 be the graph defined as follows: E(G−1) = {(e, f) ∈ ℵ × ℵ : (f, e) ∈ E(G)} and V (G−1) = V (G). It is
understandable that G−1 obtain from graph G by reversing the direction of its edges.
Czerwik [5], proposed a generalization of metric spaces by relaxing the triangle inequality in a way that allows the extension of fixed point
theory to cover also these badly behaved function spaces. The resulting notion of b- metric spaces created a new direction in which fixed point
theory could be developed. In 2019, Chuensupantharat et al. [4] introduced the notion of a graphical b-metric which is generalization of b-
metric spaces as follows:

Definition 2.1. Let ℵ be a nonempty set endowed with graph G, l ≥ 1 and b : ℵ × ℵ → [0,∞) be a function satisfies the following conditions:

(B1) b(d, f) ≥ 0 ;
(B2) b(d, f) = 0 if and only if d = f ;
(B3) b(d, f) = b(f, d);
(B4) (dQf)G, e ∈ (dQf)G ⇒ b(d, f) ≤ l[b(d, e) + b(e, f)];

for all d, e, f ∈ ℵ, (dQf)G represents a path leading from d to f in G and e is a vertex lying on the path (dQf)G in graph G. Then b is a
graphical b- metric and the pair (ℵ, b) is a called a graphical b- metric space.

Example 2.1. Let ℵ = {1, 2, 3, 4} and b : ℵ × ℵ be defined as:

b(d, f) =


0, if d = f

5x′, if d, f ∈ {1, 3} and d ̸= f

2x′, if d or f /∈ {1, 3} and d ̸= f

where x′ > 0 be a constant including graph G(V (G), E(G));V (G) = ℵ, E(G) = ℵ × ℵ. Then (ℵ, b) is a (ℵ, b) is a called a graphical b-
metric space with l = 5

4 > 1 but not a graphical metric space as

b(1, 3) = 5x′ > 4x′ = b(1, 2) + b(2, 3).

Definition 2.2. Let (E1, E2) be a pair of nonempty subsets of a metric space (ℵ, b′) with E10 ̸= ∅. Then the pair (E1, E2) is said to have
weak P -property (see [9]) if and only if for any d1, d2 ∈ E1 and f1, f2 ∈ E2,

b′(d1, f1) = b′(E1, E2),

b′(d2, f2) = b′(E1, E2), then

b′(d1, d2) ≤ b′(f1, f2).

Definition 2.3. Let E1, E2 be two nonempty subsets of a b-metric space (ℵ, b). The b-metric is called sequentially continuous [10] if every
d ∈ E1, f ∈ E2 and every sequence dn ∈ E1, fn ∈ E2 such that dn → d, fn → f we have b(dn, fn) → b(d, f).

Definition 2.4. Let e and f be two vertices in a graph G. A path in G from e to f of length k; (k ∈ N ∪ {0}) is a sequence (di)ki=1 of distinct
vertices such that d0 = e dk = f and (di, di+1) ∈ E(G) for i = 1, 2, · · · , k. We denote

[e]kG = {f ∈ ℵ : there is a path in G of length k from e to f}.

If there is a path between any two vertices of a graph G, we say that G is connected.
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3 Main results

Throughout the paper, we consider (ℵ, b) to be a graphical b- metric space endowed with directed graph G. Additionally, we assume that graph
G does not contain parallel edges such that ℵ = V (G).

Definition 3.1. Let E1 and E2 be two nonempty subsets of a graphical b- metric space (ℵ, b). A mapping g : E1 → CB(E2) is said to be
Gb-contraction if for all d, f ∈ E1 with (d, f) ∈ E(G)

(i) Hb(gd, gf) ≤ δ
l2
b(d, f) for some δ ∈ [0, 1);

(ii) b(d1, w) = b(E1, E2) and b(f1, c) = b(E1, E2) then d1, f1 ∈ E(G); c ∈ gd and w ∈ gf .

Theorem 1. Let (ℵ, b) be a complete graphical b- metric space, E1, E2 be two nonempty closed subsets of (ℵ, b) such that (E1, E2) has the
weak P -property. Let g : E1 → CB(E2) be a continuous Gb-contraction such that g(d) ⊆ E20 for each d ∈ E10 and b be a sequentially
continuous. Assume the following condition (A): d0 and d1 exist in E10 such that there is a path in E10 between them and b(d1, c0) =
b(E1, E2) where c0 ∈ gd0 ⊆ E20 . Then, there the sequence {dn} : n ∈ N exists with b(dn+1, gdn) = b(E1, E2) and g has a unique best
proximity point.

Proof: two points d0 and d1 in E10 exist such that b(d1, c0) = b(E1, E2), and a path (ei0)
k
i=0 in G between them exists such that the sequence

(ei0)
k
i=0 contains points of E10 . Subsequently, e00 = d0, ek0 = d1 and (ei−1

0 , ei0) ∈ E(G) for all 1 ≤ i ≤ k. Given that e10 ∈ E10 , w1
0 ∈

g(e10) ⊆ E20 and from the definition of E10 , e11 ∈ E10 exists such that b(e11, w
1
0) = b(E10 , E20). By proceeding this way, for i = 2 · · · , k,

ei1 ∈ E10 exists such that b(ei1, w
i
0) = b(E10 , E20). Since (ei0)

k
i=0 is a path in G, then (e00, e

1
0) = (d0, e

1
0) ∈ E(G). From the above, we have

b(d1, c0) = b(E10 , E20) and b(e11, w
1
0) = b(E10 , E20). g is a Gb-contraction; consequently, (d1, e11) ∈ E(G). In the same way, we obtain

(d2, e
1
2) ∈ E(G) and (ei−1

2 , ei2) ∈ E(G) for all i = 1, 2, · · · , k.

Let d3 = ek2 . Then, (ei2)
k
i=0 is a path from d2 = e02 and d3 = ek2 . By repeating this process, for all n ∈ N, we create a path (ei0)

k
i=0 from dn =

e0n and dn+1 = ekn, which gives us a sequence {dn} where dn+1 ∈ [dn]
k
G, This shows that sequence {dn} is connected and b(dn+1, gdn) =

b(E1, E2) such that

b(ein+1, e
i
n) = b(E1, E2) for all i = 1, 2, · · · , k. (1)

By (1) and weak P -property we obtain

b(ei−1
n , ein) ≤ b(wi−1

n−1, w
i
n−1) ≤ Hb(ge

i−1
n−1, ge

i
n−1) for all i = 1, 2, · · · , k.

Given that g is a Gb-contraction, for all n ∈ N, (ei−1
n−1, e

i
n−1) ∈ E(G), we get

Hb(ge
i−1
n−1, ge

i
n−1) ≤

δ

l2
b(ei−1

n−1, e
i
n−1) for all i = 1, 2, · · · , k.

Using induction, we get

b(ei−1
n , ein) ≤ Hb(ge

i−1
n−1, ge

i
n−1) ≤

δn

l2n
b(ei−1

0 , ei0) for all i = 1, 2, · · · , k.

By the triangular inequality, we obtain

b(dn+1, dn) =b(e0n, e
k
n)

≤lb(e0n, e
1
n) + lb(e1n, e

k
n)

≤lb(e0n, e
1
n) + l[l(b(e1n, e

2
n) + b(e2n, e

k
n))]

=lb(e0n, e
1
n) + l2b(e1n, e

2
n) + l2b(e2n, e

k
n)

≤lb(e0n, e
1
n) + l2b(e1n, e

2
n) + · · ·+ lkb(ek−1

n , ekn)

≤lHb(ge
0
n−1, ge

1
n−1) + l2Hb(ge

1
n−1, ge

2
n−1) + · · ·+ lkHb(ge

k−1
n−1, ge

k
n−1)

≤l(
δ

l2
)b(e0n−1, e

1
n−1) + l2(

δ

l2
)b(e1n−1, e

2
n−1) + · · ·+ lk(

δ

l2
)b(ek−1

n−1, e
k
n−1)

≤l
δn

l2n
b(e00, e

1
0) + l2

δn

l2n
b(e10, e

2
0) + · · ·+ lk

δn

l2n
b(ek−1

0 , ek0)

≤ δn

l2n−1

(
b(e00, e

1
0) + lb(e10, e

2
0) + · · ·+ lk−1b(ek−1

0 , ek0)
)

≤ δn

l2n−1
β, (2)

where β =
∑k
i=1 l

i−1b(ei−1
0 , gei0).
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Now, we claim that the sequence {dn} is a Cauchy. For each m,n ∈ N,m > n and by the triangular inequality we have

b(dn, dm) ≤l[b(dn, dn+1) + b(dn+1, dm)]

≤lb(dn, dn+1) + l[lb(dn+1, dn+2) + lb(dn+2, dm)]

=lb(dn, dn+1) + l2b(dn+1, dn+2) + l2b(dn+2, dm)

≤lb(dn, dn+1) + l2b(dn+1, dn+2) + · · ·+ lm−nb(dm−1, dm)

≤l

(
δn

l2n−1
β

)
+ (l)2

(
δn

l2(n+1)−1
β

)
+ · · ·+ (l)m−n

(
δn

l2(m−1)−1
β

)
≤
(

δn

l2n−2
β

)
(1 +

δ

l
+ · · ·+ δ

l

m−n−1

lm−n−1)

≤
(

δn

l2n−2
β

) ∞∑
i=1

(
δ

l

)i−1

≤
(

δn

l2n−2
β

)(
l

l − δ

)
,

then lim
m,n→∞

b(dn, dm) = 0. Therefore, {dn} is a Cauchy sequence and there exits d ∈ E1 such that lim
n→∞

dn = d. Since g is a continuous

we have gdn → gd as n → ∞. Also b is a sequentially continuous we get

b(dn+1, gdn) = b(E1, E2).

Taking n → ∞, we obtain

b(d, gd) = b(E1, E2).

Hence d is a best proximity point of g. Suppose that d1 and d2 two best proximity point of g so that

b(d1, gd1) =b(E1, E2)

b(d2, gd2) =b(E1, E2).

By weak P - property we have

b(d1, d2) ≤ b(gd1, gd2) ≤ δb(d1, d2).

This shows that b(d1, d2) ≤ δb(d1, d2); δ < 1, which is contradiction. This implies g has a unique best proximity point. □

Next, we prove a result for single valued mapping in a graphical b- metric space.

Definition 3.2. Let E1 and E2 be two nonempty subsets of a graphical b- metric space (ℵ, b). A mapping g : E1 → E2 is said to be Gb-
contraction if for all d, f ∈ E1 with (d, f) ∈ E(G)

(i) b(gd, gf) ≤ δ
l2
b(d, f) for some δ ∈ [0, 1);

(ii) b(d1, gf) = b(E1, E2) and b(f1, gd) = b(E1, E2) then d1, f1 ∈ E(G).

Theorem 2. Let (ℵ, b) be a complete graphical b- metric space, E1, E2 be two nonempty closed subsets of (ℵ, b) such that (E1, E2) has the
weak P -property. Let g : E1 → (E2) be a continuous Gb-contraction such that g(E10) ⊆ E20 and b be a sequentially continuous. Assume
the following condition (A): d0 and d1 exist in E10 such that there is a path in E10 between them and b(d1, gd0) = b(E1, E2). Then, there
the sequence {dn} : n ∈ N exists with b(dn+1, gdn) = b(E1, E2) and g has a unique best proximity point.

Example 3.1. Consider ℵ = R2 with metric

b(d, f) =
∣∣d′1 − f ′1

∣∣3 +
∣∣d′2 − f ′2

∣∣3 ,
for all d = (d′1, d

′
2), f = (f ′1, f

′
2) ∈ R2 is a b- metric space with l = 4. Consider a graph G with V (G) = ℵ and E(G) =

{(d, f) ∈ ℵ × ℵ : b(d, f) < 2}. Then (ℵ, b) is a graphical b- metric space.

Suppose E1 =

{
(
1

2
, d′1) : 0 ≤ d′1 ≤ 1

}
and E2 =

{
(0, d′1) : 0 ≤ d′1 ≤ 1

}
, such that b(E1, E2) =

1

8
.
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Define g : E1 → E2 by

g(d′1) =

 {(0, 1)} , d′1 = (
1

2
, 1),{

(0,
u

4
) : 0 ≤ u ≤ d′1

}
, otherwise

for all d′1 ∈ E1. If e1 = (
1

2
, d′1) and e2 = (

1

2
, d′2) in E1, for d′1, d

′
2 ∈ [0,

1

2
]. Then

ge1 =

{
(0,

d′

4
) : 0 ≤ d′ ≤ d′1

}
,

and

ge2 =

{
(0,

d′

4
) : 0 ≤ d′ ≤ d′2

}
.

We can see that g is a continuous map. Since E10 = E1 and E20 = E2 then g(E10) ⊆ E20 for each d′1 ∈ E10 . Also the pair (E1, E2) satisfies

weak P - property. Next, we prove that g is Gb contraction. Let δ =
1

3
. Take e1 = (

1

2
, d′1) and e2 = (

1

2
, d′2) in E10 where 0 ≤ d′1, d

′
2 ≤ 1

2
.

Consider

Hb(ge1, ge2) = (0− 0)3 +

(
d′1
4

− d′2
4

)3

=
1

64
(d′1 − d′2)

3

<
1

48
(d′1 − d′2)

2.

It implies that

Hb(ge1, ge2) ≤
δ

l2
b(e1, e2),

for all e1, e2 ∈ E1. Now, e1, e2 ∈ E1 and (h, i) ∈ E(G) such that

b(e1, gh) =b(E1, E2) =
1

8

b(e2, gi) =b(E1, E2) =
1

8
.

By the weak P - property we have b(e1, e2) ≤ b(gh, gi) < δb(h, i) < b(h, i). Since (h, i) ∈ E(G) then b(h, i) < 2, which gives b(e1, e2) < 2

therefore (e1, e2) ∈ E(G). Hence g is a Gb contraction. Let d0 = (
1

2
,
1

2
), d1 = (

1

2
,
1

8
) and k = 1. Since b(d0, d1) =

27

512
< 2, then the pair

(d0, d1) ∈ E(G). By definition of g we have, gd0 = (0,
1

8
), and we obtain b(d1, gd0) =

1

8
= b(E1, E2). Thus, condition (A) holds. All

conditions of Theorem 1 are satisfied and g has a best proximity point (
1

2
, 1).

Example 3.2. Consider ℵ = R2 with metric

b(d, f) =
∣∣d′1 − f ′1

∣∣2 +
∣∣d′2 − f ′2

∣∣2 ,
for all d = (d′1, d

′
2), f = (f ′1, f

′
2) ∈ R2 is a b- metric space. Consider a graph G with V (G) = ℵ and E(G) = {(d, f) ∈ ℵ × ℵ : b(d, f) < 49}.

Then (ℵ, b) is a graphical b- metric space with l = 2.
Suppose

E1 =
{
(d′1, d

′
2) : d

′
1
2
+ d′2

2
= 32 and d′2 ≥ 0

}
and

E2 =
{
(d′1, d

′
2) : d

′
1
2
+ d′2

2
= 12 and d′2 ≥ 0

}
, such that b(E1, E2) = 4.

Define g : E1 → E2 by g(d′1, d
′
2) =

(d′1, d
′
2)

3
, for all d′1, d

′
2 ∈ E1. We can see that g is a continuous map. Since E10 = E1 and E20 = E2

then g(E10) ⊆ E20 for each d′1 ∈ E10 . Also the pair (E1, E2) satisfies weak P - property. Next, we prove that g is Gb contraction. Let δ =
1

2
.
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Take e1 = (d′1, f
′
1) and e2 = (d′2, f

′
2) in E10 . Consider

b(ge1, ge2) =

(
d′1
3

− d′2
3

)2

+

(
f ′1
3

− f ′2
3

)2

=
1

32
(
d′1 − d′2

)2
+

1

32
(
f ′1 − f ′2

)2
=
1

9

(
d′1 − d′2

)2
+

(
f ′1 − f ′2

)2
=
1

9
b(e1, e2)

<
1

8
b(e1, e2) =

δ

l2
b(e1, e2).

It implies that

b(ge1, ge2) ≤
δ

l2
b(e1, e2),

for all e1, e2 ∈ E1. Now, e1, e2 ∈ E1 and (h, i) ∈ E(G) such that

b(e1, gh) =b(E1, E2) = 4

b(e2, gi) =b(E1, E2) = 4.

By the weak P - property we have b(e1, e2) ≤ b(gh, gi) < δb(h, i) < b(h, i). Since (h, i) ∈ E(G) then b(h, i) < 49, which gives b(e1, e2) <
49 therefore (e1, e2) ∈ E(G). Hence g is a Gb contraction. Let d0 = (3, 0), d1 = (2

√
2, 1) and k = 1. Since b(d0, d1) = 1.2 < 49, then the

pair (d0, d1) ∈ E(G). By definition of g we get, gd0 = (
2
√
2

3
,
1

3
), and we obtain b(d1, gd0) = 4 = b(E1, E2). Thus, condition (A) holds.

All conditions of Theorem 2 are satisfied and g has a best proximity point (0, 3).

Corollary 3.1. [4] Consider a complete graphical b- metric space (ℵ, b) and a continuous self-mapping g : ℵ → ℵ such that for all d, f ∈ ℵ, if
(d, f) ∈ E(G) then (gd, gf) ∈ E(G) and b(gd, gf) ≤ δ

l2
b(d, f); δ ∈ [0, 1). If b is a sequentially continuous then, g has a fixed point.

Example 3.3. Consider ℵ = {0} ∪ {1
2
,
1

4
,
1

16
,

1

256
, ·} with metric defined as

b(a, d) = |a− d|3, (3)

for all a, d ∈ ℵ is a b- metric space. Consider a graph G with V (G) = ℵ and E(G) = {(d, f) ∈ ℵ × ℵ : d ≤ f}. Then (ℵ, b) is a graphical
b- metric space with l = 4. Define g : ℵ → ℵ by

g(a) =
a

4
, (4)

Next we have to show that g satisfies conditions of Corollary 3.1.

Let δ =
1

2
. Take z1, z2 in E10 , then

b(gz1, gz2) =
∣∣∣z1
4

− z2
4

∣∣∣3
=

1

64
(|z1 − z2|3

=
1

64
b(z1, z2)

<
1

32
b(z1, z2) =

δ

l2
b(z1, z2)

This implies

b(gz1, gz2) ≤
δ

l2
b(z1, z2)

for all z1, z1 ∈ E10 . Since (z1, z2) ∈ E(G) then b(gz1, gz2) < b(z1, z2). Therefore b(gz1, gz2) ∈ E(G). Hence all conditions of Corollary
3.1, are satisfied and g has a fixed point say 0. As the following figure ??, takes the weighted graph for n = 6, in which the weight of any edge
(z1, z2) is equal to the value of b(z1, z2).

4 Application to integral equations

In this section, we obtain the solution of integral equation as an application of our obtained results.
If we take E1 = E2 = ℵ in Theorem 1, we obtain the solution of nonlinear integral equation.
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Fig. 2: Weighted graph for n = 6 where weight of edge (z1, z2) = b(z1, z2)
.

Theorem 3. Let ∁[0, 1] be the set of all continuous functions on closed interval [0, 1], with metric defined by

b(e, f) = sup
s∈[0,1]

|e(s)− f(s)|3 (5)

for all e, f ∈ ∁[0, 1] is a b- metric space with l = 4. Suppose that

ℑ =

{
d ∈ ∁[0, 1] : inf

u∈[0,1]
e(u) > 0 and u ≤ 1;u ∈ [0, 1]

}
.

Consider the graph G with the vertex and edge set given as below:

E(G) =
{
(e, f) ∈ ∁[0, 1]× ∁[0, 1] : e, f ∈ ℑ, e(u) ≤ f(u), for all u ∈ [0, 1]

}
,

and V (G) = ∁[0, 1]. Then (ℵ, b) is a graphical b- metric space. Consider the nonlinear integral equation

e(s) = υ(s) +

∫1
0
ω(s, h, e(h))dh, (6)

where s ∈ [0, 1], υ : [0, 1] → R, ω : [0, 1]× [0, 1]× a[0, 1] → R for each a ∈ ∁[0, 1]. Suppose that the following statements hold:

(i) υ is continuous on [0, 1] with infu∈[0,1] υ(u) > 0 and ω(s, h, e(h)) is integrable with respect to h on [0, 1] such that
infu∈[0,1] ω(s, h, e(h))(u) > 0,
(ii) ge ∈ ∁[0, 1] for all e ∈ ∁[0, 1], where ge(s) = υ(s) +

∫1
0 ω(s, h, e(h))dh for all s ∈ [0, 1],

(iii) for all h, s ∈ [0, 1] and e, f ∈ ∁[0, 1], |ω(s, h, e(h))− ω(s, h, f(h))| ≤ δ
l2

(|e(h)− f(h)|); δ ∈ [0, 1),

Then nonlinear integral equation (6) has a solution in ∁[0, 1].

Proof: Define a mapping g : ∁[0, 1] → ∁[0, 1] by

ge(s) = υ(s) +

∫1
0
ω(s, h, e(h))dh,

for all e ∈ ∁[0, 1] and for all s ∈ [0, 1]. Then g is a continuous mapping.
Now, we claim that g is a Gb contraction. For all h, s ∈ [0, 1] and e, f ∈ ∁[0, 1], we have

b(ge(h), gf(h)) = sup
h∈[0,1]

∣∣∣∣∣
∫1
0
ω(s, h, e(h))dh−

∫1
0
ω(s, h, f(h))dh

∣∣∣∣∣
3

≤ sup
h∈[0,1]

∫1
0
|ω(s, h, e(h))− ω(s, h, f(h))|3dh

≤ sup
h∈[0,1]

δ

l2

(
|e(h)− f(h)|3

) ∫1
0
d(h)

=
δ

l2
sup

h∈[0,1]

(
|e(h)− f(h)|3

)
=

δ

l2
b(e, f).
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It implies that

b(ge, gf) ≤ δ

l2
b(e, f).

Let (e, f) ∈ E(G) with e, f ∈ ∁. By definition of E(G) we get, e(u) ≤ f(u) for all u ∈ [0, 1], and by condition (i), we have
infu∈[0,1] ge(u) > 0, infu∈[0,1] gf(u) > 0. Since e(u) ≤ f(u) for all u ∈ [0, 1] then by definition of g we have ge(u) ≤ gf(u) for all
u ∈ [0, 1]. This shows (ge, gf) ∈ E(G) Therefore, we conclude all the hypotheses of Corollary 3.1 are satisfied. Thus, equation (6) has a
solution e ∈ ∁[0, 1]. □

Example 4.1. Consider a integral equations below:

e(s) = 1 + sin s+

∫1
0

(
e(h)

4
+ 1

)
dh,

for all s ∈ [0, 1] and

ge(s) = 1 + sin s+

∫1
0

(
e(h)

4
+ 1

)
dh.

Consider the graph G with the vertex and edge set given as below:

E(G) =
{
(e, f) ∈ ∁× ∁ : e, f ∈ ℑ, e(u) ≤ f(u), for all u ∈ [0, 1]

}
,

and V (G) = ∁. For the hypothesis (iii) of Theorem 3, we can write

|ω(s, h, e(h))− ω(s, h, f(h))||

=

∣∣∣∣e(h)64
− f(h)

64

∣∣∣∣
=

1

64
|e(h)− f(h)|

<
1

32
|e(h)− f(h)|

=
δ

l2
|e(h)− f(h)| ,

where δ =
1

2
, l2 = 16. All the hypotheses of Theorem 3 is satisfied. Therefore, given problem has a unique solution.

5 Conclusion

In this paper, we focus on the best proximity point theorems to prove its uniqueness on a b - metric space endowed with a graph that is more
general than fixed point. We derive fixed point result as a result of our observations which appeared in the literature. We also furnish some
numerical examples to support our claims. As an application of our main result we find the solution of nonlinear integral equation.
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Abstract: In this paper, we introduce the chaotic fractional Mathieu-Duffing system and state a theorem to analyze stability of
the system base on the Lyapunov second method. Next, we eliminate the chaotic behaviors of the system by means of feedback
controller and presented theorem. We further present numerical simulations and reveal chaotic and asymptotic stability behaviors
of the system to verify the theoretical analysis.
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1 Introduction

In the past few decades many researchers pointed out that several areas of physics, control engineering and signal processing may be precisely
described with the help of fractional calculus (integral and derivative of non integer order). In the control theory, the stability analysis is one
of the most important problems in the control of fractional systems and Lyapunov direct method is an available technique to stabilize chaotic
system. Further, with the development of fractional calculus, some researchers proposed the Prabhakar (regularized Prabhakar) fractional
integral and derivative which are the generalization of the Riemann-Liouville (Caputo) fractional integral and derivative [1]. The Prabhakar
fractional derivative has important applications in the mathematics, economics, time-evolution of polarization processes, fractional Poisson
process, fractional Maxwell model in linear viscoelasticity, generalized model of particle deposition in porous media, generalized reaction-
diffusion equations and describing anomalous relaxation of Havriliak-Negami models in the field of dielectric materials. Further, it has wider
stability region and faster convergence speed over integer derivative. So, study on the generalized fractional systems defined based on the
Prabhakar fractional derivative is of the great importance.

In the current research, we consider the following chaotic fractional Mathieu-Duffing system{
CDγ

ρ,µ,ω,0+x(t) = y(t),
CDγ

ρ,µ,ω,0+y(t) = (a sin θt+ b)x(t)− cx3(t)− νy(t),
(1)

with the initial condition (x0, y0). Where CDγ
ρ,µ,ω,0+ is the regularized Prabhakar fractional derivative and γ, µ ∈ (0, 1), ω < 0, 0 < ρ < 2,

ργ < µ are its parameters. Further, (x, y) ∈ R2 is the state variable, and the parameters a, b, ν, c, θ are positive.
Our aim in this study is to analyze the dynamical behaviors consisting of the stability, chaotic behaviors and chaos control of chaotic

fractional Mathieu-Duffing system. For this purpose, we state a theorem for the stability of system with the the regularized Prabhakar fractional
derivative. Due to the difficulty of obtaining the analytical solution for the system, we mention a numerical algorithm for solving the chaotic
fractional Mathieu-Duffing system. Then, by means of a feedback controller and presented theorem, we stabilize the chaotic orbits to the origin.
Further, present numerical simulations and reveal chaotic and asymptotic stability behaviors of the system to verify the theoretical analysis.

2 Preliminaries

Definition 1. [1] Let f ∈ L1[0, b], 0 < t < b ≤ ∞, and m− 1 < µ < m (m ∈ N). The Prabhakar derivative is defined by

Dγ
ρ,µ,ω,0+f(t) =

dm

dtm
E−γ
ρ,m−µ,ω,0+f(t), ρ, µ, ω, γ ∈ C,ℜ(ρ),ℜ(µ) > 0, (2)

also, the regularized Prabhakar derivative for f ∈ ACm[o, b] (ACm[0, b] = {f : [0, b] → R : dm−1

dtm−1 f(t) ∈ AC[0, b]}) is given by

CDγ
ρ,µ,ω,0+f(t) = E−γ

ρ,m−µ,ω,0+

dm

dxm
f(t)

= Dγ
ρ,µ,ω,0+f(t)−

m−1∑
k=0

tk−µE−γ
ρ,k−µ+1(ωt

ρ)f (k)(0+). (3)
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where Eγ
ρ,µ,ω,0+ is the Prabhakar integral with generalized Mittag-Leffler function Eγ

ρ,µ(z) =
∑∞

k=0
Γ(γ+k)

Γ(γ)Γ(ρk+µ)
zk

k! in its kernel defined
as follows

Eγ
ρ,µ,ω,0+f(t) =

∫ t
0
(t− ξ)µ−1Eγ

ρ,µ

(
ω(t− ξ)ρ

)
f(ξ)dξ. (4)

Lemma 1. [2] Let γ, ρ, µ, ν, σ, ω ∈ C (ℜ(ρ),ℜ(µ),ℜ(ν) > 0), then

∫ t
0
(t− η)µ−1Eγ

ρ,µ(ω(t− η)ρ)ην−1Eσ
ρ,ν(ωη

ρ)dη = tµ+ν−1Eγ+σ
ρ,µ+ν(ωt

ρ).

Lemma 2. If f(t) ∈ C(a, b) ∩ L(a, b), then CDγ
ρ,µ,ω,a+E

γ
ρ,µ,ω,a+f(t) = f(t). If further f(t) and its fractional Prabhakar derivatives

belong to C(a, b) ∩ L(a, b), we have for m− 1 < µ ≤ m

Eγ
ρ,µ,ω,a+

CDγ
ρ,µ,ω,a+f(t) = f(t)−

m−1∑
j=0

f (j)(a)(t− a)j .

Proof: The proof is straightforward, following the proof of Lemma 5 in [3], by using Lemma 2.2 in [4]. □

3 Stability theorem for the generalized fractional system

We now introduce the generalized fractional system with regularized Prabhakar derivative and present a theorem for stability of such system.
Consider the following system

CDγ
ρ,µ,ω,a+X(t) = f(t,X(t)), (5)

where γ, ρ, µ, ω ∈ (0, 1), X(t) ∈ Rn is a state vector and f(t,X(t)) ∈ Rn satisfies a Lipschitz condition.

Theorem 1. Let γ, ρ, µ, ω ∈ (0, 1). If there is a positive definite matrix P ∈ Rn×n such that system (5) satisfies

XT (t)PCDγ
ρ,µ,ω,a+X(t) ≤ 0, ∀X(t) ∈ Rn, (6)

then system (5) is stable.

Proof: We consider V (t) = 1
2X

T (t)PX(t) as a Lyapunov function candidate. By using Lemma (2) and the Prabhakar integral definition, we
have

V ′(t) = XT (t)PX ′(t) = XT (t)P lim
∆t→0

X(t)−X(t−∆t)

∆t

= XT (t)P lim
∆t→0

Eγ
ρ,µ,ω,t−∆t+

CDγ
ρ,µ,ω,a+X(t)

∆t

= XT (t)P lim
∆t→0

∫t
t−∆t(t− ξ)µ−1Eγ

ρ,µ
(
ω(t− ξ)ρ

)CDγ
ρ,µ,ω,a+X(ξ)dξ

∆t
.

Since f(t,X(t)) satisfies a Lipschitz condition, f(ξ,X(ξ)) = f(t,X(t)) when ∆t → 0 and ξ ∈ (t−∆t, t]. So,

XT (t)PCDγ
ρ,µ,ω,a+X(ξ) = XT (t)Pf(ξ,X(ξ)) = XT (t)Pf(t,X(t))

= XT (t)PCDγ
ρ,µ,ω,a+X(t) ≤ 0.

For γ, ρ, µ, ω ∈ (0, 1) and t > ξ, we have (t− ξ)µ−1 > 0 and Eγ
ρ,µ

(
ω(t− ξ)ρ

)
> 0. Therefore,

V ′(t) = lim
∆t→0

∫t
(t−∆t)(t− ξ)µ−1Eγ

ρ,µ
(
ω(t− ξ)ρ

)
XT (t)PCDγ

ρ,µ,ω,a+X(ξ)dξ

∆t
≤ 0. (7)

According to the Lyapunov second method, the above inequality implies that system (5) is asymptotically stable. □
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4 Numerical simulation

We proposed a numerical method to solve the generalized fractional dynamical system by transforming the original system into a system of
ordinary differential equations of first order. According to the Prabhakar derivative definition and Lemma 1 we have

Dγ
ρ,µ,ω,0+f(t) = t−µE−γ

ρ,1−µ

(
ωtρ

)
f(0) + t1−µE−γ

ρ,2−µ

(
ωtρ

)
f ′(0)

+

∫ t
0
(t− ξ)1−µE−γ

ρ,2−µ

(
ω(t− ξ)ρ

)
f ′′(ξ)dξ. (8)

By using the Taylor expansion of the generalized Mittag-Leffler function and the binomial extension, the third term of the right hand side of
(8) can be written as ∫ t

0
(t− ξ)1−µE−γ

ρ,2−µ

(
ω(t− ξ)ρ

)
f ′′(ξ)dξ

=

∞∑
k=0

(−γ)kω
k

Γ(ρk − µ+ 2)k!
tρk−µ+1

∫ t
0
f ′′(ξ)

(
1 +

∞∑
p=1

Γ(p− ρk + µ− 1)

Γ(−ρk + µ− 1)p!
(
ξ

t
)p
)
dξ. (9)

Let Vn(fp), n ∈ N, denote the nth moment of the function fp, where fp(p ∈ N) is the pth (integer) derivative of f , i.e., Vn(f (p))(t) =∫t
0 f

(p)(ξ)ξndξ, n ∈ N, t ≥ 0. Integrating term by term of series in (9), we get

∞∑
k=0

(−γ)kω
k

Γ(ρk − µ+ 2)k!
tρk−µ+1

∫ t
0
f ′′(ξ)

(
1 +

∞∑
p=1

Γ(p− ρk + µ− 1)

Γ(−ρk + µ− 1)p!
(
ξ

t
)p
)
dξ

=

∞∑
k=0

(−γ)kω
k

Γ(ρk − µ+ 2)k!
tρk−µ+1

∞∑
p=1

Γ(p− ρk + µ− 1)

Γ(−ρk + µ− 1)p!
f ′(t) +

∞∑
k=0

(−γ)kω
ktρk−µ(f(t)− f(0))

Γ(ρk − µ+ 1)k!

−
∞∑
k=0

(−γ)kω
ktρk

Γ(ρk − µ+ 2)k!

∞∑
p=2

Γ(p− ρk + µ− 1)

Γ(−ρk + µ− 1)(p− 1)!

(f(t)
tµ

+
V̂p(f)(t)

tp+µ−1

)
,

where V̂p(f)(t) = −(p− 1)
∫t
0 ξ

p−2f(ξ)dξ, p = 2, 3, · · · . Therefore

Dγ
ρ,µ,ω,0+f(t) =

∞∑
k=0

(−γ)k(ωt
ρ)k

Γ(ρk − µ+ 2)k!

[
f ′(t)

tµ−1

(
1 +

∞∑
p=1

Γ(p− ρk + µ− 1)

Γ(−ρk + µ− 1)p!

)
−

( (µ− ρk − 1)

tµ
f(t) +

∞∑
p=2

Γ(p− ρk + µ− 1)

Γ(−ρk + µ− 1)(p− 1)!

(f(t)
tµ

+
V̂p(f)(t)

tp+µ−1

))]
.

Obviously, the relation between CDγ
ρ,µ,ω,t0+

f(t) and f ′(t) are defined as follows

CDγ
ρ,µ,ω,t0+

f(t) =

∞∑
k=0

(−γ)k(ωt
ρ)k

Γ(ρk − µ+ 2)k!

[
f ′(t)

tµ−1

(
1 +

∞∑
p=1

Γ(p− ρk + µ− 1)

Γ(−ρk + µ− 1)p!

)
−

( (µ− ρk − 1)

tµ
(f(t) + f(0)) +

∞∑
p=2

Γ(p− ρk + µ− 1)

Γ(−ρk + µ− 1)(p− 1)!

(f(t)
tµ

+
V̂p(f)(t)

tp+µ−1

))]
. (10)

We approximate CDγ
ρ,µ,ω,t0+

f(t) by using the first M terms in the sum appearing in (10) as follows

CDγ
ρ,µ,ω,t0+

f(t) ≃
M∑
k=0

(−γ)k(ωt
ρ)k

Γ(ρk − µ+ 2)k!

[
f ′(t)

tµ−1

(
1 +

M∑
p=1

Γ(p− ρk + µ− 1)

Γ(−ρk + µ− 1)p!

)

−
( (µ− ρk − 1)

tµ
(f(t) + f(0)) +

M∑
p=2

Γ(p− ρk + µ− 1)

Γ(−ρk + µ− 1)(p− 1)!

(f(t)
tµ

+
V̂p(f)(t)

tp+µ−1

))]
. (11)

We can rewrite equation (11) as

CDγ
ρ,µ,ω,t0+

f(t) ≃ Ωf ′(t) + Φf(t)−Q2t
−µf(0)

−
M∑
k=0

(−γ)k(ωt
ρ)k

Γ(ρk − µ+ 2)k!

M∑
p=2

Γ(p− ρk + µ− 1)

Γ(−ρk + µ− 1)(p− 1)!

V̂p(f)(t)

tp+µ−1
,

© CPOST 2023 195



Fig. 1: Numerical value of x(t), y(t) of system (1) for γ = 0.02, ρ = 0.9,
ω = 0.03, µ = 0.95, h = 0.01, M = 5, x(0) = 0.9 and y(0) = 0.03.

Fig. 2: Numerical value of x(t), y(t) of system (1) for
γ = 0.02, ρ = 0.9, ω = 0.03, µ = 0.95, h = 0.1, M =
5 and different initial conditions.

where

Ω = (Q1 +R1)t
1−µ, Φ = (Q2 −R2)t

−µ,

Q1 =

M∑
k=0

(−γ)k(ωt
ρ)k

Γ(ρk − µ+ 2)k!
, R1 =

M∑
k=0

(−γ)k(ωt
ρ)k

Γ(ρk − µ+ 2)k!

M∑
p=1

Γ(p− ρk + µ− 1)

Γ(−ρk + µ− 1)p!
,

Q2 =

M∑
k=0

(−γ)k(ωt
ρ)k

Γ(ρk − µ+ 1)k!
, R2 =

M∑
k=0

(−γ)k(ωt
ρ)k

Γ(ρk − µ+ 2)k!

M∑
p=2

Γ(p− ρk + µ− 1)

Γ(−ρk + µ− 1)(p− 1)!
.

Finally, we can rewrite the system (5) as

x′(t) =
1

Ω

[
Ax(t) + f(t, x(t))− Φx(t) +Q2t

−µx(0)

+

M∑
k=0

(−γ)k(ωt
ρ)k

Γ(ρk − µ+ 2)k!

M∑
p=2

Γ(p− ρk + µ− 1)

Γ(−ρk + µ− 1)(p− 1)!

V̂p(x)(t)

tp+µ−1

]
,

with the initial condition x(t0) = x0.
By performing simulations for a = 0.5, b = 1, ν = 0.2, c = 1, θ = 1, γ = 0.02, ρ = 0.9, µ = 0.95, ω = 0.03, the system possesses a

chaotic behavior. This behavior is shown in Figs. 1-2. Numerical solution of the system is obtained by using the well known fourth order
Runge-Kutta method with initial conditions x(0) = 0.8, y(0) = 0.05, h = 0.1 and M = 5. Figs. 1-2 indicate the chaotic behavior of system
(1).

5 Controlling chaos

We now design a linear feedback controller for the system (1) and get

{
CDγ

ρ,µ,ω,0+x(t) = y(t) + k1x(t),
CDγ

ρ,µ,ω,0+y(t) = (0.5 sin t+ 1)x(t)− x3(t)− 0.2y(t) + k2y(t),
(12)

where k1 and k2 are the control parameters. We intend to find suitable values of the parameters k1 and k2 such that the chaotic fractional
Mathieu-Duffing system (1) becomes stable. Using Theorem 1 for the positive definite matrix P = I , leads to

XT (t)PCDγ
ρ,µ,ω,a+X(t) = x(t)CDγ

ρ,µ,ω,a+x(t) + y(t)CDγ
ρ,µ,ω,a+y(t)

= x(t)y(t) + k1x
2(t) + (0.5 sin t+ 1)x(t)y(t)− x3(t)y(t)− 0.2y2(t) + k2y

2(t)

≤ (k1 +
1

2
+

0.5| sin t|+ 1

2
)x2(t) + (k2 + 0.3

0.5| sin t|+ 1

2
)y2(t) +

1

2
x4 +

1

2
x2y2

≤ (k1 + 1.25)x2(t) + (k2 + 1.05)y2(t) +
1

2
x4 +

1

2
x2y2. (13)
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Fig. 3: Numerical value of x(t), y(t) of system (12) for γ = 0.02, ρ = 0.9,
ω = 0.03, µ = 0.95, h = 0.01, M = 5, x(0) = 0.9 and y(0) = 0.03.

Fig. 4: Numerical value of x(t), y(t) of system (12) for
γ = 0.02, ρ = 0.9, ω = 0.03, µ = 0.95, h = 0.1, M =
5 and different initial conditions.

To stabilize the system (12), we take k1 + 1.25 ≤ − 1
2x

4 − 1
2x

2y2 and k2 + 1.05 ≤ − 1
2x

4 − 1
2x

2y2. Because, even for cases of k1 + 1.25 =

− 1
2x

4 − 1
2x

2y2 and k2 + 1.05 = − 1
2x

4 − 1
2x

2y2, we have the following trivial relation

(k1 + 1.25)x2(t) + (k2 + 1.05)y2(t) +
1

2
x4 +

1

2
x2y2 ≤ 0

⇔ −(
1

2
x4 +

1

2
x2y2)(x2 + y2) ≤ −(

1

2
x4 +

1

2
x2y2)

⇔ (x2 + y2) ≥ 0.

So, by taking the control parameters k1 ≤ −1.25− 1
2x

4 − 1
2x

2y2 and k2 ≤ −1.05− 1
2x

4 − 1
2x

2y2, the system (12) becomes stable. The
numerical values and the phase portrait of system (12) indicate the asymptotic stability behavior of (12). We fix the parameters γ = 0.02,
ρ = 0.9, ω = 0.03, M = 5, k1 = −1.25− 1

2x
4 − 1

2x
2y2 and k2 = −1.05− 1

2x
4 − 1

2x
2y2.

The results is depicted in Fig. 3 for µ = 0.95, h = 0.01, x(0) = 0.9, y(0) = 0.03, and the numerical results for µ = 0.95, h = 0.1 and
different initial conditions is depicted in Fig. 4.

6 Conclusion

In this work, we formulate a theorem for stability of fractional system with the regularized Prabhakar fractional derivative and applied the pre-
sented theorem for refusing and controlling chaos of the system. We have shown the chaotic behaviors of the system by numerical simulations.
Figs. 1-2 have indicated chaotic attractors of the system. Then, to stabilize these system, we have employed the linear feedback controller and
have obtained the control parameters by using the Lyapunov stability theorem. Figs. 3-4 have indicated the asymptotic stability behaviors of
system with the obtained control parameters and the fixed parameters of system.
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Abstract: In this study, the Dual Reciprocity Boundary Element Method (DRBEM) solutions of singularly perturbed magnetohy-
drodynamic (MHD) flow equations are investigated in a square duct with variably conducting and either slipping or no-slip walls.
The MHD flow equations governed by the velocity V (x, y) of the fluid and the induced magnetic field B(x, y) are coupled, and
convection-diffusion type including the so-called Hartmann number (Ha) as a coefficient of the convection terms. When Ha is
large due to the high intensity of the external magnetic field, the MHD flow equations become convection dominated. That is, the
coefficients of the diffusion terms are very small giving the singularly perturbed MHD flow equations whose numerical solutions
are difficult to be found especially on the thin boundary layer regions. These singularly perturbed MHD equations are solved with
DRBEM using Shishkin mesh which consists of the transition points depending on Ha and the number of nodes taken on each side
of the duct. DRBEM numerical results show that, the well-known behaviors of V (x, y) and B(x, y) are deduced for large values
of Ha such as 500, 700, and 1000. That is, the flattening flow and boundary layers formation are observed. For variably con-
ducting and no-slip walls, for a fixed Ha and increasing wall conductivity c, the velocity V (x, y) decreases in magnitude whereas
the profiles of B(x, y) become perpendicular to the duct walls. On the other hand, for variably conducting and slipping walls, the
slip length α has such an impact on the velocity V (x, y) that, its magnitude increases with an increase in α for each fixed Ha.
Moreover, it is seen that the induced magnetic field B(x, y) profiles is not much effected from the increase in the slip length.

Keywords: DRBEM, Hartmann number, MHD flow, Shishkin mesh, singular perturbation, slip length, transition point

1 Introduction

The field of magnetohydrodynamics (MHD) investigates the interaction between electrically conducting fluids and magnetic fields or elec-
tric currents, combining principles from fluid mechanics and electrodynamics [2]. It provides a framework for understanding and analyzing
the complex interactions between charged particles and magnetic fields within conducting fluids, such as plasmas, liquid metals, and ion-
ized gases. MHD has a wide range of applications across various scientific and engineering domains. Numerous industries and engineering
disciplines benefit from the applications of magnetohydrodynamics which explores the behavior of electrically conducting fluids under the influ-
ence of magnetic fields. Examples include MHD flow meters, accelerators, blood pressure measurements, electromagnetic pumps, and MHD
generators-reactors. Hartmann’s extensive research [5] on the flow of electrically conducting fluids between parallel planes in the presence of a
transverse magnetic field has found widespread application in various areas, contributing to the understanding of magnetohydrodynamics and
its practical implications. There are some studies [9], [14] in which Finite Difference Method (FDM) is used to solve the MHD flow problem.
Moreover, the boundary element method (BEM) which discretizes only the boundary of the problem domain [3], [15] is an alternative to the
basic domain discretization methods such as FDM and Finite Element Method (FEM) [10], [16] for solving the MHD duct flow problems . The
resulting system of equations are quite small in size compared to FEM and FDM discretized system of equations sizes. Both BEM and dual
reciprocity boundary element method (DRBEM) [8], [11], [13] have been used for solving MHD duct flow problems in different geometries
with several types of boundary conditions.

The objective of this study is to investigate the solutions to the singularly perturbed magnetohydrodynamic (MHD) flow equations in a square
duct with either slipping or no-slip walls of varying conductivity utilizing the Dual Reciprocity Boundary Element Method (DRBEM). Since
the MHD flow equations are convection-diffusion type equations with the Hartmann number (Ha) as the coefficient of the convection terms, for
large Ha they become convection dominated with small diffusion term coefficients, making the numerical solutions challenging, particularly
in thin boundary layer regions. To address this challenge, a Shishkin mesh [7] is employed, which incorporates transition points dependent on
Ha and determines the number of nodes on each side of the duct. Using the DRBEM, the singularly perturbed MHD flow equations are solved
numerically. The numerical results reveal that, the well-known behaviors of the velocity V (x, y) and the induced magnetic field B(x, y) are
seen for large Ha values such as 500, 700, and 1000. These are the flattening flow and the boundary layer formation.
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2 Mathematical formulation

The magnetohydrodynamics (MHD) concerns with the flow of an electrically conducting fluid under the influence of an external magnetic field.
As a result of some physical laws which are Ohm’s and Ampere’s laws, Maxwell’s equations, continuity and momentum equations, MHD flow
equations are obtained. The governing MHD flow equations [1], [2] in the cross-section of a pipe (duct) are given as

∇2V +Ha
∂B

∂x
= −1

in Ω = {(x, y) : −1 ≤ x, y ≤ 1},

∇2B +Ha
∂V

∂x
= 0

(1)

where Ha = LB0

√
σ/νρ is the Hartmann number L, σ, ρ, ν being the characteristic length, electrical conductivity, density and kinematic

viscosity of the fluid, respectively. V (x, y) and B(x, y) are the velocity and induced magnetic field in the pipe-axis direction, respectively. The
problem is considered with the boundary condition

V + α∂V/∂n = 0 and B + c∂B/∂n = 0,

where c is the conductivity ratio and α is the slipping length. When c approaches to infinity, we have electrically perfectly conducting walls
whereas they become insulated walls when it tends to zero. The walls of the duct are no-slip for α = 0, however, the velocity of the fluid slips
at the boundary if α ̸= 0.

3 Shishkin mesh construction

The Shishkin mesh stands out from other meshes due to its unique transition parameters at which the mesh changes from coarse to fine structure
[17]. These transition parameters are defined based on the characteristics of the velocity field components, that is, the coefficient of the term
∇ = (∂/∂x, ∂/∂y) in the problem (1), specifically changing behavior observed in regular or parabolic boundary layers, or a combination of
both. When considering the MHD duct flow problem (1), the lines y = 0 and y = 1 (representing the side walls) exhibit parabolic boundary
layers, while the lines x = 0 and x = 1 (representing the Hartmann walls) demonstrate regular boundary layers. This distinction in the type of
boundary layers guides the specification of the transition parameters within the Shishkin mesh. In conclusion, the Shishkin mesh is constructed
by using four transition points [7] two as τ1 and 1− τ1 in x- direction and two as τ2 and 1− τ2 in y- direction, where

τ1 = min
{
1

2
, Cϵ lnM

}
and τ2 = min

{
1

4
,
√
ϵ lnM

}
. (2)

with ϵ = 1/Ha, M the number of mesh points on one side of the duct. Since there are regular and parabolic boundary layers on the Hartmann
and side walls, respectively, we have the meshes ΩM

τ1 and ΩM
τ2 on the x- and y-axes. These meshes are obtained by dividing the sub-intervals

(0, τi) and (1− τi, 1) into M/4 equal mesh elements while (τi, 1− τi) into M/2 equal mesh elements to get totally M mesh elements on
each side for i = 1, 2. Totally, the Shishkin mesh is obtained as ΩM

τ1,τ2 = ΩM
τ1 × ΩM

τ2 . As the Hartmann number (Ha) increases, it becomes
necessary to increase the value of the parameter M . Additionally, it is crucial to choose the constant C carefully so that the transition points on
the x-axis adequately cover the width of the Hartmann layers, which are of the order O(ϵ), where ϵ = 1/Ha. Furthermore, based on the theory
of boundary layers in MHD duct flow [1], it is established that the thickness of the Hartmann layers is of order ϵ = 1/Ha, while the thickness
of the side layers is of order

√
ϵ = 1/

√
Ha. This is why the construction of the Shishkin mesh with four transition parameters is theoretically

appropriate.

4 DRBEM application

The dual reciprocity boundary element method (DRBEM) is a numerical technique that converts differential equations into boundary integral
equations. It uses the fundamental solution of the Laplace equation for Poisson’s type equations [4], given by u∗ = (ln(1/r))/2π, where r
represents the distance between the source and field points. In the MHD problem (1), all terms except the Laplacian are moved to the right-hand
side and treated as the inhomogeneity part, which is approximated by using a radial basis function with N boundary and L interior nodes. By
applying Green’s first identity twice and discretizing the resulting integrals, the coupled equations are transformed into matrix-vector equations

HV − G∂V

∂n
=(HÛ − GQ̂)F−1(−1−Ha

∂B

∂x
),

HB − G∂B

∂n
=(HÛ − GQ̂)F−1(Ha

∂V

∂x
).

(3)

Defining the matrices D = (HÛ − GQ̂)F−1 and E = D∂F
∂x

F−1 of size (N + L)× (N + L), the enlarged system is obtained as

H̄
{
V
B

}
= Ḡ

{
∂V/∂n
∂B/∂n

}
+ D̄

{
−1
0

}
, (4)

where

H̄ =

[
H 0
0 H

]
+Ha

[
0 E
E 0

]
, Ḡ =

[
G 0
0 G

]
, D̄ =

[
D 0
0 0

]
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are the matrices of size (2N + 2L)× (2N + 2L). Here, H and G are the DRBEM matrices of size (N + L)× (N + L) and their entries are
defined as

Hij =

∫
Γj

q∗dΓj , Hii = ci, Gij =

∫
Γj

u∗dΓj , and Gii =
l

2π

(
ln

(
2

l

)
+ 1

)
,

where l is the length of the elements and ci = 1/2 since we have a unit square domain. The matrix F in the DRBEM approach is the coordinate
matrix of size (N + L)× (N + L), consisting of the columns fj . It is symmetric and non-singular [6]. Additionally, the matrices Û and Q̂

are of size (N + L)× (N + L) and are obtained by taking each vector ûj and q̂j =
∂ûj

∂n as columns, respectively. The radial basis functions
are connected to the Laplace operator through the equation ∇2ûj = fj . Since we have variably conducting walls, the induced magnetic field

is always unknown on the boundary and so for the normal derivative we use the condition
∂B

∂n
= −1

c
B. If the walls are no-slip, then the

velocity is known but its normal derivative is unknown on the boundary. However, when the slip exits on the walls, the velocity is unknown

on the boundary. In this case, we use the condition
∂V

∂n
= − 1

α
V . Then, all the conditions for the boundary and interior nodes are inserted

into the matrix vector equation. Finally, each unknown on the right hand side of the system (4) is carried to the left hand side by shuffling
the corresponding columns of the matrices H̄ and Ḡ. This results in a linear system Āx = d̄, where x represents the vector of unknowns. By
solving this linear system as a whole, the DRBEM gives the advantage of obtaining simultaneous solutions for both the unknowns V and B.
This feature enhances the method’s effectiveness and computational efficiency.

5 Numerical results

DRBEM solutions of singularly perturbed coupled MHD duct flow problem are considered by using Shishkin mesh. The velocity and induced
magnetic profiles are obtained for large values of Ha such as 500, 700, and 1000 for variably conducting and slip/no-slip walls. We use N = 4M
constant boundary elements in the middle of each sub-interval and L = M2 interior nodes. Totally, N + L nodes are obtained from Shishkin
mesh. The radial basis function is chosen as f = 9r with the particular solution û = 1 + r3 [13] since ∇2û = f . To evaluate the entries of
the matrices H and G the Gauss-Legendre numerical integration is used with 8 nodes [12]. The numerical results are deduced in MATLAB by
using a high performance computer (HPC).
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Fig. 1: Velocity and the induced magnetic field profiles for no-slip and variably conducting walls when Ha = 500.
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Fig. 1: Velocity and the induced magnetic field profiles for no-slip and variably conducting walls when Ha = 500.

Fig 1, 2, and 3 give the simulations of the velocity and the induced magnetic field in both contours and level curves for the no-slip and
variably conducting boundary condition case when Ha = 500, 700, and 1000, respectively. It is commonly seen that when the conductivity
parameter c increases, the induced magnetic field becomes perpendicular to the side walls trying to behave as if nearly electrically perfectly
conducting. On the other hand, this increase in c results in a decrease in the velocity magnitude. Moreover, for a fixed conductivity parameter c,
when the Hartmann number increases, both the velocity and the induced magnetic field magnitudes drop, which is the well-known characteristic
of the MHD flow problem. Fig 4 shows the visualizations of the velocity and the induced magnetic field for the slip and variably conducting
case for Ha = 500 and 700. It is observed that the fluid flows in terms of two loops aligned the side walls. Furthermore, when the slipping
length α rises, the velocity magnitude increases as well for each Hartmann number, which is the expected behavior in MHD duct flow [18].
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Fig. 2: Velocity and the induced magnetic field profiles for no-slip and variably conducting walls when Ha = 700.
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Fig. 2: Velocity and the induced magnetic field profiles for no-slip and variably conducting walls when Ha = 700.

6 Conclusion

In this study, the DRBEM is employed to obtain the solutions of singularly perturbed coupled MHD flow equations within a square duct
when the walls are either no-slip or slipping and have variable conductivity. To handle the singular perturbation, the DRBEM is adapted to the
Shishkin mesh. The numerical results demonstrate that, for large values of the Hartmann number Ha, the expected behaviors of the velocity
and the induced magnetic field are observed. This includes the presence of a flattening flow and the formation of boundary layers. The study
also analyzes the effects of the conductivity parameter and the slipping length. For variably conducting and no-slip walls, increasing the wall
conductivity c for a fixed Ha leads to a decrease in the magnitude of the velocity V . At the same time, the profiles of the induced magnetic
field B become perpendicular to the duct walls. Conversely, for variably conducting and slipping walls, the slip length α has a notable impact
on the velocity V that, increasing α for a fixed Ha results in an increase in the magnitude of the velocity V .
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Fig. 3: Velocity and the induced magnetic field profiles for no-slip and variably conducting walls when Ha = 1000.

Fig 1, 2, and 3 give the simulations of the velocity and the induced magnetic field in both contours and level curves for the no-slip and
variably conducting boundary condition case when Ha = 500, 700, and 1000, respectively. It is commonly seen that when the conductivity
parameter c increases, the induced magnetic field becomes perpendicular to the side walls trying to behave as if nearly electrically perfectly
conducting. On the other hand, this increase in c results in a decrease in the velocity magnitude. Moreover, for a fixed conductivity parameter c,
when the Hartmann number increases, both the velocity and the induced magnetic field magnitudes drop, which is the well-known characteristic
of the MHD flow problem. Fig 4 shows the visualizations of the velocity and the induced magnetic field for the slip and variably conducting
case for Ha = 500 and 700. It is observed that the fluid flows in terms of two loops aligned the side walls. Furthermore, when the slipping
length α rises, the velocity magnitude increases as well for each Hartmann number, which is the expected behavior in MHD duct flow [18].
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Fig. 4: Velocity and the induced magnetic field profiles for slip and variably conducting walls when Ha = 500 and 700.

6 Conclusion

In this study, the DRBEM is employed to obtain the solutions of singularly perturbed coupled MHD flow equations within a square duct
when the walls are either no-slip or slipping and have variable conductivity. To handle the singular perturbation, the DRBEM is adapted to the
Shishkin mesh. The numerical results demonstrate that, for large values of the Hartmann number Ha, the expected behaviors of the velocity
and the induced magnetic field are observed. This includes the presence of a flattening flow and the formation of boundary layers. The study
also analyzes the effects of the conductivity parameter and the slipping length. For variably conducting and no-slip walls, increasing the wall
conductivity c for a fixed Ha leads to a decrease in the magnitude of the velocity V . At the same time, the profiles of the induced magnetic
field B become perpendicular to the duct walls. Conversely, for variably conducting and slipping walls, the slip length α has a notable impact
on the velocity V that, increasing α for a fixed Ha results in an increase in the magnitude of the velocity V .
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1 Introduction

In this section, the literature is briefly discussed.

• A geometric point of view to the magnetic fields in 3-dimensional Sasakian manifolds was given by Cabrerizo, Fernandez and Gomez in
2009, [1].
• After this, many authors began to work on magnetic curves in different types of manifolds. Some basic articles can be listed as; [2–6].
• Unlike previous studies, Perktaş et al. studied biharmonicity and biminimality conditions, Bozdağ et al. studied f-harmonicity, f-
biharmonicity, bi-f-harmonicity and f-biminimality conditions of magnetic curves in 3-dimensional normal almost paracontact metric
manifolds, respectively in [7, 8].
• On the other hand, harmonic and biharmonic maps between Riemannian manifolds investigated by Eells and Sampson in 1964, [9].
• f -harmonic maps between Riemannian manifolds were defined by Lichnerowicz in 1970 and studied by Lemaire and Eells in 1978, [10].
• Then f -biharmonic maps between Riemannian manifolds are defined by Lu in 2013-2015, [11, 12]. And Ou gave complete classification of
f -biharmonic curves in 3D Euclidean space and characterization of f -biharmonic curves in n-dimensional space forms in 2014, [13].
• Finally, Sarkar et. all studied Legendre curves in 3-dimensional trans-Sasakian manifolds in 2014, [14].
• In this study, we focus on biharmonicity, f -harmonicity and f -biharmonicity of a T -magnetic curve in Kenmotsu manifolds.

2 Preliminaries

In this section, we give a brief review of basic facts of this presentation.

Definition 1. Let (M, g) and (M̄, ḡ) be Riemannian manifolds, then a harmonic map ϕ : (M, g) → (M̄, ḡ) is defined as the critical point of
the energy functional

E(ϕ) =
1

2

∫
M

|dϕ|2dvg,

where vg is the volume element of (M, g). Then by using Euler-Lagrange equation τ(ϕ) of the energy functional E(ϕ), where it is the
tension field of map ϕ, a map called as harmonic if

τ(ϕ) := trace∇dϕ = 0. (1)

Here ∇ is the connection induced from the Levi-Civita connection ∇M̄ of M̄ and the pull-back connection ∇ϕ, [15].

Biharmonic maps, which can be considered as a natural generalization of harmonic maps, are defined as below.

Definition 2. A map ϕ : (M, g) → (M̄, ḡ) is defined as a biharmonic map if it is a critical point, for all variations, of the bienergy functional

E2(ϕ) =
1

2

∫
M

|τ(ϕ)|2dvg.

Then the Euler-Lagrange equation τ2(ϕ), for the bienergy functional E2(ϕ), where τ2(ϕ) is the bitension field of map ϕ equals to
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τ2(ϕ) = trace(∇ϕ∇ϕ −∇ϕ
∇)τ(ϕ)− trace(RM̄ (dϕ, τ(ϕ))dϕ) = 0,

if ϕ is a biharmonic map. Here RM̄ is the curvature tensor field of M̄ , [15].

Definition 3. A map ϕ : (M, g) → (M̄, ḡ) is said to be an f -harmonic if it is critical point of f -energy functional,

Ef (ϕ) =
1

2

∫
M

f |dϕ|2dvg,

where f ∈ C∞(M,R) is a positive smooth function. Then the f -harmonic map equation obtained by using Euler-Lagrange equation as
follows;

τf (ϕ) = fτ(ϕ) + dϕ(gradf) = 0, (2)

where τf (ϕ) is the f -tension field of the map ϕ.
f -harmonic maps are generalizations of harmonic maps, [15, 16].

Definition 4. A map ϕ : (M, g) → (M̄, ḡ) is said to be an f -biharmonic if it is critical point of the f -bienergy functional

E2,f (ϕ) =
1

2

∫
M

f |τ(ϕ)|2dvg.

The Euler-Lagrange equation for the f -biharmonic map is given by

τ2,f (ϕ) = fτ2(ϕ) + ∆fτ(ϕ) + 2∇ϕ
gradf τ(ϕ) = 0, (3)

where τ2,f (ϕ) is the f -bitension field of the map ϕ.
A f -biharmonic map turns into a biharmonic map if f is a constant, [16].

Now let recall some basic definitions about Kenmotsu manifolds and magnetic curves (see [18, 19]).
A differentiable manifold M of dimension (2n+ 1) is called almost contact manifold with the almost contact structure (φ, ξ, η) if it admits

a tensor field φ of type (1, 1), a vector field ξ, a 1−form η satisfying the following conditions:

φ2 = −I + η ⊗ ξ, (4)

η(ξ) = 1, (5)

where I denotes the identity transformation. As an immediate consequences of the conditions (4) we have φξ = 0, η ◦ φ = 0.
If a (2n+ 1)-dimensional almost contact manifold M with an almost contact structure (φ, ξ, η) admits a Riemannian metric g such that

g(φX,φY ) = g(X,Y )− η(X)η(Y ), X, Y ∈ Γ(TM), (6)

then we say that M is an almost contact metric manifold with an almost contact metric structure (φ, ξ, η, g).
From (6) it can be easily seen that

g(X,φY ) = −g(φX, Y ), (7)

g(X, ξ) = η(X), (8)

for any X, Y ∈ TM .
An almost contact metric structure (φ, ξ, η, g) on a manifold M is called trans-Sasakian structure if there exist two functions α and β on an

almost contact metric manifold M satisfying

(∇X φ)Y = α (g(X,Y )ξ − η(Y )X) + β (g(φX, Y ) ξ − η(Y )φX), (9)

for any X, Y ∈ Γ(TM) and ∇ Levi-civita connection, then M is called a trans-Sasakian manifold, [18]. Finally if α = 0 and β = 1 then a
trans-Sasakian manifold M is called a Kenmotsu manifold.

For a 3-dimensional Kenmotsu manifold, the curvature tensor field equation given as below,

R(X,Y )Z = (
r

2
+ 2)(g(Y,Z)X − g(X,Z)Y )

+ (
r

2
+ 3)(g(X,Z)η(Y )− g(Y,Z)η(X))ξ

+ (
r

2
+ 3)(η(X)η(Z)Y − η(Y )η(Z)X), (10)

where r is the scalar curvature of the manifold M and X,Y, Z ∈ Γ(TM).
The contact distribution of an almost contact metric manifold (M,φ, ξ, η, g) is defined by

{X ∈ Γ(TM) : η(X) = 0}

and an integral curve of the contact distribution is called a Legendre curve, [20].
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3 On Magnetic Curves

In this section we derive biharmonicity, f -harmonicity and f -biharmonicity conditions for T -magnetic curves and T -magnetic Legendre
curves in Kenmotsu manifolds.

The Serret-Frenet vectors of a charged particle are affected by a magnetic field when this charged particle entered into this area. Then with
this effect, a force called Lorentz force becomes exposed and so this charged particle begin to trace an orbit called magnetic curve. The trajec-
tories of charged particles moving on a Riemannian manifold under the action of a magnetic field are defined as magnetic curves, in [6].

A smooth curve γ : I ⊂ IR → M on a 3-dimensional Kenmotsu manifold is called T -magnetic curve if satisfies

∇TT = φT (11)

where T = γ̇. Here "." denotes the differentiation with respect to the arc parameter.
Then with the help of (9), (10) and (11), we get

∇2
TT = −T − η(T )φT + η(T )ξ, (12)

∇3
TT = −2η(T )T + (η(T )2 − 1)φT − 2η(T )2ξ, (13)

R(∇TT, T )T = R(φT, T )T =
[
(
r

2
+ 2)− η(T )2(

r

2
+ 3)

]
φT.

4 Biharmonic T -Magnetic Curves in Kenmotsu Manifolds

Let γ : I ⊂ IR → M be a curve in M . Then with the help of bitension field, we get the biharmonicity condition as below;

τ2(γ) = ∇3
TT +R(∇TT, T )T

= 2η(T )T

+
[
(
r

2
+ 1)− η(T )2(

r

2
+ 2)

]
φT

− 2η(T )2ξ

= 0. (14)

From (14), we get following theorem.

Theorem 1. Let M be a 3-dimensional Kenmotsu manifold and γ : I ⊂ IR → M be a T -magnetic curve. Then γ is a biharmonic T -magnetic
curve iff the followings holds: 

2η(T ) = 0,

(
r

2
+ 1)− η(T )2(

r

2
+ 2) = 0,

−2η(T )2 = 0.

(15)

Theorem 2. There is no non-Legendre biharmonic T -magnetic curve in 3-dimensional Kenmotsu manifold.

Theorem 3. Let M be a 3-dimensional Kenmotsu manifold and γ : I ⊂ IR → M be a T -magnetic curve. Then γ is a biharmonic T -magnetic
Legendre curve iff the scalar curvature r = −2.

Proof: Since γ is a Legendre curve, η(T ) = 0. By using this in 15, it is easy to get that
r

2
+ 1 = 0. □

5 f -Harmonic T -Magnetic Curves in Kenmotsu Manifolds

In this section, we investigate the f -harmonicity condition for a T -magnetic curve in a 3-dimensional Kenmotsu manifold M .

Let γ : I ⊂ IR → M be a T -magnetic curve then via definition (3), the f -harmonicity condition given as below;

τf (γ) = f
′
T + f∇TT = f

′
T + fφT = 0. (16)

From (16), we get following nonexistence theorem.

Theorem 4. There does not exist a proper f -harmonic T -magnetic curve in a Kenmotsu manifold.
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Proof: By using the condition given in (16), it is easy to see that f
′
= 0 so f is a constant. This situation contradicts the definition of an

f -harmonic curve. □

6 f -Biharmonic T -Magnetic Curves in Kenmotsu Manifolds

Here, we derive the f -biharmonicity condition for a T -magnetic curve in Kenmotsu manifolds. By substutiting (11), (12), (13) and (14) in the
equation of f -bitension field τ2,f (γ), we obtained f -biharmonicity condition as below;

τ2,f (γ) = f(∇3
TT +R(∇TT, T )T ) + 2f

′
∇2

TT + f
′′
∇TT

=
[
2fη(T )− 2f

′]
T

+
[
f [(

r

2
+ 1)− η(T )2(

r

2
+ 2)]− 2f

′
η(T ) + f

′′]
φT

+
[
− 2fη(T )2 + 2f

′
η(T )

]
ξ

= 0. (17)

From (17), we get following theorem.

Theorem 5. Let M be a 3-dimensional Kenmotsu manifold and γ : I ⊂ IR → M be a T -magnetic curve. Then γ is a f -biharmonic T -
magnetic curve iff the followings holds: 

fη(T )− f
′
= 0,

f [(
r

2
+ 1)− η(T )2(

r

2
+ 2)]− 2f

′
η(T ) + f

′′
= 0,

−fη(T )2 + f
′
η(T ) = 0.

(18)

Theorem 6. There does not exist proper f -biharmonic T -magnetic Legendre curve in 3-dimensional Kenmotsu manifold.

Proof: We know that from the definiton of a Legendre curve η(T ) = 0 and by substutiting this to the first equation of (18), it is easy to see that
f

′
= 0 thus f is a constant. This situation contradicts the definition of a proper f -biharmonic curve. □

Theorem 7. Let M be a 3-dimensional Kenmotsu manifold and γ : I ⊂ IR → M be a T -magnetic curve. Then γ is a non-proper f -biharmonic
T -magnetic Legendre curve iff the scalar curvature r = −2.

Proof: By using the properties of being a non-proper Legendre curve to the second equation of (18), then it is easy to see that r = −2. □

7 Conclusion

In our study, the harmonic, biharmonic and f -harmonic conditions of T -magnetic curves were investigated in Kenmotsu manifolds. Although
studies on this type of special curves exist in the literature, our study is a first in Kenmotsu manifolds. For future research, it will be planned to
investigate the characteristics of N -magnetic and B-magnetic curves to be harmonic, biharmonic, f -harmonic, bi-f -harmonic, etc.
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Abstract: In this article, we consider the basic properties of nonlinear conformable fractional differential equation of order α ∈
(1, 2). Necessary conditions for existence of eigenfunctions are provided with the help of the maximum principle. Lower and upper
bounds for the eigenvalues are estimated. We also convert the fractional differential equation to an equivalent integral equation in
order to obtain a sufficient condition for the nonexistence of ordered solutions.

1 Introduction

We shall consider the following nonlinear eigenvalue problem of conformable fractional differential equation

tTαu(x) + g(t)u′ + h(t)u = −λk(t, u), α ∈ (1, 2], t ∈ [0, 1],

u(0) = u′(0), u(1) + u′(1) = 0.
(1)

where g, h ∈ C
(
0, 1

)
is a continuous function and k ∈ C1([0, 1]× R), and tTα is the conformable fractioan derivative of order α.

Recently, many research papers are devoted to fractional boundary value problems since they can be used to model many physical phenomena
including engineering, physics, aviscoelasticity, electrochemistry and electromagnetics; [3, 12] and the references therein. This article studies
the eigenvalues problems of nonlinear fractional differential equations involving the conformable fractional derivative. In recent years there has
been growing interests on the conformable fractional differential equations [13, 15, 16].

In the literature, there exist various definitions for the fractional derivative. On the other hand, there are two fractional derivatives commonly
used in the fractional differential equations. These are the Riemann-Lioville and Caputo fractional derivatives. Both definitions rely on the
Riemann-Lioville fractional integral operator. However, some good properties of the classical derivatives do not hold for these fractional
derivatives. Recently, a new and simple fractional derivative so-called conformable fractional derivative has been defined based on the limit
process in [5].

Many works have studied the existence and uniqueness of conformable fractional boundary value problems [1, 4, 6, 7, 10, 11]. Conformable
Sturm-Lioville eigenvalue problems are studied in [2], and the extremal solution with integral boundary condition has been presented in [9].

In [14], the authors apply the method of lower and upper solutions with the monotone iterative scheme to a periodic boundary value problem
of impulsive conformable fractional integro-differential equations and they provide sufficient conditions for the existence of solutions. The
method of lower and upper solutions with the monotone iterative schemes can produce two successive sequences approximating to the extremal
solutions of nonlinear differential equations, see, e.g., [8, 17].

The organization of this paper is as follows. In Section 2, we recall the definition of the Caputo-Fabrizio fractional derivative and integration
and its properties. In Section 3, the existence and uniqueness of the solutions of the problem are investigated. We give an example to demonstrate
the applicability of the results in the last section.

2 Preliminaries

This section introduces some basic definitions and tools that will be used in the following analysis.

Definition 1. [5] Let f : [a,∞) → R and α ∈ (0, 1]. The conformable fractional derivative is defined as

tT
a
α (f) (t) = lim

ε→0

f
(
t+ ε(t− a)1−α

)
− f(t)

ε
, t > 0. (2)

If a = 0, we take tTα.
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The conformable fractional integral of order α ∈ (0, 1] is defined as follows.

Definition 2. [5, 15] Let a ≥ 0 and t ≥ a. The conformable fractional integral of order α ∈ (0, 1) of a function defined on (a, t] is defined as

tI
α
a f(t) =

∫ t
a

f(x)

(x− a)1−α
dx, (3)

if the integral exists.

The higher-order conformable fractional derivative and integral can be defined based on the above definitions.

Definition 3. [15] Let α ∈ (n, n+ 1], and set β = α− n. Then, the (left) fractional derivative starting from a of a function f : [a,∞) → R
of order α, where f (n)(t) exists, is defined by (T a

αf) (t) =
(
Ta
β f

(n)
)
(t).

When a = 0 we write Tα.

Definition 4. [15] Let α ∈ (n, n+ 1] then the left conformable fraction integral of order α starting at a is defined by

(
Iααf

)
(t) = Iαn+1

(
(t− a)β−1f

)
=

1

n!

∫ t
a
(t− x)n(x− a)β−1f(x)dx

The next lemma shows the conformable fractional derivative satisfies the following good properties which does not hold for the commonly
used fractional derivative operators.

Lemma 1. [15] Let f, g : [a,∞) → R be α-differentiable at a point t ≥ a with α ∈ (0, 1), then

(a) tT
a
α(af + bg) = atT

a
α(f) + btT

a
α(g), for all real constants a, b.

(b) tT
a
α(t

µ) = µtµ−α for all µ ∈ R,
(c) tT

a
α(fg) = f tT

a
α(g) + gtT

a
α(f),

(d) tT
a
α(

f
g ) =

f tT
a
α(g)− gtT

a
α(f)

g2
,

(e) tT
a
α(fog)(t) = (t− a)1−αg′(t)f ′(g(t)). (g is a function defined in the range of f and also differentiable),

where ft =
df
dt and gt =

dg
dt . Moreover, if f is differentiable, then tT

a
α(f)(t) = (t− a)1−α df

dt .

Theorem 1. [15] Assume that f : [a,∞) → R such that f (n)(t) is continuous and α ∈ (n, n+ 1]. Then, for all t > a we have

T a
αI

a
αf(t) = f(t)

Theorem 2. Let α ∈ (n, n+ 1] and f : [a,∞) → R be (n+ 1)-differentiable function for t ≥ a. Then we have

IaαT
a
α(f)(t) = f(t)−

n∑
k=0

f (k)(a)(t− a)k

k!
.

Definition 5. A function v(t) ∈ C2[0, 1] is called a lower solution of the problem (1) if it satisfies

P (v) = tTαv(t) + g(t)v′ + h(t)v + λk(t, v) ≥ 0, t ∈ (0, 1), 1 < α < 2

and
v(0)− v′(0) ≤ 0, v(1) + v′(1) ≤ 0

Analogously, a function w(t) ∈ C2[0, 1] is called an upper solution if it satisfies the above inequalities with reversed signs.
If v(t) ≤ w(t), for all t ∈ [0, 1], we say that v and w are ordered lower and upper solutions.

3 Estimations of the eigenvalues

This section introduces a fundamental lemma which provides the positivity of the conformable fractional derivative. We also present some
results on the lower and uppur solutions of the problem (1). Furthermore, we provide necessary conditions for the existence of eigenpairs with
estimates on the bounds for the eigenvalues.

Theorem 3. Assume that f ∈ C2[0, 1] attains its minimum at t0 ∈ (0, 1), then

tTαf(t0) ≥ 0

Proof: From Lemma 1, one has tTαf(t0) = t2−αf ′′(t0). Since t0 is a minimum pint, the classical calculus implies that f ′′(t0) ≥ 0.
Combining this result with the fact that t2−α ≥ 0 for α ∈ (1, 2] yields the desired result. Thus, we complete the proof. □
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Lemma 2 (Positivity Result). Let z(t) ∈ C2[0, 1], µ(t, z) ∈ C([0, 1]× R) and µ(t, z) < 0,∀t ∈ (0, 1). If z(t) satisfies the following
inequalities

tTαz(t) + a(t)z′(t) + µ(t, z)z ≤ 0, t ∈ (0, 1) (4)

z(0)− z′(0) ≥ 0, and z(1) + z′(1) ≥ 0.

where a(t) ∈ C[0, 1], then z(t) ≥ 0, for all t ∈ [0, 1].

Proof: Assume that, to reach a contradiction, the conclusion is false, then z(t) has absolute minimum at some point t0 with z (t0) < 0. Let
t0 ∈ (0, 1). Since t0 is an extreme point of z(t), one has z′ (t0) = 0. From Theorem 3, we have (tTαz) (t0) ≥ 0. These results together with
the assumption that µ (t0, z (t0)) < 0 yield

tTα (t0) + a (t0) z
′ (t0) + µ (t0, z (t0)) z (t0) = tTα (t0) + µ (t0, z (t0)) z (t0) > 0,

which contradicts to the assumption (4). If t0 = 0, by the maximum principle, z′
(
0+

)
≥ 0. Applying the boundary condition z(0)− z′(0) ≥

0, we have z(0) ≥ 0 which contradicts to the claim that z(t0) < 0. Similarly, if t0 = 1, then the maximum principle implies z′
(
1−

)
≤ 0. The

boundary condition z(1) + z′
(
1−

)
≥ 0 yields z(1) ≥ 0 which also contradicts to the claim. As a result, we arrive at a contradiction. Thus,

our claim is false and we must have z(t) ≥ 0. Therefore, we complete the proof. □

Theorem 4. Consider the problem (1). If h(t) + λ
∂k(t,u)

∂u < 0, for all u ∈ C2[0, 1] and t ∈ (0, 1), then we have

(1) Any lower and upper solutions are ordered.
(2) The problem (1) possesses at most one solution.

Proof: (1) Let v and w respectively, be any lower and upper solutions of the problem (1). We then have

tTαv(t) + g(t)v′(t) + h(t)v + λk(t, v) ≥ 0, t ∈ (0, 1),

v(0)− v′(0) ≤ 0, v(1) + v′(1) ≤ 0,
(5)

and

tTαw(t) + g(t)w′(t) + h(t)w + λk(t, w) ≤ 0, t ∈ (0, 1),

w(0)− w′(0) ≥ 0, w(1) + w′(1) ≥ 0.
(6)

Subtracting (5) from (6), we have

tTα(w − v) + g(t)
(
w′ − v′

)
+ h(t)(w − v) + λ(k(t, w)− k(t, v)) ≤ 0.

With the help of the mean value theorem, one has

tTα(w − v) + g(t)
(
w′ − v′

)
+

(
h(t) + λ

∂k

∂u
(ξ)

)
(w − v) ≤ 0,

where ξ = γw + (1− γ)v and 0 ≤ γ ≤ 1. Let z(t) = w(t)− v(t) for t ∈ (0, 1). Then the function z satisfies the following inequality

tTαz + g(t)z′ +

(
h(t) + λ

∂k

∂u
(ξ)

)
z ≤ 0,

subject to the boundary conditions z(0)− z′(0) ≥ 0 and z(1) + z′(1) ≥ 0. Using the assumption that h(t) + λ ∂k
∂u (ξ) < 0 and the positivity

result of Lemma 2, we obtain at once z ≥ 0. But this implies that w ≥ v by the definition of z. This completes the proof of (1)
(2) Next, we shall prove (2). Let u1 and u2 be two solutions of the problem (1). Then these two solution must satisfy the following equation

tTαu1 + g(t)u′1 + h(t)u1 + λk (t, u1) = 0, (7)

tTαu2 + g(t)u′2 + h(t)u2 + λk (t, u2) = 0, (8)

subject to the boundary conditions u1(0)− u′1(0) = u2(0)− u′2(0) = 0, and u1(1) + u′1(1) = u2(1) + u′2(1) = 0. By subtracting (8) from
(7), using the mean value theorem, and letting z = u1 − u2, we have

tTαz + g(t)z′ +

(
h(t) + λ

∂k

∂u
(ξ)

)
z = 0 (9)

for some ξ between u1 and u2, with the boudnary conditions

z(0)− z′(0) = 0 and z(1) + z′(1) = 0. (10)

Using the our assumption that h(t) + λ ∂k
∂u (ξ) < 0 and the positivity result of Lemma 2 we conclude that z ≥ 0. On the other hand, we stress

out that the function −z also satisfies the equations given by (9)-(10). Again by the assumption that h(t) + λ ∂k
∂u (ξ) < 0 and the positivity
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result of Lemma 2 we conclude that z ≥ 0. Consequently, we msut have z = 0. This implies that u1 = u2 and the problem (1) has at most one
solution. The proof is now completed. □

The following corollary gives analytical lower and upper bounds estimates of the eigenvalues.

Corollary 1. Consider the eigenvalue problem (1), with k(t, 0) = 0. We have the following necessary conditions for the existence of a nontrivial
eigenfunction.

(1) If there exists a negative constant ξ such that ∂k
∂u ≤ ξ < 0, then λ ≤ sup

{
−h/ ∂k

∂u

}
(2) If there exists a positive constant µ such that ∂k

∂u ≥ µ > 0, then λ ≥ inf
{
−h/ ∂k

∂u

}
Proof: (1) Assume that, to reach a contradiction, the eigenvalues λ of the problem satisfy λ > sup

{
−h/ ∂k

∂u

}
. Then one has λ > −h/ ∂k

∂u for

all t ∈ [0, 1]. Using the assumption that ∂k
∂u < 0, we obtain h(t) + λ ∂k

∂u < 0. By Theorem 4, the problem (1) possesses at most one solution.
The assumption k(t, 0) = 0 implies that u = 0 is a solution. Hence, the problem (1) has only the zero solution and thus there is no nontrivial
eigenfunction.

(2) Assume that λ < inf
{
−h/ ∂k

∂u

}
. We get λ < −h/ ∂k

∂u for all t ∈ [0, 1]. By the assumption that ∂k
∂u > 0, one must have h(t) + λ ∂k

∂u < 0.
T Hence, the problem (1) has only the zero solution and thus there is no nontrivial eigenfunction. □

4 Ordered solutions

A sufficient condition for non-existence of ordered solutions for the problem (1) is provided in this section. This result will be used in the next
section in proving the uniqueness of the solution.

Definition 6. Let u1 ̸= u2 be two solutions of (1). We say that u1 and u2 are ordered solutions, if either u1 ≤ u2 or u2 ≤ u1 for all t ∈ [0, 1].

Lemma 3. Consider the eigenvalue problem (1) with g, h ∈ C[0, 1] and k ∈ C1([0, 1]× R). A function u(t) ∈ C2[0, 1] solves the problem
(1) if and only if it solves the following integral equation

u(t) =
(2
3

∫1
0
sα−2H(s, u)ds− 1

3

∫1
0
sα−1H(s, u)ds

)
(1 + t)

−
∫ t
0
(t− s)sα−2H(s, u)ds,

(11)

where H(s, u) = g(s)u′(s) + h(s)u(s) + λk(s, u).

Proof: Let u(t) be a solution of the problem (1). Applying the operator tI
α
a to both sides of (1) and using Theorem 2 and H(s, u) ∈ C[0, 1],

we obtain
u(t) = u(0) + u′(0)t− tI

α
a H(t, u(t))

= u(0) + u′(0)t−
∫ t
0
(t− s)sα−2H(s, u)ds

= u(0) + u′(0)t−
∫ t
0
(t− s)sα−2 (g(s)u′(s) + h(s)u(s) + λk(s, u)

)
ds.

Differentiating the above equation yields

u′(t) = u′(0)−
∫ t
0
sα−2H(s, u)ds.

Applying the boundary conditions, we find that u′(0) = u(0) = 2
3

∫1
0 s

α−2H(s, u)ds− 1
3

∫1
0 s

α−1H(s, u)ds. Substituting these values in
the above equation gives the desired result (11).

Conversely, assume that Let u(t) be a solution of (11). Substituting

ν =
2

3

∫1
0
sα−2H(s, u)ds− 1

3

∫1
0
sα−1H(s, u)ds

yields

u(t) = ν(1 + t)−
∫ t
0
(t− s)sα−2H(s, u)ds. (12)

Differentiating the above expression with respect to the variable t, we have

u′(t) = ν −
∫ t
0
sα−2H(s, u)ds.
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Now, we note that u(0) = u′(0) = ν and u(1) + u′(1) = 0. Applying the conformable fractional derivative operator tTα to both sides of (12)
gives

tTαu(t) = tTα(ν(1 + t)−
∫ t
0
(t− s)sα−2H(s, u)ds) = −H(t, u).

By Theorem 1, we infer that u solves (1). Thus, the proof is completed.
□

Theorem 5. Consider problem (1) with g, h ∈ C[0, 1], k ∈ C1([0, 1]× R), u ∈ C2[0, 1], and g(t) ≥ 0, t ∈ [0, 1]. If h(t) + λ ∂k
∂u ≥ η > 0,

for some positive constant η > (α− 1)t1−α
0 with t0 ∈ (0, 1), then the problem has no ordered solutions.

Proof: Let u1 ≤ u2 be two solutions of (1). We have

u1(t) = u1(0) + u′1(0)t−
∫ t
0
(t− s)sα−2H (s, u1) ds,

u2(t) = u2(0) + u′2(0)t−
∫ t
0
(t− s)sα−2H (s, u2) ds,

where H(s, u(s)) = g(s)u′(s) + h(s)u(s) + λk(s, u(s)). Let z(t) = u2(t)− u1(t) ≥ 0 ∈ [0, 1]. We have

z(t) =u2(0)− u1(0) +
(
u′2(0)− u′1(0)

)
t

−
∫ t
0
(t− s)sα−2 (H (t, u2(t))−H (t, u1(t)))

z(0) = z′(0) and z(1) = −z′(1). (13)

Thus,

z′(t) = (u′2(0)− u′1(0)−
∫ t
0
sα−2 (H (t, u2)−H (t, u1))

= z′(0)−
∫ t
0
sα−2 (H (s, u2)−H (s, u1)) ds.

Substituting z′ = u′2 − u′1 in the above equation and applying the mean value theorem yields

z′(t) =z′(0)−
∫ t
0
sα−2 (g(s) (u′2 − u′1

)
+h(s) (u2 − u1) + λ [k (s, u2)− k (s, u1)]) ds

=z′(0)−
∫ t
0
sα−2

(
g(s)z′(s) +

[
h(s) + λ

∂k

∂u
(ξ)

]
z(s)

)
ds,

(14)

for some ξ between u1 and u2. To reach a contradiction, we assume now z(t) ̸= 0 for t ∈ (0, 1), then z(t) will have a positive maximum in
[0, 1]. Let t0 ∈ [0, 1] be such a positive maximum point. If t0 = 0, then z′

(
0+

)
≤ 0 by the classical calculus. But the boundary conditions in

(13) imply that z(0) ≤ 0 which is a contradiction. Using the similar argument, if t0 = 1, then z′
(
1−

)
≥ 0. Again the boundary conditions in

(13) result in z(1) ≤ 0 which is also a contradiction. consequently, t0 ∈ (0, 1). We get z (t0) > 0 and z′ (t0) = 0 and using the inequality
z′(0) ≥ 0, we arrive at z′(t) ≥ 0 for all t ∈ [0, t0]. Next, we examine two possibilities for z(0).

Case 1. z(0) = 0; If z(0) = 0, then the boundary conditions (13) give z′(0) = 0. Using this and the above results in (14) with the facts that
g(s) ≥ 0, s ∈ [0, t0] and h(s) + λ ∂k

∂u (ξ) ≥ η > 0 yields z′ (t0) < 0, which contradicts toz′ (t0) = 0.
Case 2. z(0) = ζ > 0; If z(0) = ζ > 0, then we have

γ =

∫ t0
0

sα−2
(
g(s)z′(s) +

[
h(s) + λ

∂k

∂u
(ξ)

]
z(s)

)
ds

> ηζ

∫ t0
0

sα−2ds =
ηζ

α− 1
tα−1
0 .

(15)

Plugging (15) into (14), we get

z′(t0) < z′(0)−
ηζ

α− 1
tα−1
0 .

Hence, since η > (α− 1)t1−α
0 it holds that

z′(t0) < ζ −
ηζ

α− 1
tα−1
0 < 0

which leads to a contradiction. Therefore, one must have z = 0. Thus, we complete the proof.

□
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5 Examples

Consider the following fractional eigenvalue problem

tTαu(x) + g(t)u′ − u = −λetu, α ∈ (1, 2], t ∈ [0, 1],

u(0) = u′(0), u(1) + u′(1) = 0.
(16)

Here, we take
k(t, u) = etu and h(t) = −1.

We observe that the partial derivative of k(t, u) with respect to u
∂k(t, u)

∂u
= et > 0. Thus, there exist µ > 0 such that

∂k(t, u)

∂u
≥ µ > 0.

Then by Corollary 1 (2) the eigenvalues of the problem (16) have the following lower bound

λ ≥ inf
t∈[0,1]

(
−−1

et

)
= inf

t∈[0,1]

(
e−t

)
= e−1.

Consider now a more general eigenvalue problem

tTαu(x) + h(t)u = −λr(t)u, α ∈ (1, 2], t ∈ [0, 1],

u(0) = u′(0), u(1) + u′(1) = 0,
(17)

where h(t) < 0 and r(t) > 0 or h(t) < 0 and r(t) < 0 . Here we assume that k(t, u) = r(t)u.

We note that
∂k(t, u)

∂u
= r(t). If r(t) > 0 and h(t) < 0, then by Corollary 1 (2) the eigenvalues of the problem (17) satisfy

λ ≥ inf
t∈[0,1]

(
−h(t)

r(t)

)
> 0.

Otherwise, if r(t) < 0 and h(t) < 0, then by Corollary 1 (1) the eigenvalues of the problem (17) satisfy

λ ≤ sup
t∈[0,1]

(
−h(t)

r(t)

)
< 0.

6 Conclusion

In this work, we presented necessary conditions for the existence of eigenfunctions of nonlinear fractional boundary value problems involving
the conformable fractional derivative of order α ∈ (1, 2) by applying the maximum principle theorem. We estimated lower and upper bounds
for the eigenvlues associated with the eigenfunctions. We also provided a sufficient condition for the nonexistence of ordered solutions for the
fractional boundary value problems by transferring the problem into an equivalent weakly singular integral equation. We gave two examples
supporting our theoretical results.
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1 Introduction

In this study, we investigate concepts of convergences in variable Lebesgue spaces connected with Laplace-Bessel differential operator

∆B :=

k∑
i=1

Bi +

n∑
i=k+1

∂2

∂x2i
, Bi =

∂2

∂x2i
+

γi
xi

∂

∂xi
, 1 ≤ k ≤ n.

In variable Lebesgue spaces, there are three types of convergence: modular convergence, norm convergence and measure convergence. We will
examine the relationship between norm, modular, and measure convergence in Lp(·),γ(Rn

k,+). Also, we prove that Lp(·),γ(Rn
k,+) are Banach

spaces.
Variable Lebesgue spaces which have first been considered by Orlicz [2] and have a long history, play a key role in harmonic analysis

theory. Indeed, these spaces are extensions of classical Lebesgue spaces by taking the exponent function p(·) instead of the constant exponent
p. Therefore, they have many properties similar properties with Lp,γ(Rn

k,+). Of course, they also differ in many ways and for this reason there
is an increasing interest on variable Lebesgue spaces.

The motivation of this paper is to study fundamental concepts of analysis such as convergence, completeness in variable Lebesgue spaces.
Then, we examine the relationship between norm, modular, and measure convergence in Lp(·),γ(Rn

k,+). Also, we prove that Lp(·),γ(Rn
k,+)

are Banach spaces. Now, we are ready to recall important definitions and notations.
Let x = (x′, x′′), x′ = (x1, . . . , xk) ∈ Rk and x′′ = (xk+1, . . . , xn) ∈ Rn−k. Denote Rn

k,+ = {x ∈ Rn : x1 > 0, . . . , xk > 0, 1 ≤
k ≤ n}, γ = (γ1, . . . , γk), γ1 > 0, . . . , γk > 0 and |γ| = γ1 + . . .+ γk.

Let P(Rn
k,+) =

{
p(·) : Rn

k,+ → [1,∞] : p(·) is measurable
}

. Also let any element of P(Rn
k,+) is said to be a variable exponent function

and also let

p+ := ess sup
x∈Rn

k,+

p(x), p− := ess inf
x∈Rn

k,+

p(x),

satisfying the conditions for all |x− y| ≤ 1

2
, x, y ∈ Rn

k,+,

|p(x)− p(y)| ≤ A0

− log |x− y| ,

and

|p(x)− p∞| ≤ A∞
log(e+ |x|) .
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Here p∞ = lim
x→∞

p(x) > 1. If the above inequalities hold for p(·), then we denote it by p(·) ∈ P log(Rn
k,+), and p(·) ∈ P log

∞ (Rn
k,+), respec-

tively. Moreover, if p(·) provides both of inequalities, then it is denoted by p(·) ∈ LH(Rn
k,+). As in classical Lebesgue spaces, there exist

three cases for p(x), i.e., p(x) = 1, p(x) = ∞ or 1 < p(x) < ∞. Therefore, three canonical subsets on Rn
k,+ are introduced as follows:

(Rn
k,+)∞ = {x ∈ Rn

k,+ : p(x) = ∞},

(Rn
k,+)1 = {x ∈ Rn

k,+ : p(x) = 1},

(Rn
k,+)0 = {x ∈ Rn

k,+ : 1 < p(x) < ∞}.

For x ∈ Rn
k,+, conjugate exponent function is given by

1

p(·) +
1

p′(·) = 1.

Then variable Lebesgue space is defined as follows:

Lp(·),γ(R
n
k,+) :=

{
f : ∥f∥Lp(·),γ(Rn

k,+) = inf
{
µ > 0 : ρp(·),γ (f/µ) ≤ 1

}
< ∞

}
,

where f is a measurable function, p(·) ∈ P(Rn
k,+) and

ρp(·),γ(f) :=

∫
Rn

k,+\(Rn
k,+)∞

|f(x)|p(x)(x′)γdx+ ∥f∥L∞,γ(Rn
k,+)∞ < ∞.

The next proposition follows easily from [1].

Proposition 1. f ∈ Lp(·),γ(Rn
k,+) if and only if

ρp(·),γ(f) =

∫
Rn

k,+

|f(x)|p(x)(x′)γdx < ∞,

where p(·) ∈ P(Rn
k,+) and p+ < ∞.

Lemma 1. Let p(·) ∈ P(Rn
k,+). If ∥f∥p(·),γ ≤ 1, then ρp(·),γ(f) ≤ ∥f∥p(·),γ and if ∥f∥p(·),γ > 1, then ρp(·),γ(f) ≥ ∥f∥p(·),γ .

Proof: If ∥f∥p(·),γ = 0, then f ≡ 0 and ρp(·),γ(f) = 0. If 0 < ∥f∥p(·),γ ≤ 1, since the modular ρp(·),γ is convex, then we have

ρp(·),γ(f) = ρp(·),γ

(
∥f∥p(·),γ

f

∥f∥p(·),γ

)

≤ ∥f∥p(·),γρp(·),γ

(
f

∥f∥p(·),γ

)
≤ ∥f∥p(·),γ .

If ∥f∥p(·),γ > 1, then one can write ρp(·),γ(f) > 1. Also if ρp(·),γ(f) ≤ 1, then ∥f∥p(·),γ ≤ 1. But then we have

ρp(·),γ

(
f

ρp(·),γ

)
=

∫
Rn

+\(Rn
+)∞

(
|f(x)|

ρp(·),γ(f)

)p(x)

(x′)γdx+ ρp(·),γ(f)
−1∥f∥L∞,γ((Rn

+)∞)

≤
∫
Rn

+\(Rn
+)∞

|f(x)|p(x)ρp(·),γ(f)
−1(x′)γdx+ ρp(·),γ(f)

−1∥f∥L∞,γ((Rn
+)∞) = 1.

Consequently, we get ∥f∥p(·),γ ≤ ρp(·),γ(f). This completes the proof. □

2 Convergence in Lp(·),γ(Rn
k,+)

In this section, we first give the relationship between convergences with respect to modular, norm and measure in Lp(·),γ(Rn
k,+).

Given {fi} ⊂ Lp(·),γ(Rn
k,+), it is said that {fi} converges with respect to norm to f ∈ Lp(·),γ(Rn

k,+) if lim
i→∞

∥f − fi∥p(·),γ = 0. If there

exists λ > 0 such that ρp(·),γ(λ(f − fi)) → 0 as i → ∞, then it is said that fi converges to f with respect to modular. Finally, given ε > 0, if

lim
i→∞

ν
{∣∣{x ∈ Rn

k,+ : |f(x)− fi(x)| ≥ ε
}∣∣

γ
< ε
}
= 0

holds, then it is said that {fi} converges with respect to measure.
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Theorem 1. Let p(·) ∈ P(Rn
k,+) and for all i ∈ N, {fi} ⊂ Lp(·),γ(Rn

k,+) nonnegative functions such that fi increases to a function f
pointwise a.e. Then f ∈ Lp(·),γ(Rn

k,+) and ∥fi∥p(·),γ → ∥f∥p(·),γ or f ̸∈ Lp(·),γ(Rn
k,+) and ∥fi∥p(·),γ → ∞.

Proof: Since {fi} is an increasing sequence, {∥fi∥p(·),γ} is also increasing and so it either converges or diverges to ∞. If f ∈ Lp(·),γ(Rn
k,+),

then ∥fi∥p(·),γ ≤ ∥f∥p(·),γ since fi ≤ f . Otherwise, since fi ∈ Lp(·),γ(Rn
k,+), we have ∥fi∥p(·),γ < ∞ = ∥f∥p(·),γ . In both cases it is

sufficient to show that there holds µ < ∥fi∥p(·),γ for any µ < ∥f∥p(·),γ , and for all sufficiently large i.
Fix µ > 0. Then it is obvious that ρp(·),γ(f/µ) > 1 and from monotone convergence theorem, we have

ρp(·),γ(f/µ) =

∫
Rn

+\(Rn
+)∞

(
|f(x)|
µ

)p(x)

(x′)γdx+ µ−1∥f∥L∞,γ((Rn
+)∞)

= lim
i→∞

(∫
Rn

+\(Rn
+)∞

(
|fi(x)|

µ

)p(x)

(x′)γdx+ µ−1∥fi∥L∞,γ((Rn
+)∞)

)
= lim

i→∞
ρp(·),γ(fi/µ).

Thus, ρp(·),γ(fi/µ) > 1 and µ < ∥fi∥p(·),γ for all sufficiently large i. Therefore, we complete the proof. □

Now, we will give the analog of Fatou’s Lemma.

Theorem 2. Let p(·) ∈ P(Rn
k,+). Assume that the sequence {fi} ⊂ Lp(·),γ(Rn

k,+) such that fi → f pointwise a.e. If lim inf
i→∞

∥fi∥p(·),γ < ∞,

then f ∈ Lp(·),γ(Rn
k,+) and ∥f∥p(·),γ ≤ lim inf

i→∞
∥fi∥p(·),γ .

Proof: Firstly, we will define a sequence gi(x) = infi≤m |fm(x)|. Then gi(x) ≤ |fm(x)| for all i ≤ m and thus gi ∈ Lp(·),γ(Rn
k,+).

Furthermore, {gi} is an increasing sequence and

lim
i→∞

gi(x) = lim inf
m→∞

|fm(x)| = |f(x)|

for x ∈ Rn
k,+ a.e. by its definition. From Theorem 1, we get

∥f∥p(·),γ = lim
i→∞

∥gi∥p(·),γ ≤ lim
i→∞

(
inf
i≤m

∥fm∥p(·),γ
)
= lim inf

i→∞
∥fi∥p(·),γ < ∞,

and f ∈ Lp(·),γ(Rn
k,+). Thus, this completes the proof. □

Notice that unlike the above theorems, to obtain the analog of dominated convergence theorem we have to suppose p+ < ∞. The following
theorem associated with convergence with respect to norm is required to convergence with respect to modular.

Theorem 3. Let p(·) ∈ P(Rn
k,+) and p+ < ∞. For {fi} ⊂ Lp(·),γ(Rn

k,+) and f ∈ Lp(·),γ(Rn
k,+), ∥fi − f∥p(·),γ → 0 if and only if

ρp(·),γ(f − fi) → 0.

Proof: Assume that {fi} converges with respect to norm. Then, from Lemma 1, we obtain

ρp(·),γ(f − fi) ≤ ∥f − fi∥p(·),γ ≤ 1,

for all sufficiently large i. Thus, ρp(·),γ(f − fi) → 0.
To obtain the converse, let µ < 1 be fixed. Then, we get

ρp(·),γ

(
f − fi

µ

)
≤
(
1

µ

)p+

ρp(·),γ(f − fi).

This implies that ρp(·),γ
( f−fi

µ

)
≤ 1 for all i sufficiently large. Equivalently, ∥f − fi∥p(·),γ ≤ µ for all sufficiently large i. Since µ is arbitrary,

fi → f with respect to norm. Therefore, we complete the proof. □

Theorem 4. Let p(·) ∈ P(Rn
k,+) and p+ < ∞. If there exists a sequence {fi} such that fi → f pointwise a.e., and there exists g ∈

Lp(·),γ(Rn
k,+) such that |fi(x)| ≤ g(x) a.e., then f ∈ Lp(·),γ(Rn

k,+) and lim
i→∞

∥f − fi∥p(·),γ = 0.

Proof: From Proposition 1, we have

|f(x)− fi(x)|p(x) ≤ 2p(x)−1
(
|f(x)|p(x) + |fi(x)|p(x)

)
≤ 2p+ |g(x)|p(x) ∈ L1,γ(Rn

+).

Therefore, from the dominated convergence theorem on L1,γ(Rn
k,+), ρp(·),γ(f − fi) → 0 as i → 0 and so ∥f − fi∥p(·),γ → 0, by Theorem

3. Thus, we complete the proof. □
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Theorem 5. Let p(·) ∈ P(Rn
k,+). If there exists the sequence {fi} ⊂ Lp(·),γ(Rn

k,+) such that ∥f − fi∥p(·),γ → 0, then the sequence {fi}
converges to f with respect to measure.

Proof: Assume that there exists a sequence {fi} converges to f with respect to norm but not with respect to measure. And we also assume that
there exists 0 < ε < 1 such that,

Ei := |{x ∈ Rn
k,+ : |f(x)− fi(x)| ≥ ε}|γ ≥ ε,

for all i. Since there exists |Ei ∩ (Rn
k,+)∞|γ ≥ ε/2 or |Ei \ (Rn

k,+)∞|γ ≥ ε/2 for each i, by taking another subsequence we suppose that
one of these inequalities holds for all i.

If |Ei ∩ (Rn
k,+)∞|γ ≥ ε/2 for all i, then we find

∥f − fi∥Lp(·),γ ≥ ∥(f − fi)χ(Rn
k,+)∞∥Lp(·),γ = ∥f − fi∥L∞,γ((Rn

k,+)∞) ≥ ε.

Then, this is a contradiction. If |Ek \ (Rn
k,+)∞|γ ≥ ε/2 for all k, then we get

ρp(·),γ

(
f − fk
ε2/2

)
≥

∫
Rn

k,+\(Rn
k,+)∞

(
|f(x)− fk(x)|

ε2/2

)p(x)

(x′)γdx

≥
∫
Ek\(Rn

k,+)∞

(
2

ε

)p(x)

(x′)γdx ≥
(
2

ε

)p−

|Ek \ (Rn
k,+)∞| ≥ 1.

Therefore, there exists ∥f − fi∥Lp(·),γ ≥ ε2/2 > 0. Again, it is a contradiction. Thus, if the sequence {fi} ⊂ Lp(·),γ(Rn
k,+) converges to f

with respect to norm, then the sequence {fi} converges to f in measure. □

Theorem 6. Let p(·) ∈ P(Rn
k,+). Assume that the sequence {fi} ⊂ Lp(·),γ(Rn

k,+) converges with respect to norm to f ∈ Lp(·),γ(Rn
k,+).

Then there exists a subsequence {fij} and g ∈ Lp(·),γ(Rn
k,+) such that fij → f pointwise a.e. and |fij (x)| ≤ g(x) for a.e. x ∈ Rn

k,+.

Proof: From Theorem 5, we have a subsequence {fij} such that fij → f pointwise a.e. Furthermore, since a convergent sequence is also
Cauchy, we can fix ij large enough for each j, ∥fij+1

− fij∥p(·),γ ≤ 2−j .
Define for each j,

hj(x) =

j−1∑
m=1

|fim+1
(x)− fim(x)|,

which implies {hj} is an increasing and pointwise convergent to h. Therefore, we have

∥hj∥p(·),γ ≤
j−1∑
m=1

2−m ≤ 1.

By monotone convergence theorem, there exists h ∈ Lp(·),γ(Rn
k,+). But, we get

|fij (x)− f1(x)| ≤
j−1∑
m=1

|fim+1
(x)− fim(x)| = hj(x) ≤ h(x),

for every j and a.e. x ∈ Rn
k,+. Hence, if we fix g = h+ |f1|, we have g ∈ Lp(·),γ(Rn

k,+) and |fij (x)| ≤ g(x) a.e. □

Now, we give the relationship between these convergence types.

Theorem 7. Let p(·) ∈ P(Rn
k,+), p+ < ∞, f ∈ Lp(·),γ(Rn

k,+) and a sequence {fi} ⊂ Lp(·),γ(Rn
k,+). Then the followings are equivalent:

(i) fi → f with respect to norm,
(ii) fi → f with respect to modular,
(iii) fi → f with respect to measure and for some λ > 0, ρp(·),γ(λfi) → ρp(·),γ(λf).

Proof: The equivalence of (i) and (ii) has been proved in Theorem 3. We will now prove the equivalence of (ii) and (iii).
To prove that (ii) implies (iii), by Theorem 5, notice that convergence with respect to norm implies convergence with respect to measure. To

finish the proof of this argument we will obtain that convergence with respect to modular means ρp(·),γ(λfi) → ρp(·),γ(λf) for λ = 1.
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If 1 ≤ p < ∞ and u, v ≥ 0, by using the mean value theorem, then there holds

|up − vp| ≤ pmax{up−1, vp−1}|u− v| ≤ p(up−1 + vp−1)|u− v|.

Therefore, we have

|ρp(·),γ(f)− ρp(·),γ(fi)| ≤
∫
Rn

k,+

∣∣∣|f(x)|p(x) − |fi(x)|p(x)
∣∣∣ (x′)γdx

≤ p+

∫
Rn

k,+

(
|f(x)|p(x)−1 − |fi(x)|p(x)−1

)
|f(x)− fi(x)|(x′)γdx.

To estimate the RHS, we write Rn
k,+ = (Rn

k,+)1 ∪ (Rn
k,+)0. For the integral on (Rn

k,+)1, we can write

p+

∫
(Rn

k,+)1

(
|f(x)|p(x)−1 + |fi(x)|p(x)−1

)
|f(x)− fi(x)|(x′)γdx

≤ 2p+

∫
(Rn

k,+)1

|f(x)− fi(x)|p(x)(x′)γdx

≤ 2p+ρp(·),γ(f − fi).

Since convergences with respect to modular and norm are equivalent, RHS goes to 0 (i → ∞).
To calculate the integral on (Rn

k,+)0, let ε, 0 < ε < 1/4 be fixed. Then by Young’s inequality, we have

p+

∫
(Rn

k,+)0

(
|f(x)|p(x)−1 + |fi(x)|p(x)−1

)
|f(x)− fi(x)|(x′)γdx

≤ p+

∫
(Rn

k,+)0

εp
′(x)

p′(x)

(
|f(x)|p(x)−1 + |fi(x)|p(x)−1

)p′(x)
(x′)γdx

+ p+

∫
(Rn

k,+)0

ε−p(x)

p(x)
|f(x)− fi(x)|p(x)(x′)γdx

= I1 + I2.

First, let us calculate I2. Since p(x) > 1 for all x ∈ (Rn
k,+)0, we get

I2 ≤ p+ρp(·),γ(ε
−1(f − fi)).

To estimate I1, we use the following inequalities:

up + vp ≤ max{1, 21−p}(u+ v)p

(u+ v)p ≤ max{1, 21−p}(up + vp)
p > 0, u, v > 0.

Since 1 < p′(x) < ∞ on (Rn
k,+)0, we have

I1 ≤ p+

∫
(Rn

k,+)0

εp
′(x) max{1, 22−p(x)}p

′(x) (|f(x)|+ |fi(x)|)p(x) (x′)γdx

≤ p+

∫
(Rn

k,+)0

(4ε)p
′(x) (2|f(x)|+ |f(x)− fi(x)|)p(x) (x′)γdx

≤ 4εp+

∫
(Rn

k,+)0

2p(x)−1
(
2p(x)|f(x)|p(x) + |f(x)− fi(x)|p(x)

)p(x)
(x′)γdx

≤ εp+22p++1ρp(·),γ(f) + εp+22p++1ρp(·),γ(f − fi).

Thus, we can write

p+

∫
(Rn

k,+)0

(
|f(x)|p(x)−1 + |fi(x)|p(x)−1

)
|f(x)− fi(x)|(x′)γdx

≤ εp+22p++1ρp(·),γ(f) + εp+22p++1ρp(·),γ(f − fi) + p+ρp(·),γ(ε
−1(f − fi)).

Hence, we have

lim sup
i→∞

p+

∫
(Rn

k,+)0

(
|f(x)|p(x)−1 + |fi(x)|p(x)−1

)
|f(x)− fi(x)|(x′)γdx

≤ εp+22p++1ρp(·),γ(f).

Since ε > 0 is arbitrary, we follow from |ρp(·),γ(f)− ρp(·),γ(fi)| → 0.
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Now assume that fi → f with respect to measure and ρp(·),γ(λfi) → ρp(·),γ(λf) for λ > 0. Since λfi → λf with respect to measure, we
may suppose that λ = 1. Then we have, for each ε, 0 < ε < 1,∣∣∣{x ∈ Rn

k,+ : |f(x)− fi(x)|p(x) > ε
}∣∣∣

γ
≤
∣∣∣{x ∈ Rn

k,+ : |f(x)− fi(x)|p(x) > ε1/p−
}∣∣∣

γ

≤
∣∣∣{x ∈ Rn

k,+ : |f(x)− fi(x)|p(x) > ε
}∣∣∣

γ
≤ ε.

Hence, |f(·)− fi(·)|p(·) → 0 with respect to measure.
Furthermore, we get ∣∣∣|f(x)|p(x) − |fi(x)|p(x)

∣∣∣ (1)

≤ p+
(
|f(x)|p(x)−1 + |fi(x)|p(x)−1

)
|f(x)− fi(x)|

≤ p+|f(x)|p(x)−1|f(x)− fi(x)|+ p+ max{1, 2p(x)−2}×

×
(
|f(x)|p(x)−1 + |fi(x)|p(x)−1

)
|f(x)− fi(x)|

≤ p+(2p++1)|f(x)|p(x)−1|f(x)− fi(x)|+ p+2p+ |f(x)− fi(x)|p(x).

Now let ε, 0 < ε < 1 be fixed. Since |f(·)|p(·) ∈ L1,γ(Rn
k,+), there exists K ≥ 1 such that

∣∣∣{x : |f(x)|p(x)−1 > K
}∣∣∣

γ
≤
∣∣∣{x : |f(x)|p(x) > K

}∣∣∣
γ
≤ ε/2.

From inequality (1), since fi → f and |f(·)− fi(·)|p(·) → 0 with respect to measure, we can write∣∣∣{x :
∣∣∣|f(x)|p(x) − |fi(x)|p(x)

∣∣∣ > ε
}∣∣∣

γ

≤
∣∣∣{x : |f(x)|p(x)−1 > K

}∣∣∣
γ
+
∣∣∣{x : p+(2p++1)K|f(x)− fi(x)| > ε/2

}∣∣∣
γ
+

+
∣∣∣{x : p+2p+ |f(x)− fi(x)|p(x) > ε/2

}∣∣∣
γ

<
ε

2
+

ε

2p+(2p+ + 1)K
+

ε

p+2p++1

<
ε

2
+

ε

4
+

ε

4
= ε.

for all sufficiently large i. Therefore, |fi(·)|p(·) → |f(·)|p(·) with respect to measure. Define

hi(x) = 2p+−1|fi(x)|p(x) + 2p+−1|f(x)|p(x) − |f(x)− fi(x)|p(x) ≥ 0,

then hi → 2p+ |f(·)|p(·) with respect to measure. Hence, from Fatou’s Lemma, we get

2p+

∫
Rn

k,+

|f(x)|p(x)(x′)γdx

≤ lim inf
i→∞

∫
Rn

k,+

2p+−1|fi(x)|p(x) + 2p+−1|f(x)|p(x) − |f(x)− fi(x)|p(x)(x′)γdx.

Since ρp(·),γ(fi) → ρp(·),γ(f), we follow from

lim sup
i→∞

∫
Rn

k,+

|f(x)− fi(x)|p(x)(x′)γdx ≤ 0.

Thus, fi → f with respect to modular. Therefore, we complete the proof. □

3 Completeness of Lp(·),γ(Rn
k,+)

Here, we are ready to obtain the completeness of Lp(·),γ(Rn
k,+), but we first need to prove the following theorem.
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Theorem 8. Let p(·) ∈ P(Rn
k,+) and {fi} ⊂ Lp(·),γ(Rn

k,+) be the sequence such that
∞∑
i=1

∥fi∥p(·),γ < ∞. Then there exists f ∈

Lp(·),γ(Rn
k,+) such that

k∑
i=1

fi → f in norm as k → ∞ and

∥f∥p(·),γ ≤
∞∑
i=1

∥fi∥p(·),γ .

Proof: Firstly, let us define F on Rn
k,+ and {Fk} as follows:

F (x) =

∞∑
k=i

|fi(x)|, Fk(x) =

k∑
i=1

|fi(x)|.

Then the sequence {Fk} is nonnegative and increasing pointwise a.e. to F . Furthermore, there exists Fk ∈ Lp(·),γ(Rn
k,+), and its norm is

uniformly bounded for each k, since

∥Fk∥p(·),γ ≤
k∑

i=1

∥fi∥p(·),γ ≤
∞∑
i=1

∥fi∥p(·),γ < ∞.

Therefore, from Theorem 1, we have F ∈ Lp(·),γ(Rn
k,+) .

Since F is finite a.e., {Fk} converges pointwise a.e. Therefore, if we can define {Gk} by

Gk(x) =

k∑
i=1

fi(x),

then it is also pointwise convergent a.e., since absolute convergence means convergence. Let us denote this limit by f , i.e, Gk → f .
Now fix G0 = 0. Then Gk −Gj → f −Gj pointwise a.e. for j ≥ 0. Moreover, we have

lim inf
k→∞

∥Gk −Gj∥p(·),γ ≤ lim inf
k→∞

k∑
i=j+1

∥fi∥p(·),γ =

∞∑
i=j+1

∥fi∥p(·),γ < ∞.

From Theorem 2, if j = 0, then we get

∥f∥p(·),γ ≤ lim inf
k→∞

∥Gk∥p(·),γ ≤
∞∑
i=1

∥fi∥p(·),γ < ∞.

Also, we can write, for each j,

∥f −Gj∥p(·),γ ≤ lim inf
k→∞

∥Gk −Gj∥p(·),γ ≤
∞∑

i=j+1

∥fi∥p(·),γ ,

since the sum on the RHS goes to 0. Hence, Gj → f with respect to norm. Therefore, we complete the proof. □

Let us state the completeness of Lp(·),γ(Rn
k,+) which is a corollary of Theorem 8. This result also means that Lp(·),γ(Rn

k,+) is Banach
space for 1 < p− ≤ p(x) ≤ p+ < ∞.

Corollary 1. Let p(·) ∈ P(Rn
k,+). Lp(·),γ(Rn

k,+) is complete, i.e. every Cauchy sequence in Lp(·),γ(Rn
k,+) is also convergent.

Proof: Let {fi} ⊂ Lp(·),γ(Rn
k,+) be a Cauchy sequence. Fix i1 such that ∥fk − fj∥p(·),γ < 2−1 for k, j ≥ i1, fix i2 such that ∥fk −

fj∥p(·),γ < 2−2 for k, j ≥ i2 and so on. This gives a subsequence {fij}, ij < ij+1, such that

∥fij+1
− fij∥p(·),γ < 2−j .

Let {gj} be defined by g1 = fi1 and gj = fij − fij−1
for j > 1. Then for all j, we have the telescoping sum

j∑
k=1

gk = fij . Furthermore, we

obtain

∞∑
j=1

∥gj∥p(·),γ ≤ ∥fi1∥p(·),γ +

∞∑
j=1

2−j < ∞.

Hence, from Theorem 8, there exists f ∈ Lp(·),γ(Rn
k,+) such that fij → f in norm.
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As a consequence of this, we have

∥f − fi∥p(·),γ ≤ ∥f − fij∥p(·),γ + ∥fij − fi∥p(·),γ .

Since {fi} is a Cauchy sequence, we can get the RHS as small as desired. Therefore, fi → f with respect to norm. This completes the
proof. □

4 Conclusion

In this paper, the concepts of convergence in variable Lebesgue space has been investigated. In this space, there exists three types of
convergence: convergences with respect to modular, norm, measure. The relationship between these convergences has been studied.
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Abstract: The notion of sequentially open set is a generalization of the notion of open set in topological spaces since every open
set is in fact a sequentially open set. According to this fact, in 2019, Akız and Koçak introduced the notion of sequentially Hausdorff
spaces which also a generalization of Hausdorff spaces. That is, every Hausdorff space is a sequentially Hausdorff space. It is
very interesting that a significant part of the properties provided by Hausdorff spaces are also provided for sequentially Hausdorff
spaces. In this study, we introduce the notion of a sequentially T3−space and investigate its properties. We also give the relation
between sequentially T3 property and other well-known separation properties.

Keywords: Regular Hausdorff (T3) space, Sequentially open set, Sequentially space.

1 Introduction

In topology and other branches of mathematics, the Hausdorff space concept is the most used axiom among separation axioms. A Hausdorff
space is a topological space in which any two distinct points have discrete open neighborhoods. The limit of a convergent sequence in a
Hausdorff topological space is unique [1]-[5]. One of the two important spaces among Hausdorff spaces is regular Hausdorff (T3) spaces and
the other is normal Hausdorff (T4) spaces.

With the help of the concept of convergence in sequences, sequentially open and sequentially closed sets, which are more general than
open and closed sets in topological spaces, are defined [6]-[10]. Every open set is sequentially open, but the converse is not always true. In
sequentially spaces, on the other hand, the concepts of openness and sequentially openness are equivalent to each other. These concepts were
later extended to different subjects of topological spaces. One of them is the sequentially connected topological spaces, which have no other
sequentially open and sequentially closed subsets than empty set. Every sequentially connected space is connected [11]-[14]. Later, under the
title of G−method, G−sequentially openness, G−sequentially closure, G−sequentially continuity [15], G−sequentially compactness [16],
G−continuity [17], G−convergence, G−sequentially connectivity concepts have been studied [18]-[20].

The concept of sequentially Hausdorff property, which is a broader construct than the concept of Hausdorff property, was recently introduced
and exemplified by Akız and Koçak [21]. If any two distinct points in a space have discrete sequentially open neighbourhoods, this space is
called a sequentially Hausdorff. Every Hausdorff space is a sequentially Hausdorff. In sequentially spaces, these two concepts are equivalent.
After sequentially Hausdorff space concept defined by Akız and Koçak [21], the sequentially definition of other separation axioms and the
examination of their properties became a matter of curiosity.

The most important goal in general point-set topology theory is to discover the topological properties, which is a very useful tool in
determining whether any two spaces are homeomorphic according to the relation of being homeomorphic, which is called isomorphism of
topological spaces. All separation axioms known in the literature are topological properties. As a result of obtaining some separation axioms
using sequentially deficits, new topological properties have emerged in recent years.

In this study, it is aimed to define the characteristics of being a sequentially T3−space and a sequentially T4−space, to examine in detail,
and to investigate the results and methods used in previous studies on T3 and T4−spaces. In addition, by using these methods, it is aimed to
examine the properties of sequentially regular and sequentially normal spaces, which are more sensitive topological properties, in a sequentially
sense, and to show whether these new properties are also topological properties.

2 Preliminaries

Let recall some preliminary definitions and properties.

Definition 1. [8, 9] A subset U of a topological space X is called sequentially open subset if every convergent sequence with a limit point in
U has finitely many terms in X\U .

Remark 1. Here note that, according to the definition given above, every open subset of a topological space is a sequentially open subset.

The converse of the fact given in the remark above is not true in general. That is, a sequentially open subset of a topological space need not
to be an open subset. In fact, a topological space whose open subsets and sequentially open subsets are coincide is called a sequentially space
[8, 9].
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It is easy to see that in a topological space X the union of any collection of sequentially open subsets of X is again a sequentially open
subset. However, this is not always true for intersection, even for finitely many sequentially open subsets.

Definition 2. Let X be a topological space and let A be a subset of X . Then the union of sequentially open subsets which contained in A is
called the sequentially interior of A and denoted by s− int(A).

Since the union of any collection of sequentially open subsets of a topological space is again a sequentially open subset then we can give a
different description of the notion of sequentially interior as follows: Let SOA be the collection of sequentially open subsets of a topological
space X which contained in A ⊆ X . Thus

s− int(A) =
⋃

G∈SOA

G

For a subset A of a topological space X , one can see that int(A) ⊆ s− int(A) ⊆ A and s− int(A) is sequentially open in X . Moreover, A
is sequentially open if and only if s− int(A) = A, i.e. A ⊆ s− int(A).

Definition 3. [8, 9] A subset F of a topological space X is called sequentially closed subset if F contains every limit points of convergent
sequences in F .

Proposition 1. [8, 9] A subset F of a topological space X is sequentially closed if and only if its complement in X , i.e. X\F , is sequentially
open.

Corollary 1. Every closed subset of a topological space is a sequentially closed subset. But the converse is not always true.

We know that, in a topological space X , the intersection of any collection of sequentially closed subsets of X is again a sequentially closed
subset. However, this is not always true for union of sequentially closed subsets, even for finitely many sequentially closed subsets.

Definition 4. Let X be a topological space and let A be a subset of X . Then the intersection of sequentially closed subsets which contains A
is called the sequentially closure of A and denoted by s− cl(A).

Since the intersection of any collection of sequentially closed subsets of a topological space is again a sequentially closed subset then we
can give a different description of the notion of sequentially closure as follows: Let SCA be the collection of sequentially closed subsets of a
topological space X which contains A ⊆ X . Hence

s− cl(A) =
⋂

F∈SOA

F

It is easy to see that, for a subset A of a topological space X , A ⊆ s− cl(A) ⊆ cl(A) and s− cl(A) is sequentially closed. Also, A is a
sequentially closed subset of X if and only if A = s− cl(A), i.e. s− cl(A) ⊆ A.

3 Sequentially T0−Space

First we recall the definition of a T0−space.

Definition 5. A topological space X is called a T0−space if for any two points x, y ∈ X there exist an open set G such that x ∈ G and y /∈ G
or x /∈ G and y ∈ G.

In this definition, if we take sequentially open set instead of open set then we get the definition of a sequentially T0−space.

Definition 6. A topological space X is called a sequentially T0−space, or briefly an sT0−space, if for any two points x, y ∈ X there exist a
sequentially open set G such that x ∈ G and y /∈ G or x /∈ G and y ∈ G.

Since every open set in a topological space is sequentially open set then we obtain the following proposition.

Proposition 2. Any T0−space is an sT0−space.

Corollary 2. A discrete topological space is an sT0−space.

Theorem 1. A topological space X is an sT0−space if and only if s− cl{x} ≠ s− cl{y} for each x, y ∈ X such that x ̸= y.

Proof: It is sufficient to prove the equivalent expression that “A topological space X is not an sT0−space if and only if there exist x, y ∈ X
with x ̸= y such that s− cl{x} = s− cl{y}”.

Assume that X is not an sT0−space. Then there exist distinct elements x, y ∈ X such that each sequentially open subset of X containing
x also contains y and each sequentially open subset of X containing y also contains x. Hence y must be in s− cl{x} since X\s− cl{x} is a
sequentially open subset of X not containing x. Similarly, x must be in s− cl{y}. Thus, s− cl{x} = s− cl{y}.

Conversely, let there exist distinct points x, y ∈ X such that s− cl{x} = s− cl{y}. Then each sequentially open subset of X containing
x also contains y and each sequentially open subset of X containing y also contains x. Thus, X is not an sT0−space. This completes the
proof. □

Corollary 3. A topological space X is an sT0−space if each singleton in X is a sequentially closed subset of X .
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4 Sequentially T1−Space

Now we remind the definition of a T0−space.

Definition 7. A topological space X is called a T1−space if for any two points x, y ∈ X there exist an open set G such that x ∈ G and y /∈ G,
and x /∈ G and y ∈ G.

In this definition, if we replace open sets with sequentially open set then we get the definition of a sequentially T1−space.

Definition 8. A topological space X is called a sequentially T1−space, or briefly an sT1−space, if for any two points x, y ∈ X there exist
sequentially open sets G and H such that x ∈ G and y /∈ G, and x /∈ H and y ∈ H .

Since every open set in a topological space is sequentially open set then we obtain the following proposition.

Proposition 3. Any T1−space is an sT1−space.

Corollary 4. A discrete topological space is an sT1−space.

From the definitions of an sT0−space and of an sT1−space one can easily figure the following proposition.

Proposition 4. Any sT1−space is an sT0−space.

Following theorem gives a criteria for a topological space to be an sT1−space.

Theorem 2. A topological space X is an sT1−space if and only if each singleton in X is a sequentially closed in X .

Proof: Let X be an sT1−space and let a ∈ X . Take x ∈ X\{a}. Since a ̸= x and X is an sT1−space there exist sequentially open sets G and
H such that x ∈ G and a /∈ G, and x /∈ H and a ∈ H . Here x ∈ G ⊆ X\{a} and hence X\{a} is sequentially open, i.e. {a} is sequentially
closed in X .

Conversely, assume that each singleton in X is a sequentially closed in X . Let x, y ∈ X with x ̸= y. If we take G := X\{y} and H :=
X\{x} then G and H become sequentially open sets from the assumption and it is obvious that x ∈ G and y /∈ G, and x /∈ H and y ∈ H .
Thus X is an sT1−space. This completes the proof. □

5 Sequentially T2 (Hausdorff) Spaces

In this subsection, first we remind the definition of a T2−space from [21].

Definition 9. A topological space X is called a T2 (Hausdorff) space if for any two points x, y ∈ X there exist non-intersecting open sets G
and H such that x ∈ G and y ∈ H .

In this definition, if we take sequentially open set instead of open set then we get the definition of a sequentially T1−space.

Definition 10. [21] A topological space X is called a sequentially T2 (Hausdorff) space, or briefly an sT2−space, if for any two points
x, y ∈ X there exist non-intersecting sequentially open sets G and H such that x ∈ G and y ∈ H .

Since every open set in a topological space is sequentially open set then we obtain the following proposition.

Proposition 5. [21] Any T2−space is an sT2−space.

Corollary 5. A discrete topological space is an sT2−space.

From the definitions of a sT1−space and of a sT2−space one can easily figure the following proposition.

Proposition 6. Any sT2−space is an sT1−space.

Example 1. [21] Let X be a non-empty set and let τ = {U ⊆ X | X\U is countable} ∪ {∅}. In this case, any subset of X is sequentially
open. Hence, for any distinct points x, y ∈ X we can take non-intersecting sequentially open sets as G := {x} and H := {y}. Thus (X, τ) is
an sT2−space.

Example 2. [21] Any first countable space is an sT2−space.

Proposition 7. [21] Let X be an sT2−space and let x, y ∈ X . If (xn) be a convergent sequence in X such that (xn) → x and (xn) → y
then x = y. In other words, every convergent sequence has a unique limit point in an sT2−space.

Proposition 8. [21] Any subspace of an sT2−space is also an sT2−space.

Proposition 9. [21] Being an sT2−space is a topological property.

Theorem 3. [21] A sequentially compact subset of an sT2−space is closed.
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6 Sequentially Regular Spaces

Let remind the definition of a regular space in point-set topology theory.

Definition 11. A topological space X is called a regular space if for any closed subset F ⊂ X and for any point x ∈ X\F there exist
non-intersecting open sets G and H such that F ⊆ G and x ∈ H .

In this definition, if we take sequentially open set and sequentially closed set instead of open set and closed set then we get the definition of
a sequentially regular space.

Definition 12. A topological space X is called a sequentially regular space if for any sequentially closed subset F ⊂ X and for any point
x ∈ X\F there exist non-intersecting sequentially open sets G and H such that F ⊆ G and x ∈ H .

Since every open (closed) set in a topological space is sequentially (closed) open set then we obtain the following proposition.

Proposition 10. Any regular space is a sequentially regular space.

Proposition 11. Topological spaces in which every sequentially open set is also a sequentially closed set are sequentially regular.

Proof: Let X be a topological space in which every sequentially open set is also a sequentially closed set and let F ⊂ X be a sequentially
closed set. Take an element x ∈ X\F . according to the assumption F and X\F are both sequentially open and sequentially closed. Thus we
can take G := F and H := X\F . This completes the proof. □

Corollary 6. A discrete topological space is sequentially regular.

7 Sequentially T3 (regular Hausdorff) Spaces

First we recall the definition of a T3−space.

Definition 13. A topological space X is called a T3−space if it is both a regular space and a T1−space.

Now we can give the generalized version of this separation axiom using sequentially open sets.

Definition 14. A topological space X is called a sequentially T3 (regular Hausdorff) space, or briefly an sT3−space if it is both a sequentially
regular space and an sT1−space.

Proposition 12. Any sT3−space is an sT2−space.

Proof: Let X be an sT3−space and let x, y ∈ X with x ̸= y. Since X is an sT3−space then it is both a sequentially regular space and an
sT1−space. We know from Theorem 2 that F := {x} is sequentially closed subset of X and y /∈ F . From the assumption that X being
a sequentially regular space there exist non-intersecting sequentially open sets G and H such that F ⊆ G and y ∈ H . That is there exist
non-intersecting sequentially open sets G and H such that x ∈ G and y ∈ H . Thus X is an sT2−space. This completes the proof. □

Diagram given in Figure 1 shows the relation between separation axioms and generalized separation axioms.

sT3 +3 sT2 +3 sT1 +3 sT0

T3 +3

KS

T2 +3

KS

T1 +3

KS

T0

KS

Fig. 1: Relation between Ti and sTi spaces for i = 0, 1, 2, 3.

8 Conclusion

In this proceeding, some basic concepts of sequentially separation axioms are obtained for the novel sequentially spaces theory, which is
presented by further generalized point-set topology concepts.
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1 Introduction

We recall from [1] the definition of the category S̃et. S̃et has non-empty sets with a congruence relation as objects and ordinary functions
between sets which respect to congruence relations. Objects of the category S̃et is denoted with XR where X is a non-empty set and R ⊆
X ×X is a congruence relation on X . See [1, Section 3] for details.

First we will introduce the concept of c-group which is a group up to a given congruence relation.

Definition 1. A c-semigroup is an object GR in S̃et with a morphism

m : GR ×GR −→ GR
(a, b) 7−→ m(a, b) = a+ b

in S̃et, i.e, m ∈ S̃et((G×G)R×R, GR) such that

(i) a+ (b+ c) ∼R (a+ b) + c for all a, b, c ∈ G;

a c-monoid is a c-semigroup GR which contains an element 0 such that

(ii) a+ 0 ∼R a and 0 + a ∼R a for all a ∈ G;

and a c-group [1] is a c-monoid GR such that

(iii) there exists an element −a such that a+ (−a) ∼R 0 and −a+ a ∼R 0 for each a ∈ G.

Let GR be a c-group. The element 0 ∈ G is called a zero element of GR, and for any a ∈ G the element −a ∈ G is called an inverse of a
[1].

Our main interest is in c-groups. So we will focus on the properties of c-groups. Other algebraic structures such as c-semigroups and
c-monoids could be very interesting topics for other researchers to investigate.

Remark 1. [1] Let GR be a c-group. Then we have the following:

1. if a ∼R b and c ∼R d for a, b, c, d ∈ G, then a+ c ∼R b+ d;
2. if 0 and 0′ are both zero elements in GR, then 0 ∼R 0′;
3. if −a and a′ are both inverses of a ∈ G, then a′ ∼R −a;
4. if a ∼R b then −a ∼R −b.

Following properties are group analogous properties such as cancellation, inverse of inverse and one variable equations.

Proposition 1. Let GR be a c-group, then
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1. a+ b ∼R a+ c implies b ∼R c, and b+ a ∼R c+ a implies b ∼R c for all a, b, c ∈ G;
2. −(−a) ∼R a for all a ∈ G;
3. −(a+ b) ∼R −b+ (−a) for all a, b ∈ G;
4. for all a, b ∈ G there exist x, y ∈ G such that a+ x ∼R b and y + a ∼R b which are x ∼R −a+ b and y ∼R b+ (−a).

Proof: These can be proven by easy calculations. So are omitted. □

Equality is an equivalence relation on any set. Thus any group can be considered as a c-group where the equivalence relation is equality “=".
So the c-group notion is a generalization of the group notion.

Remark 2. Let GR be a c-group and R′ is also a congruence relation on G such that R ⊆ R′. Then GR′ is also a c-group with the same
operation. Hence, since = ⊆R for any congruence relation R then any group G is a c-group with any of its congruence relation.

Following is a geometric example of a c-group.

Example 1. [1] Let X be a topological space and x ∈ X . The set P (X,x) of all closed paths at x is a c-group with the composition of paths.
Here the congruence relation ≃ is the homotopy of the paths.

Example 2. [1] Let Z∗ = Z\{0}. Define an equivalence relation on Z∗ by x ∼R y ⇔ xy > 0. Then Z∗ becomes a c-group with respect to
the multiplication. The number 1 is a zero element and an inverse for any number could be taken itself this number.

Following is the motivating example in [1].

Example 3. [1] In a categorical group C = (C0, C1, d0, d1, i,m) the set C1 of morphisms and the set C0 of objects are both c-groups. The
congruence relations are isomorphisms between arrows and between objects respectively. See [2] for details on categorical groups.

Definition 2. [1] Let GR be a c-group (resp. c-semigroup, c-monoid). If a+ b ∼R b+ a for all a, b ∈ G, then GR is called c-abelian (or
c-commutative) c-group (resp. c-semigroup, c-monoid).

In particular, if the operation is commutative (up to equality) then we use another term for that.

Definition 3. Let GR be a c-group (resp. c-semigroup, c-monoid). If a+ b = b+ a for all a, b ∈ G, then GR is called abelian c-group (resp.
c-semigroup, c-monoid).

Following is the extended version of Lemma 3.14 of [1].

Lemma 1. Let GR be a c-group (resp. c-semigroup, c-monoid). Then the quotient set G/R = {[a] | a ∈ G} becomes a group (resp. semigroup,
monoid) with the operation

m∗ : G/R×G/R −→ G/R
([a] , [b]) 7−→ [a] + [b] = [a+ b]

induced by m where [a] is the equivalence class of a ∈ G.

As a corollary of Lemma 1 we can also express the notion of a c-group in terms of diagrams as; an object GR of S̃et with a morphism
m : GR ×GR → GR, (a, b) 7→ m(a, b) = a+ b is a c-group if the diagrams given in Figure 1, Figure 2 and Figure 3 are commutative:

G×G×G

1G×m

��

m×1G // G×G
m // G

p

��
G×G

m
// G

p
// G/R

Fig. 1: Associativity diagram
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G× 1

π1

��

1G×0
// G×G

m

��

1×G

π2

��

0×1Goo

G

p
##

G

p

��

G

p
{{

G/R

Fig. 2: Identity element diagram

G

(1G,n)

��

(n,1G)

��

// 1 // G

p

��
G×G

m
// G

p
// G/R

Fig. 3: Inverse element diagram

where 1 is a zero object in the category S̃et, 1 → G is the unique initial morphism, G → 1 is the unique terminal morphism, n : G → G is
the inverse element morphism and p : G → G/R is the natural projection.

Remark 3. Clearly, if GR is a c-abelian c-group then G/R, with the induced operation, is an abelian group.

Example 4. Let P (X,x) be the c-group in Example 1. Then the group P (X,x)/≃ is the fundamental group π1(X,x) of X at x.

Example 5. Let Z∗
R be the c-group given in Example 2. Then Z∗/R is isomorphic to the group Z2.

Example 6. [1] Let C = (C0, C1, d0, d1, i,m) be a categorical group. Then

C/≈ = (C0/≈, C1/≈, d∗0, d
∗
1, i

∗,m∗)

becomes a strict categorical group which is also called by the name group-groupoid in [3].

Let GR and HS be two c-groups with zero elements 0G and 0H respectively. Then the product (G×H)R×S of GR and HS in S̃et is a
c-group with the zero element (0G, 0H) and (−g,−h) is the inverse element of (g, h) ∈ G×H . This c-group is called the direct product of
GR and HS . We will denote this c-group with GR ×HS .

2 Morphisms among c-groups

Definition 4. Let GR and HS be c-groups. A morphism of c-groups f : GR → HS is a morphism in S̃et such that f(a+ b) ∼S f(a) + f(b)
for any a, b ∈ G.

Remark 4. [1] Here note that, since f : GR → HS is a morphism in S̃et then a ∼R b implies f(a) ∼S f(b). Furthermore, f(0) ∼ 0 and
f(−a) = −f(a), for any a ∈ G.

It is easy to see that if f : GR → HS is a morphism of c-groups then the induced morphism

f∗ : G/R −→ H/S
[a] 7−→ f∗([a]) = [f(a)]

becomes a group homomorphism.

Example 7. Let X and Y be two topological spaces, x ∈ X and f : X → Y a continuous function. Then

f̄ : P (X,x) −→ P (Y, f(x))
α 7−→ f̄(α) = f ◦ α

is a morphism of c-groups, where P (X,x) and P (Y, f(x)) are c-groups and the congruence relation is homotopy of paths as in Example 1.

© CPOST 2023 231



Example 8. Let GR and G′
R′ be two c-groups. Assume that 0 and 0′ be two chosen zero elements of GR and G′

R′ , respectively. Then there
are four morphisms of c-groups;

GR
ı1

// GR ×G′
R′

π1oo
π2 // G′

R′
ı2

oo

given by ı1(g) = (g, 0′), ı2(g′) = (0, g′), π1(g, g′) = g and π2(g, g
′) = g′ for all g ∈ G and g′ ∈ G′ where GR ×G′

R′ is the direct product
c-group.

A strict morphism of c-groups f : GR → HS is a morphism of c-groups such that f(a+ b) = f(a) + f(b) for any a, b ∈ G. Clearly a
strict morphism of c-groups is a morphism of c-groups. Strict morphisms of c-groups are given under the name c-group morphisms in [1].

It is easy to see that composition of two morphisms of c-groups is again a morphism of c-groups and the identity function 1G on any c-group
GR is a morphism of c-groups. Hence c-groups and morphisms of c-groups forms a category which is denoted by cGr.

Definition 5. [1] Let f : GR → HS be a morphism of c-groups. The subset cKer f = {a ∈ G | f(a) ∼S 0H} is said to be c-kernel of the
c-group morphism f . The subset cIm f = {b ∈ H | ∃a ∈ G, f(a) ∼S b} is said to be the c-image of the morphism f .

We know from category theory a morphism in a category is called an isomorphism if it has inverse morphism. In the category cGr of c-
groups there is a special morphism which is called c-isomorphism [1]. Before giving the definition of c-isomorphism we need to remind the
equivalence relation between morphisms of c-groups with the same end points: Let f, f ′ : GR → HS be two morphisms of c-groups. Then we
write f ∼ f ′ if f(g) ∼S f ′(g) for all g ∈ G. This relation is clearly an equivalence relation on the set of morphisms of c-groups from GR to
HS .

Definition 6. [1] Let f : G → G′ be a morphism in cGr. f is called an isomorphism up to congruence relation or c-isomorphism if there
exist a morphism f ′ : G′ → G in cGr, such that ff ′ ∼ 1G′ and f ′f ∼ 1G.

3 Subobjects and ideals

Definition 7. [1] Let GR be a c-group and H be a subset of the underlying set of G. H is called a c-subgroup in GR if HS is a c-group with
the same operation on GR and the congruence relation S induced from R, i.e. S = R ∩ (H ×H). We denote this situation with HS ≲ GR.

Following notations come from [1]. Let GR be a c-group and H be a subset of G. If for an element a ∈ G there exists an element b ∈ H
such that a ∼R b then we write a ∈̃H . Obviously a ∈ H implies a ∈̃H but converse is not true in general. In fact c-subgroups satisfying this
condition are special (see Definition 9). If H and H ′ are two subsets of GR, then we write H⊂̃H ′ if for any h ∈ H we have h ∈̃H ′. If H⊂̃H ′

and H ′⊂̃H , then we write H ∼ H ′.

Proposition 2. Let GR be a c-group and H be a non-empty subset of G which is closed under the binary operation given on GR. Then
HS ≲ GR if and only if a+ (−b) ∈̃ H for all a, b ∈ H .

Proof: First assume that HS ≲ GR. Let a, b ∈ H . Since HS is a c-subgroup of GR then there exist an element b′ ∈ H such that −b ∼R b′.
By (i) of Remark 1, a+ (−b) ∼R a+ b′ and from closedness of HS under the operation we get a+ b′ ∈ H and hence a+ (−b) ∈̃ H .

Conversely, we assume that a+ (−b) ∈̃ H for all a, b ∈ H . Now we need to show that HS ≲ GR, i.e. HS is a c-group with the addition
and congruence relation S induced from GR. It is obvious that the operation is associative up to congruence relation. Since H is non-empty
then there is an element a in H and by the assumption a+ (−a) ∈̃H . Thus there exist an element 0′ ∈ H such that 0 ∼R 0′ and consequently
for any b ∈ H , 0′ + (−b) ∈̃ H . Since 0′ + (−b) ∼R −b then there exist an element b′ ∈ H such that b′ ∼S −b which acts as an inverse in
HS . □

As a consequence of this result we can give the following corollary.

Corollary 1. Let GR be a c-group and
{
(Hi)Si

| i ∈ I
}

a non-empty family of c-subgroups of GR. Then the intersection of all these
c-subgroups

HS =
(⋂

i∈I
Hi

)
(
⋂

i∈I Si)

is again a c-subgroup of GR.

Definition 8. Let GR be a c-group, A be a subset of G, and
{
(Hi)Si

| i ∈ I
}

be the family of all c-subgroups of GR containing A. Then the
c-subgroup

HS =
(⋂

i∈I
Hi

)
(
⋂

i∈I Si)

is called the c-subgroup of GR generated by A. This c-subgroup is denoted by ⟨A⟩.

A is called the set of generators of the c-subgroup ⟨A⟩. It should be noted that there could be another subset B of G such that ⟨A⟩ = ⟨B⟩
even though A ̸= B. If A is a finite set then ⟨A⟩ is called finitely generated c-subgroup. If A is a singleton then ⟨A⟩ is called cyclic
c-subgroup.

Proposition 3. Let GR be a c-group and H be a subset of the underlying set of G. Then HS ≲ GR if and only if H/S is isomorphic to a
subgroup of G/R.
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Proof: It is an obvious output of Lemma 1 and Proposition 2. □

Definition 9. [1] Let GR be a c-group. Then a c-subgroup HS of GR is called

1. connected if H ×H ⊆ R;
2. perfect if g ∈̃ H implies g ∈ H , for any g ∈ G.

Example 9. Let Z∗
R be the c-group given in Example 2. Then the c-subgroup (2Z+ 1)S of Z∗

R is neither connected nor perfect. However the
c-subgroup

(
Z+)

S
is both connected and perfect.

Definition 10. [1] Let GR be a c-group and HS ≲ GR. Then HS is called a normal c-subgroup or an ideal of GR if g + h− g ∈̃ HS for
any h ∈ H and g ∈ G.

If HS is an ideal of GR we will denote this situation with HS ◁̃ GR.
Let GR be a c-group, A,B ⊆ G and g ∈ G. Then the sets g +A and A+B are defined in the following way as in the group case:

g +A = {g + a | a ∈ A}
A+B = {a+ b | a ∈ A and b ∈ B} .

However we define new kind of subsets g+̃A and A+̃B of GR with

g+̃A = {x ∈ G | ∃a ∈ A, x ∼R g + a}

A+̃B = {x ∈ G | ∃a ∈ A and ∃b ∈ B, x ∼R a+ b} .

It is easy to see that the set A+̃B is the union of sets a+̃B for all a ∈ A.

Remark 5. In [1] it has been shown that the condition given in the definition of an ideal is equivalent to the condition g +HS − g ⊂̃ HS ,
and hence to the condition g +HS ∼ HS + g for any g ∈ G.

Proposition 4. Let GR be a c-group and N be a subset of G. Then NS ◁̃ GR if and only if N/S is isomorphic to a normal subgroup of G/R.

Proof: One can prove this using Lemma 1 and Proposition 2. □

Lemma 2. [1] Let GR and HS be c-groups and let f : GR → HS be a morphism of c-groups. Then

1. cKer f is a perfect ideal of GR, and
2. cIm f is perfect in HS .

Let GR be a c-group and NS ◁̃ GR. Now we remind the construction of the quotient object GR/NS as in [1] but using our notation. Consider
the set G/H =

{
g+̃N | g ∈ G

}
. The binary operation on this set is defined by (g+̃N) + (g′+̃N) = (g + g′)+̃N , for any g, g′ ∈ G. This

operation is well-defined, it is associative, 0+̃N is the zero element, and (−g)+̃N acts as an inverse for any g ∈ G. G/N becomes a c-group
with this operation where the congruence relation is “=" (equality), i.e. G/N becomes a group. Moreover p : G → G/N is a morphism of
c-groups which is called the canonical projection.

Lemma 3. [1] Let G be a c-group and N ◁̃ G. Then for any group G′ and any morphism of c-groups f : G → G′, if f(n) = 0 for any n ∈ N ,
there exists a unique morphism θ : G/N → G′ of c-groups such that θp = f . Moreover, if N is perfect in G, then N = cKer p.

G/N

θ∃!
��

G

p
??

f

// G′

4 Conclusion

The main purpose of defining c-groups is to generalize the categorical equivalence of crossed modules and group-groupoids given by Brown
and Spencer [4] for categorical groups. In this paper, some basic concepts of algebra such as sub-objects, ideals, transformations between such
objects are obtained for the new algebraic theory, which is presented by further generalized group theoretical concepts.
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convergence rate was supported by numerical examples.

Keywords: Iteration method, Continuous mapping, Convergence rate.

1 Introduction

Fixed-point iteration methods for certain classes of mappings are an important tool in fixed-point theory. What is meant here by a certain class
of mapping, is contraction, nonexpansive, Lipschitzian, etc. mapping types. All of the mappings mentioned here are continuous. However, in
general, not every continuous mapping can be expressed in one of these types. Throughout this work, we will consider X as a closed interval
on the real axis and g as a continuous self-function on X , and the set of all fixed points of g is shown as Fg . If X is bounded, we can say from
the Intermediate Value Theorem that g has at least one fixed point. In this context, a lot of iteration methods have been defined and studied by
numerous mathematicians. Now let’s remind some of them:
The following methods are called Mann [1] and Ishikawa [2] iteration methods, respectively:

un+1 = (1− αn)un + αng(un), (n ∈ N), (1)

and {
xn+1 = (1− αn)xn + αng(yn),

yn = (1− βn)xn + βng(xn),
(2)

in which {αn}∞n=1 and {βn}∞n=1 are sequences in [0, 1].
Rhoades [3, 4] proved the strong convergence of the Mann iteration for the continuous and non-decreasing mapping classes defined in the
closed unit interval and showed that the Ishikawa iteration is faster than the Mann iteration for such mappings.
Also, Borwein and Borwein [5] and Qing and Qihou [6] gave some convergence theorems for Mann and Ishikawa iterations, respectively, in an
arbitrary interval by using continuous mappings.
Noor [7] defined the following iteration by generalizing the Ishikawa and thus the Mann iteration: xn+1 = (1− αn)xn + αng(yn),

yn = (1− βn)xn + βng(zn),
zn = (1− γn)xn + γng(xn),

(3)

in which {αn}∞n=1, {βn}∞n=1 and {γn}∞n=1 are sequences in [0, 1]. It is obvious that Ishikawa and Mann iteration methods can be obtained
by special selections of the control sequences here.
In addition, Phuengrattana and Suantai [8] proved that the sequence obtained from this iteration converges strongly to the fixed point of the
continuous function g defined in an arbitrary interval and they defined the following iteration method called SP: un+1 = (1− αn) vn + αng(vn),

vn = (1− βn)wn + βng(wn),
wn = (1− γn)un + γng(un),

(4)

in which {αn}∞n=1, {βn}∞n=1 and {γn}∞n=1 are sequences in [0, 1]. They proved that this method converges strongly to the fixed point of a
continuous function g. Also, by comparing the convergence rates of Ishikawa, Mann, Noor, and SP-iterations, they proved that the SP-iteration
is better (faster) than the others.
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Gürsoy and Karakaya [9] introduced Picard-S iteration method as follows:
u1 ∈ E,

un+1 = g (vn)
vn = (1− αn) g (un) + αng (wn)

wn = (1− βn)un + βng (un) (n ∈ N),
(5)

in which {αn}∞n=1, {βn}∞n=1 ∈ [0,1].
Now, we give PMP iteration method which is defined by Karakaya et al. [10] as follows: xn+1 = g(yn)

yn = (1− αn) zn + αng(zn)
zn = g(xn) (n ∈ N),

(6)

in which {αn}∞n=1 ∈ [0,1].
Now, we will give some useful facts to proofs of our main results.

Lemma 1 ([11]). Let E be a closed interval on the real line and g : E → E be a continuous and non-decreasing function. Let {un}∞n=1 be a
sequence defined by iteration method (5) for u1 ∈ E, with control sequence {αn}∞n=1 ∈ [0,1]. Then the following hold:

i. If g(u1) < u1, then g(un) ≤ un for all n ≥ 1 and {un}∞n=1 is non-increasing.
ii. If g(u1) > x1, then g(un) ≥ un for all n ≥ 1 and {un}∞n=1 is non-decreasing.

Proposition 1. Let E be a closed interval on the real line and g : E → E be a continuous, non-decreasing function and {αn}∞n=1 and
{βn}∞n=1 ∈ [0,1]. Also for the initial values u1 ∈ E, let {un}∞n=1 be defined by (5). Then, the following assertions are true:

i. Fg is nonempty and bounded with u1 < inf {q ∈ E : q = g (q)}. If g (u1) < u1, then the sequence {un}∞n=1 defined by iteration method
(5) does not converge to a fixed point of g.

ii. Fg is nonempty and bounded with u1 > sup {q ∈ E : q = g (q)}. If g (u1) > u1, then the sequence {un}∞n=1 defined by iteration
method (5) does not converge to a fixed point of g.

Definition 1 ([8]). Let E be a closed interval on the real line and g : E → E be a continuous function. Suppose that {xn}∞n=1 and {sn}∞n=1
two iteration methods which converge to the fixed point q of g. Then, {xn}∞n=1 is said to converge faster than {sn}∞n=1 if

|xn − q| ≤ |sn − q| for all n ∈ N.

Theorem 1 ([12]). Let E be a closed interval on the real line and g : E → E be a continuous, non-decreasing function such that Fg is
nonempty and bounded and {αn}∞n=1, {βn}∞n=1, {γn}∞n=1 ∈ [0,1]. Also for the initial values x1 = u1 ∈ E, let {un}∞n=1 and {xn}∞n=1 be
defined by (4) and (6) respectively. If {un}∞n=1 converges to fixed point q ∈ Fg , then {xn}∞n=1 converges to the same fixed point q ∈ Fg .
Moreover,{xn}∞n=1 converges faster than {un}∞n=1.

2 Main Results

Lemma 2. Let E be a closed interval on the real line and g : E → E be a continuous and non-decreasing function. Let {xn}∞n=1 be a
sequence defined by iteration method (6) for x1 ∈ E, with control sequence {αn}∞n=1 ∈ [0,1]. Then the following hold:

i. If g(x1) < x1, then g(xn) ≤ xn for all n ≥ 1 and {xn}∞n=1 is non-increasing.
ii. If g(x1) > x1, then g(xn) ≥ xn for all n ≥ 1 and {xn}∞n=1 is non-decreasing.

Proof:

i. Let g(x1) < x1. Assume that g(xk) ≤ xk for k > 1. Then by (6) we have g(xk) = zk ≤ xk . Since g non-decreasing, we have g(zk) ≤
g(xk) = zk ≤ xk . Again using the same arguments, we obtain

g(zk) ≤ g(xk) = zk ≤ xk

g(yk) ≤ g(xk) = zk ≤ xk

and since
xk+1 = g(yk),

we have
xk+1 = g(yk) ≤ g(xk) = zk ≤ xk .

Using the non-decreasing property of g, we obtain

g(xk+1) ≤ xk+1 = g(yk) ≤ g(xk) = zk ≤ xk. (7)
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By induction, we get

g(xn) ≤ xn.

Hence

g(yn) ≤ g(xn).

Considering (7), we can conclude that

xn+1 = g(yn) ≤ g(xn) = zn ≤ xn, for all n ∈ N.

Therefore, the sequence {xn}∞n=1 is non-increasing.
ii. By using the same argument as in (i), we obtain the desired result.

□

Theorem 2. Let E be a closed interval on the real line and g : E → E be a continuous and non-decreasing function. Let {xn}∞n=1 be defined
by (6) for x1 ∈ E, with control sequence {αn}∞n=1 ∈ [0,1]. Then {xn}∞n=1 is bounded if and only if {xn}∞n=1 converges to a fixed point of g.

Proof: Assume that (xn)∞n=1 is bounded. If g(x1) = x1, we have

z1 = g (x1) = x1.
y1 = (1− α1) z1 + α1g (z1) = x1

x2 = g (y1) = x1

It is clear that xn = x1 and limn→∞ xn = x1, for all n ≥ 1. If g(x1) < x1 or g(x1) > x1, then, by Lemma 2, we obtain that (xn)∞n=1 is
non-increasing or non-decreasing. Since {xn}∞n=1 is bounded, it implies that {xn}∞n=1 is convergent. Since (xn)

∞
n=1 is convergent, there is a

limn→∞ xn = q ∈ E. Using the continuity of g and (xn)
∞
n=1 is bounded, we obtain {g (xn)}∞n=1 is bounded. In addition, iteration method

(6) can be edited as follows:

xn+1 = g (yn)

yn − zn = αn [g (zn)− zn]

zn = g (xn) .

We show in two steps that q is a fixed point of g.

Step 1. If g(x1) < x1, then g(xn) ≤ xn for all n ≥ 1 and since limn→∞ xn = q ∈ E, it is clear that limn→∞ g(xn) = g(q) ≤
limn→∞ xn = q ∈ E. Also, the following inequalty was obtained by Lemma 2:

xn+1 = g(yn) ≤ g(xn), for all n ∈ N.

Hence

q = lim
n→∞

xn+1 = lim
n→∞

g(yn) ≤ lim
n→∞

g(xn) = g(q).

It contradicts our assumption. Therefore, g(q) = q.
Step 2. If g(x1) > x1, then g(xn) ≥ xn for all n ≥ 1 and since limn→∞ xn = q ∈ E, it is clear that limn→∞ xn = q ≤ limn→∞ g(xn) =

g(q) ∈ E. Also, the following inequalty was obtained by Lemma 2:

xn+1 = g(yn) ≥ g(xn), for all n ∈ N.

Hence

q = lim
n→∞

xn+1 = lim
n→∞

g(yn) ≥ lim
n→∞

g(xn) = g(q).

It contradicts our assumption. Therefore, g(q) = q. Hence q is a fixed point of g and {xn}∞n=1 converges to q.

□

Lemma 3. Let E be a closed interval on the real line and g : E → E be a continuous and non-decreasing function. Let {xn}∞n=1 be defined
by (6) for x1 ∈ E, with control sequence {αn}∞n=1 ∈ [0,1]. Then, the following assertions are true:

i. If q ∈ Fg with x1 > q, then xn ≥ q for all n ≥ 1.
ii. If q ∈ Fg with x1 < q, then xn ≤ q for all n ≥ 1.

Proof:
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i. From our claim, q ∈ Fg with x1 > q. Since g is non-decreasing, we obtain g (x1) ≥ g (q). By iteration method (6), we have

z1 = g (x1) ≥ g (q) = q

y1 = (1− α1) z1 + α1g (z1) ≥ (1− α1) q + α1g (q) = q.

The above inequalities imply that g (z1) ≥ g (q) and g (y1) ≥ g (q). Again we re handle iteration method (6), we obtain

x2 = g (y1) ≥ g (q) = q.

Suppose that xk ≥ q for k > 2. Then g (xk) ≥ g (q) = q. By using iteration method (6), we have

zk = g (xk) ≥ g (q) = q

yk = (1− αk) zk + αkg (zk) ≥ (1− αk) q + αkg (q) = q.

Thus g (zk) ≥ g (q) = q and g (yk) ≥ g (q) = q. Also, we obtain

xk+1 = g (yk) ≥ g (q) = q.

By induction, we have
xn ≥ q for all n ≥ 1.

ii. Using the same arguments in (i) one can easily show this assertion. For this reason, the proof will not be given.

□

Lemma 4. Let E be a closed interval on the real line and g : E → E be a continuous, non-decreasing function and {αn}∞n=1 and {βn}∞n=1
∈ [0,1]. Also for the initial values x1 = u1 ∈ E, let {un}∞n=1 and {xn}∞n=1 be defined by (5) and (6) respectively. Then, the following
assertions are true:

i. If g (u1) < u1, then xn ≤ un for all n ≥ 1.
ii. If g (u1) > u1, then xn ≥ un for all n ≥ 1.

Proof:

i. Since x1 = u1 we have g (x1) < x1. By (6) and g is non-decreasing, we obtain

g (z1) ≤ g (x1) = z1 ≤ x1

and
g (y1) ≤ g (x1) = z1 ≤ x1.

Also from [11], we get
g (vn) ≤ g (wn) ≤ g (un) ≤ un.

Thus, by (6) and (5), we get

z1 − u1 = g (x1)− u1

≤ 0

it implies that z1 ≤ u1. That is, g (z1) ≤ g (u1),

z1 − w1 = g (x1)− (1− β1)u1 − β1g (u1)

= (1− β1) (gx1 − x1)

≤ 0

it implies that z1 ≤ w1. That is, g (z1) ≤ g (w1),

y1 − v1 = (1− α1) z1 + α1g (z1)− (1− α1) gu1 − α1g (w1)

= (1− α1) (z1 − gu1) + α1(gz1 − gw1)

≤ 0

it implies that y1 ≤ v1. That is, g (y1) ≤ g (v1) and

x2 − u2 = g (y1)− g (v1)

≤ 0
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it implies that x2 ≤ u2. That is, g (x2) ≤ g (u2). We suppose that xk ≤ uk, for k ∈ N. Then g (xk) ≤ g (uk). From Lemma 1, g (uk) ≤
uk and from Lemma 2 g (xk) ≤ xk. This follows that

g (xk) = zk ≤ xk ≤ uk.

From properties of g, we get
g (zk) ≤ g (uk) .

Also, by (6) and (5), we get

zk − wk = g (xk)− (1− βk)uk − βkg (uk)

≤ (1− βk) (gxk − uk) + βk(gxk − guk)

≤ 0

it implies that zk ≤ wk. That is, g (zk) ≤ g (wk) and

yk − vk = (1− αk) zk + αkgzk − (1− αk) guk − αkgwk

= (1− αk) (zk − guk) + αk(gzk − gwk)

≤ 0

it implies that yk ≤ vk. That is, g (yk) ≤ g (vk) and

xk+1 − uk+1 = g (yk)− g (vk)

≤ 0

we conclude that xk+1 ≤ uk+1. That is, g (xk+1) ≤ g (uk+1). By induction, we obtain the desired result xn ≤ un, for all n ≥ 1.
ii. Using the same arguments in (i), one can easily show this assertion. For this reason, the proof of (ii) will not be given.

□

Proposition 2. Let E be a closed interval on the real line and g : E → E be a continuous, non-decreasing function and {αn}∞n=1 ∈ [0,1].
Also for the initial values x1 ∈ E, let {xn}∞n=1 be defined by (6). Then, the following assertions are true:

i. Fg is nonempty and bounded with x1 < inf {q ∈ E : q = g (q)}. If g (x1) < x1, then the sequence {xn}∞n=1 defined by iteration method
(6) does not converge to a fixed point of g.

ii. Fg is nonempty and bounded with x1 > sup {q ∈ E : q = g (q)}. If g (x1) > x1, then the sequence {xn}∞n=1 defined by iteration
method (6) does not converge to a fixed point of g.

Proof:

i. By Lemma 2 and by assertion of (i), since {xn}∞n=1 is non-decreasing and x1 < inf {q ∈ E : q = g (q)}, respectively. Then, the
sequence {xn}∞n=1 defined by iteration method (6) does not converge to a fixed point of g.

ii. By Lemma 2 and by assertion of (i), since {xn}∞n=1 is non-increasing and x1 > sup {q ∈ E : q = g (q)}, respectively. Then, the
sequence {xn}∞n=1 defined by iteration method (6) does not converge to a fixed point of g.

□

Theorem 3. Let E be a closed interval on the real line and g : E → E be a continuous, non-decreasing function such that Fg is nonempty
and bounded and {αn}∞n=1, {βn}∞n=1, ∈ [0,1]. Also for the initial values x1 = u1 ∈ E, let {un}∞n=1 and {xn}∞n=1 be defined by (4) and
(6) respectively. If {xn}∞n=1 and {un}∞n=1 converge to the same fixed point q ∈ Fg then, the iteration method (6) converges faster than the
iteration method (5).

Proof: In [11], it was shown that Picard-S iteration method (5) is convergent to fixed point of g. Let k = inf {q ∈ E : q = g (q)} and t =
sup {q ∈ E : q = g (q)}. Our proof will be analyzed in three cases.

Case1. Let t < x1 = u1. From Proposition 1 and Proposition 2, we get g (x1) < x1 and g (u1) < u1. From Lemma 4 (i), we have xn ≤ un
for all n ≥ 1. By using Picard-S iteration method and mathematical induction, we can show that t ≤ xn. Thus, we obtain

q ≤ xn ≤ un,

so
|xn − q| ≤ |un − q|

for all n ≥ 1. That is, {xn}∞n=1 converges to q ∈ Fg faster than {un}∞n=1.
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Case2. Let k > x1 = u1. From Proposition 1 and Proposition 2, we get g (x1) > x1 and g (u1) > u1. From Lemma 4 (ii), we have xn ≥ un
for all n ≥ 1. By using iteration method (6) and mathematical induction, we can show that xn ≤ k. Thus, we obtain

un ≤ xn ≤ q,

so
0 ≤ |xn − q| ≤ |un − q|

for all n ≥ 1. It follows that {xn}∞n=1 converges to q ∈ Fg faster than {un}∞n=1.
Case3. Let t < x1 = u1 < k. Suppose that g (x1) ̸= x1. If g (x1) < x1, then by Lemma 1, we get {un}∞n=1 iteration method is

non-increasing. This implies that q ≤ un for all n ≥ 1. From Lemma 3 and Lemma 4, we obtain q ≤ xn ≤ un. That is,

0 ≤ |xn − q| ≤ |un − q|

it follows that {xn}∞n=1 converges to q ∈ Fg faster than {un}∞n=1 iteration method.
Assume that g (x1) > x1, then by Lemma 1, we get that {un}∞n=1 iteration method is non-decreasing. This implies that un ≤ q for
all n ≥ 1. From Lemma 3 and Lemma 4, we obtain un ≤ xn ≤ q. That is,

0 ≤ |xn − q| ≤ |un − q|

it follows that {xn}∞n=1 converges to q ∈ Fg faster than {un}∞n=1.

□

Example 1. Let g : [1,2] → [1,2] defined by g(x) = x2+4
√
x+6

9 . It is easy to show that g is continuous and non-decrasing with fixed point
q = 1.4207. Choose αn = βn = γn = 1

4 , and an initial value x1 = 1. The following table shows that the PMP iteration method (6) converges
faster than all Mann (1), Ishikawa (2), Noor (3), SP (4) and, Picard-S (5) iteration methods.

Table 1 Comparison rate of convergence among various iteration methods

Iter. No Mann Ishikawa Noor SP Picard-S PMP

1 1 1 1 1 1 1

2 1,0556 1,0618 1,0625 1,1448 1,3269 1,3361
...

...
...

...
...

...
...

8 1,2617 1,2797 1,2817 1,3965 1,4206 1,4206

9 1,2820 1,2998 1,3018 1,4045 1,4207 1,4207
...

...
...

...
...

...
...

27 1,4083 1,4128 1,4132 1,4206
...

...

28 1,4098 1,4143 1,4132 1,4207
...

...
...

...
...

...
...

...
...

72 1,4206 1,4206 1,4207
...

...
...

73 1,4206 1,4207
...

...
...

...
...

...
...

...
...

...
...

82 1,4207
...

...
...

...
...

...
...

...
...

...
...

...

3 Conclusion

In this work, we investigate the necessary and sufficient conditions for the convergence result of some iteration methods by using continuous
mapping. We also compare the rate of convergence of two iteration methods and to support this, we give a numerical example.
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1 Introduction

A double sequence s = (smn) is a function s from N× N into the set R or C. The real or complex number smn denotes the value of the
function s at a point (m,n) ∈ N× N and is called the (m,n)-term of the double sequence.

A double sequence s = (smn) is said to be convergent in Pringsheim’s sense, or shortly, P -convergent to L if for all ϵ > 0 there exists
a n0 = n0(ϵ) ∈ N such that |smn − L| < ϵ whenever m,n ≥ n0 (see [1]). The number L is called the P -limit of s and we denote it by
P -limm,n→∞ smn = L, where both m and n tend to ∞ independently of each other.

Let p = (pm), q = (qn) be two sequences of nonnegative numbers such that p0, q0 > 0 and

Pm :=

m∑
i=0

pi → ∞ and Qn :=

n∑
j=0

qj → ∞ as m,n → ∞. (1)

The weighted means of (smn) determined by the weight sequences (pm) and (qn) are defined by

σ11
mn :=

1

PmQn

m∑
i=0

n∑
j=0

piqjsij , σ10
mn :=

1

Pm

m∑
i=0

pisin, σ01
mn :=

1

Qn

n∑
j=0

qjsmj , (2)

where PmQn > 0 for all m,n ∈ N (see [5]).
A double sequence (smn) is called (N, p, q) summable to L if P -limσ11

mn = L. Similarly, (N, p, ∗) and (N, ∗, q) summable sequences are
defined via double sequences (σ10

mn) and (σ01
mn), respectively. If a bounded double sequence is P -convergent to L, then it is also (N, p, q)

summable to same number under (1). However, the opposite of this implication is not true in general. The question of whether certain conditions
imposed on the terms smn and pm, qn under which its (N, p, q) summability implies its P -convergence exist comes to mind at this point. The
condition T{smn} making such a situation possible is called a Tauberian condition. The resulting theorem stating that P -convergence follows
from its (N, p, q) summability and T{smn} is called a Tauberian Theorem.

For a double sequence (umn), we define

∆11smn := ∆10∆01smn = ∆10 (∆01smn) = ∆01 (∆10smn)

= smn − sm,n−1 − sm−1,n + sm−1,n−1,

∆10smn := smn − sm−1,n,

∆01smn := smn − sm,n−1

for all m,n ∈ N.
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The double weighted Kronecker identity for a sequence (smn) are defined via (V 11
mn(∆11s)) as follows:

smn − σ10
mn(s)− σ01

mn(s) + σ11
mn(s) = V 11

mn(∆11s),

where

V 11
mn(∆11s) :=

1

PmQn

m∑
i=1

n∑
j=1

Pi−1Qj−1∆11sij

for all m,n ∈ N (see [8, 11]).
The double sequence (V 11

mn(∆11s)) is the (N, p, q) mean of
(
Pm−1Qn−1

pmqn
∆11smn

)
and it is called the weighted generator sequence of (smn)

in the sense (1, 1).
Throughout this paper, we consider an ordered linear space (X,≤) over the real numbers, in which we denote by o the zero element and by

τ a given nonnegative element. In addition, we assume that (smn) is a double sequence of elements in X .
Now, we give concepts of P -convergence and slow decrease in certain senses for double sequences in X (see [4]).
A double sequence (smn) in X is said to be P -convergent to L ∈ X, relative to τ ∈ X, if for all ϵ > o there exists n0 = n0(ϵ) ∈ N such

that
−ϵτ ≤ smn − L ≤ ϵτ whenever m,n > n0.

A double sequence (smn) in X is said to be slowly decreasing in sense (1, 1), relative to τ ∈ X, if for all ϵ > o there exist n0 = n0(ϵ) ∈ N,
and δ = δ(ϵ) > 0 such that

sij − sin − smj + smn ≥ −ϵτ whenever n0 < m < i ≤ m(1 + δ) and n0 < n < j ≤ n(1 + δ),

and slowly decreasing in sense (1, 0), relative to τ ∈ X, if

sin − smn ≥ −ϵτ whenever n0 < m < i ≤ m(1 + δ) and n0 < n,

and slowly decreasing in sense (0, 1), relative to τ ∈ X, if

smj − smn ≥ −ϵτ whenever n0 < m and n0 < n < j ≤ n(1 + δ).

Notice that when X is the real linear space R with its usual order, relative to 1, then these definitions reduce to the classical definitions of
P -convergence and slow decrease of double sequences in certain senses.

In the remainder of this section, we mention the class of SVA, its characterization and two of its subclasses. Let p = (pm) be a sequence
that satisfies (pm) = (Pm − Pm−1), where P−1 = 0 and Pm ̸= 0 for all m ∈ N.
A sequence (Pm) of real or complex numbers is said to be varying away from 1 if

lim inf
m→∞

∣∣∣∣Pλm

Pm
− 1

∣∣∣∣ > 0 for all λ > 0 with λ ̸= 1, (3)

i.e., for each λ > 0 with λ ̸= 1 there exist δλ > 0 and mλ ∈ N such that∣∣∣∣Pλm

Pm
− 1

∣∣∣∣ ≥ δλ whenever m > mλ,

where λm denotes the integer part of the product λm. The set of all sequences (pm) of real or complex numbers satisfying (3) is denoted by
SVAr or SVA, respectively.
The following lemma due to Chen and Hsu [3] gives another representation of the class of SVA (or SVAr).

Lemma 1. ([3]) Let p = (pm) be a complex (or real) sequence with Pm ̸= 0 for all m ∈ N. Then, condition (3) is equivalent to condition

lim inf
m→∞

∣∣∣∣ Pm

Pλm

− 1

∣∣∣∣ > 0 for all λ > 0 with λ ̸= 1.

Analogously, the set of all sequences (pm) of nonnegative numbers with (pm) ∈ SVA is denoted by SVA+. It is clear that (pm) ∈ SVA+ if
and only if (Pm) is a nondecreasing sequence of positive numbers with p0 > 0 and any of the following conditions is satisfied:

lim inf
m→∞

Pλm

Pm
> 1 for all λ > 1, (4)

lim sup
m→∞

Pλm

Pm
< 1 for all 0 < λ < 1. (5)

The following lemma proved by Chen and Hsu [3] gives another representation of the class of SVA+.
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Lemma 2. ([3]) Let p = (pm) be a nonnegative sequence with p0 > 0. Then, conditions (4) and (5) are equivalent to conditions

lim inf
m→∞

Pm

Pλm

> 1 for all 0 < λ < 1

and

lim sup
m→∞

Pm

Pλm

< 1 for all λ > 1,

respectively.

A relation between the classes of SVA, SVAr and SVA+ is given as follows:

SVA+ ⊂ SVAr ⊂ SVA.

In the real case, one-sided Tauberian theorem for the (N, p, q) summability of double series states that if a double series
∑∞

i=0

∑∞
j=0 aij is

(N, p, q) summable to a finite number L with conditions Pm+1/Pm → 1 as m → ∞ and Qn+1/Qn → 1 as n → ∞, and if there exist N0
and a constant H > 0 such that

inf
m∈N0

{
m∑
i=0

ain

}
≥ −H

qn
Qn

and inf
n∈N0


n∑

j=0

amj

 ≥ −H
pm
Pm

,

then
∑∞

i=0

∑∞
j=0 aij is P -convergent to L (see [10]). More generally, it is also indicated in [10] that if

∑∞
i=0

∑∞
j=0 aij is (N, p, q)

summable to a finite number L with conditions Pm+1/Pm → 1 as m → ∞ and Qn+1/Qn → 1 as n → ∞, and its partial sums sequence
(smn) = (

∑m
i=0

∑n
j=0 aij) with aij = sij − si,j−1 − si−1,j + si−1,j−1 is slowly decreasing in certain senses, then

∑∞
i=0

∑∞
j=0 aij is

P -convergent to L. In the literature, there are also other Tauberian theorems reflecting relation between the limits limm,n→∞ σ11
mn = L and

limm,n→∞ smn = L. In particular, Baron and Stadtmüller [9], Chen and Hsu [3], Móricz and Stadtmüller [5] and Belen [2] have worked on
Tauberian theorems for the (N, p, q) summability of double series or sequences.

In this paper, we aim to extend a Tauberian theorem for the Cesàro summability method due to Maddox [7] and the weighted mean summa-
bility method due to Çanak [6] in ordered spaces to the (N, p, q), summability method of double sequences. These researchers formulate the
related results as follows, respectively:

Theorem 1. ([7]) Let (X,≤) be an ordered linear space over the real numbers and suppose that a sequence (sn) is Cesàro summable to
L ∈ X, relative to τ ∈ X. If (sn) is slowly decreasing, relative to τ ∈ X, then (sn) is convergent to L, relative to τ ∈ X.

Theorem 2. ([6]) Let (X,≤) be an ordered linear space over the real numbers, and let (4) be satisfied. Suppose that a sequence (sn) is
summable by the weighted mean method to L ∈ X, relative to τ ∈ X. If (sn) is slowly decreasing, relative to τ ∈ X, then (sn) is convergent
to L, relative to τ ∈ X.

Accordingly, we give some Tauberian conditions, controlling OL-oscillatory behavior of a double sequence (smn) in certain senses, from
the (N, p, q), (N, p, ∗), and (N, ∗, q) summability to P -convergence with some restrictions on the weight sequences p and q in ordered spaces.

In a general ordered linear space (X,≤), we consider a given series
∑∞

m=0

∑∞
n=0 amn with its double sequence of partial sums (smn).

The weighted means of (smn) are defined by (2).

2 Main Results

In this section, we formulate our main result for the (N, p, q) summable double sequences in (X,≤) as follows:

Theorem 3. Let (X,≤) be an ordered linear space over the real numbers, and let p = (pm), q = (qn) ∈ SVA+, i.e.,

α := lim inf
m→∞

Pλm

Pm
> 1 and β := lim inf

n→∞
Qλn

Qn
> 1 for all λ > 1 (6)

be satisfied. Suppose that a sequence (smn) is (N, p, q), (N, p, ∗) and (N, ∗, q) summable to L ∈ X, relative to τ ∈ X. If (smn) is slowly
decreasing in senses (1, 1), (1, 0), and (0, 1), relative to τ ∈ X, then (smn) is P -convergent to L, relative to τ ∈ X.

Proof: Without loss of generality, we suppose that L = o. Otherwise, we consider the series

(a00 − x) +

∞∑
m=1

am0 +

∞∑
n=1

a0n +

∞∑
m=1

∞∑
n=1

amn.

Set the double sequence (t11mn) as

t11mn :=

m∑
i=1

n∑
j=1

Pi−1Qj−1∆11sij (7)
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for all m,n ≥ 1. Since we have

∆11σmn = σmn − σm−1,n − σm,n−1 + σm−1,n−1 =
pmqn

PmPm−1QnQn−1
t11mn (8)

for m,n ≥ 1, it follows from (8) that

σ11
m+p,n+r − σ11

m+p,n − σ11
m,n+r + σ11

mn =

m+p∑
i=m+1

n+r∑
j=n+1

∆11σ
11
ij =

m+p∑
i=m+1

n+r∑
j=n+1

piqj
PiPi−1QjQj−1

t11ij (9)

for p, r ≥ 1. Let ϵ > 0 be given. Define ϵ′ = ϵ/ζ, where ζ = 4α2β2/(α− 1)(β − 1) for α, β > 1. It is known that (smn) is slowly decreasing
in senses (1, 1), (1, 0), and (0, 1), relative to τ ∈ X, there exist n1 = n1(ϵ

′), n2 = n2(ϵ
′) ∈ N and 0 < δ < 1 such that

sin − smn ≥ −
(

ϵ′

40

)
τ whenever n1 < m < i ≤ m+ [mδ] and n1 ≤ n,

smj − smn ≥ −
(

ϵ′

40

)
τ whenever n2 < n < j ≤ n+ [nδ] and n2 ≤ m,

and additionally there exist n0 = n0(ϵ
′) = min{n1, n2} ∈ N and 0 < δ < 1 such that

sij − sin − smj + smn ≥ −
(

ϵ′

40

)
τ whenever n0 < m < i ≤ m+ [mδ] and n0 < n < j ≤ n+ [nδ].

Since (σ11
mn) is P -convergent to o, relative to τ ∈ X, it follows from (9) that, writing p = [mδ] and r = [nδ],

−
(
ϵ′δ
40

)
τ ≤

m+p∑
i=m+1

n+r∑
j=n+1

piqj
PiPi−1QjQj−1

t11ij ≤
(
ϵ′δ
40

)
τ (10)

for sufficiently large m,n. Define the double sequence (γmn) as

γmn :=

m+p∑
i=m+1

n+r∑
j=n+1

piqj
PiPi−1QjQj−1

for sufficiently large m,n. Then, we obtain

γmnt
11
mn =

m+p∑
i=m+1

n+r∑
j=n+1

piqj
PiPi−1QjQj−1

t11mn

=

m+p∑
i=m+1

n+r∑
j=n+1

piqj
PiPi−1QjQj−1

t11ij −
m+p∑

i=m+1

n+r∑
j=n+1

piqj
PiPi−1QjQj−1

(t11mj − t11mn)

−
m+p∑

i=m+1

n+r∑
j=n+1

piqj
PiPi−1QjQj−1

(t11in − t11mn)−
m+p∑

i=m+1

n+r∑
j=n+1

piqj
PiPi−1QjQj−1

(t11ij − t11in − t11mj + t11mn)

≤
(
ϵ′δ
20

)
τ −

m+p∑
i=m+1

n+r∑
j=n+1

piqj
PiPi−1QjQj−1

(t11mj − t11mn)−
m+p∑

i=m+1

n+r∑
j=n+1

piqj
PiPi−1QjQj−1

(t11in − t11mn)

−
m+p∑

i=m+1

n+r∑
j=n+1

piqj
PiPi−1QjQj−1

(t11ij − t11in − t11mj + t11mn) (11)

for sufficiently large m,n. It is clear that

t11mn =

m∑
i=1

n∑
j=1

Pi−1Qj−1∆11sij =

m∑
i=1

Pi−1

n∑
j=1

Qj−1∆01(∆10sij) =

m∑
i=1

Pi−1

Qn∆10sin −
n∑

j=0

qj∆10sij


= Qn

m∑
i=1

Pi−1∆10sin −
n∑

j=0

qj

m∑
i=1

Pi−1∆10sij

= Qn

(
Pmsmn −

m∑
i=0

pisin

)
−

n∑
j=0

qj

(
Pmsmj −

m∑
i=0

pisij

)

= PmQnsmn −Qn

m∑
i=0

pisin − Pm

n∑
j=0

qjsmj +

m∑
i=0

n∑
j=0

piqjsij (12)
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for all m,n ≥ 1. From this point of view, we find

t11mj − t11mn = PmQn(smj − smn) + Pm

j−1∑
k=n+1

qk(smj − smk) +

m∑
r=0

j∑
k=n+1

prqk(srk − srn) + PmQj(σ
10
mn − σ10

mj), (13)

t11in − t11mn = PmQn(sin − smn) +Qn

i−1∑
r=m+1

pr(sin − srn) +

n∑
k=0

i∑
r=m+1

prqk(srk − smk) + PiQn(σ
01
mn − σ01

in), (14)

and

t11ij − t11in − t11mj + t11mn = PmQn(sij − sin − smj + smn) +

i−1∑
r=m+1

j−1∑
k=n+1

prqk(sij − srj − sik + srk)

+Qn

i−1∑
r=m+1

pr(sij − srj − sin + srn) + Pm

j−1∑
k=n+1

qk(sij − sik − smj + smk) (15)

for sufficiently large m,n. From slow decrease of (smn) in senses (1, 1), (1, 0), and (0, 1), relative to τ ∈ X, we have

sin − sµn ≥ −
(

ϵ′

40

)
τ whenever n1 < m < i ≤ m+ p, m < µ < i and n1 ≤ n,

smj − smν ≥ −
(

ϵ′

40

)
τ whenever n2 < n < j ≤ n+ r, n < ν < j and n2 ≤ m,

sij − siν − sµj + sµν ≥ −
(

ϵ′

40

)
τ whenever n0 < m < i ≤ m+ p, m < µ < i and n0 < n < j ≤ n+ r, n < ν < j.

Since (smn) is (N, p, ∗) and (N, ∗, q) summable to o ∈ X, relative to τ ∈ X, the differences (σ10
mn − σ10

mj) and (σ01
mn − σ01

in) are P -
convergent to o, relative to τ ∈ X, as m,n → ∞. Hence, considering these situations, we attain from (13)-(15) that

t11mj − t11mn ≥ −
(

ϵ′

40

)
τPmQn −

(
ϵ′

40

)
τPm(Qj−1 −Qn)−

(
ϵ′

40

)
τPm(Qj −Qn)−

(
ϵ′

40

)
τPmQj

≥ −
(

ϵ′

40

)
τPmQn −

(
ϵ′

40

)
τPm(Qj −Qn)−

(
ϵ′

40

)
τPm(Qj −Qn)−

(
ϵ′

40

)
τPmQj

= −
(

ϵ′

40

)
τPmQn − 2

(
ϵ′

40

)
τPm(Qj −Qn)−

(
ϵ′

40

)
τPmQj

= −
(

ϵ′

40

)
τ
(
3PmQj − PmQn

)
, (16)

t11in − t11mn ≥ −
(

ϵ′

40

)
τ (3PiQn − PmQn) , (17)

t11ij − t11in − t11mj + t11mn ≥ −
(

ϵ′

40

)
τPmQn −

(
ϵ′

40

)
τ(Pi−1 − Pm)(Qj−1 −Qn)

−
(

ϵ′

40

)
τQn(Pi−1 − Pm)−

(
ϵ′

40

)
τPm(Qj−1 −Qn)

= −
(

ϵ′

40

)
τPi−1Qj−1, (18)

respectively, and by (16)-(18) with conditions (6)

−
m+p∑

i=m+1

n+r∑
j=n+1

piqj
PiPi−1QjQj−1

(t11mj − t11mn) ≤
(

ϵ′

40

)
τ

 m+p∑
i=m+1

n+r∑
j=n+1

3Pmpiqj
PiPi−1Qj−1

−
m+p∑

i=m+1

n+r∑
j=n+1

PmQnpiqj
PiPi−1QjQj−1


≤
(

ϵ′

40

)
τ

(
3

(
Pm+p

Pm
− 1

)(
Qn+r

Qn
− 1

)
−

PmQn(Pm+p − Pm)(Qn+r −Qn)

Pm+pPm+p−1Qn+rQn+r−1

)
≤
(

ϵ′

40

)
3τ

(
Pm+p

Pm
− 1

)(
Qn+r

Qn
− 1

)
, (19)

−
m+p∑

i=m+1

n+r∑
j=n+1

piqj
PiPi−1QjQj−1

(t11in − t11mn) ≤
(

ϵ′

40

)
3τ

(
Pm+p

Pm
− 1

)(
Qn+r

Qn
− 1

)
, (20)
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and

−
m+p∑

i=m+1

n+r∑
j=n+1

piqj
PiPi−1QjQj−1

(t11ij − t11in − t11mj + t11mn) ≤
(

ϵ′

40

)
τ

m+p∑
i=m+1

n+r∑
j=n+1

piqj
PiQj

≤
(

ϵ′

40

)
τ

(
Pm+p

Pm
− 1

)(
Qn+r

Qn
− 1

)
(21)

for sufficiently large m,n, respectively. From (11) together with (19)-(21), we get

γmnt
11
mn ≤

(
ϵ′δ
40

)
τ −

m+p∑
i=m+1

n+r∑
j=n+1

piqj
PiPi−1QjQj−1

(t11mj − t11mn)−
m+p∑

i=m+1

n+r∑
j=n+1

piqj
PiPi−1QjQj−1

(t11in − t11mn)

−
m+p∑

i=m+1

n+r∑
j=n+1

piqj
PiPi−1QjQj−1

(t11ij − t11in − t11mj + t11mn)

≤
(
ϵ′δ
40

)
τ +

(
ϵ′

40

)
7τ

(
Pm+p

Pm
− 1

)(
Qn+r

Qn
− 1

)
≤
(
ϵ′δ
40

)
τ +

(
ϵ′

40

)
28ταβ

≤ 3ϵ′ταβ
4

(22)

for sufficiently large m,n. When we simplify γmn, we obtain that

γmn =

m+p∑
i=m+1

n+r∑
j=n+1

piqj
PiPi−1QjQj−1

=

m+p∑
i=m+1

n+r∑
j=n+1

(
1

Pi−1
− 1

Pi

)(
1

Qj−1
− 1

Qj

)

=

(
1

Pm
− 1

Pm+p

)(
1

Qn
− 1

Qn+r

)
=

(
Pm+p − Pm

PmPm+p

)(
Qn+r −Qn

QnQn+r

)
,

and so,

γmnPmQn =

(
1− Pm

Pm+p

)(
1− Qn

Qn+r

)
→
(
α− 1

α

)(
β − 1

β

)
as m,n → ∞.

Therefore, we reach

t11mn

PmQn
=

γmnt
11
mn

PmQnγmn
≤ 3ϵ′ταβ

4

(
2α

α− 1

)(
2β

β − 1

)
≤ 3ϵ′τζ

4
≤ 3ϵτ

4
(23)

for sufficiently large m,n. If we consider the double weighted Kronecker identity for (smn), we find

smn = V 11
mn(∆11s) + σ10

mn + σ01
mn − σ11

mn =
t11mn

PmQn
+ σ10

mn + σ01
mn − σ11

mn (24)

for sufficiently large m,n. Since (smn) is (N, p, q), (N, p, ∗) and (N, ∗, q) summable to o ∈ X, relative to τ ∈ X, the sequences
(σ11

mn), (σ
10
mn), and (σ01

mn) are P -convergent to o, relative to τ ∈ X. As a result, we conclude by (23) and (24) that

smn =
t11mn

PmQn
+ σ10

mn + σ01
mn − σ11

mn ≤ 3ϵτ

4
+

ϵτ

12
+

ϵτ

12
+

ϵτ

12
= ϵτ

for sufficiently large m,n. To indicate that smn ≥ −ϵτ ultimately in m,n we define p′ = [m(1− δ)] and r′ = [n(1− δ)] for 0 < δ < 1, and
consider

m∑
i=p′

n∑
j=r′

piqj
PiPi−1QjQj−1

t11ij

for all m,n ≥ 1. As a result of the calculations made in parallel with that made in the first part of the proof, we complete the second part of the
proof via Lemma 2 and we find smn ≥ −ϵτ for sufficiently large m,n. Therefore, (smn) is P -convergent to L, relative to τ ∈ X. □

3 Conclusion

In this paper, we extended a Tauberian theorem for the Cesàro summability method due to Maddox [7] and the weighted mean summability
method due to Çanak [6] in ordered spaces to the (N, p, q), summability method of double sequences. In an ordered linear space (X,≤) over
the real numbers, we proved that under p, q ∈ SVA+, if a double sequence (smn) is (N, p, q), (N, p, ∗) and (N, ∗, q) summable to L ∈ X,
relative to a τ ∈ X and slowly decreasing in senses (1, 1), (1, 0), and (0, 1), relative to τ ∈ X, then it is P -convergent to L, relative to τ ∈ X.
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