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Preface

Dear Conference Participant,

Welcome to the International E-Conference on Mathematical Development and Applications (ICOMAA-2021) we
organized the fourth. The aim of our conferences is to bring together scientists and young researchers from all over
the world and their work on the fields of mathematics in a discussion environment. With this interaction, functional
analysis, approach theory, differential equations and partial differential equations and the results of applications in
the field of Mathematics are discussed with our valuable academics, and in mathematical developments both science
and young researchers are opened. We are happe to host many prominent experts from different countries who
will present the state-of-the-art in real analysis, complex analysis, harmonic and non-harmonic analysis, operator
theory and spectral analysis, applied analysis.

I would like express my gratitude to those who see and appreciate our efforts and innovative steps that we have
made to improve our conference every year, to our dear invited speakers and to all our participants. I owe a debt
of gratitude to the Scientific committee, organizing committee, local organizing committee and for their efforts
throughout this conference series.

The conference brings together about 175 participants and 11 invited speakers from 27 countries (Algeria, Alba-
nia, Azerbaijan, Canada, China, Colombia, Cyprus, Czech Republic, Finland, Germany, Greece, India, Iran, Italy,
Kuwait, Malaysia, Morocco, Pakistan, Qatar, Saudi Arabia, Thailand, Tunisia, Turkey, United Arab Emirates,
USA, Uzbekistan, Yemen).

More than 50% of our participants participated from abroad. This shows that the conference meets the
criteria of being international.

The scientific committee members of ICOMAA-2021 and the external reviewers invested significant time in an-
alyzing and assessing multiple papers, consequently, they hold and maintain a high standard of quality for this
conference. The scientific program of the conference features invited talks, followed by contributed oral and poster
presentations in seven parallel sessions.

The conference program represents the efforts of many people. I would like to express my gratitude to all members
of the scientific committee, external reviewers, sponsors and, honorary committee for their continued support to
the ICOMAA. I also thank the invited speakers for presenting their talks on current researches. Also, the success
of ICOMAA depends on the effort and talent of researchers in mathematics and its applications that have written
and submitted papers on a variety of topics. So, I would like to sincerely thank all participants of ICOMAA-2021
for contributing to this great meeting in many different ways. I believe and hope that each of you will get the
maximum benefit from the conference.

Assoc. Prof. Dr. Yusuf ZEREN
Chairman
On behalf of the Organizing Committee
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merveilkhan@duzce.edu.tr

Hidayet Hüda Kösal
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İbrahim Demir, Hasan Aykut Karaboğa 88-90
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23 Notes on Equalities of BLUPs under Linear Mixed Model and its Sub-sample Models
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Abstract: This paper concentrates on a nonlinear prey predator model incorporating prey harvesting with Holling type-IV func-
tional response. The primary objective is to theoretically analyse the population dynamics and discuss how noise incorporated in
prey’s death affects their interactions. The noise term translates the system of ordinary differential equations into a stochastic one.
Various degrees of noise strength are applied, and deterministic and stochastic models are compared. The theoretical findings
are complemented with various numerical simulations.

Keywords: Dynamical systems, Population dynamics, Stochastic differential equations.

1 Introduction

Mathematical modelling of the population dynamics trace its roots back to a seminal model independently developed by Lotka [1] and Volterra
[2]. After these pioneering works, the relationship between prey and predator species has been extensively studied with various parameters,
environmental factors and functional responses.

Studying different properties of the system with various functional response in the ecological systems are constantly extending with a new
knowledge. First simplification on the Holling type IV functional response is presented by Sokol and Howell [3], then further investigated by
many scientists, see for example [4]-[6]. Holling type IV functional response gives rise to more complex dynamics compared to Holling type
I, II and III responses [4, 5, 7]. To explore the effect of human related issues, e.g hunting, many researchers have studied population dynamics
with a harvesting contribution and obtained much richer dynamical behaviour [8]-[11]. Furthermore, the influence of environmental noise is one
of the natural facts that should be considered in population dynamics. In this context there is also a recent trend for exploring stochastic differ-
ential equations in various context, including prey-predator systems with fear, foraging, group defence etc. See [12]-[15] for further information.

In this paper, a nonlinear population model which comprises prey harvesting with Holling type-IV functional response is examined. The model
is based on the recent work by Shang et al. [7] with a small modification, for which a natural death rate in prey’s dynamics are incorporated.
Dimensionless version of the model is also described to determine relative importance of the terms in the system and to reduce the number of
parameters. The steady states of the model is also determined. Since natural systems are subject to environmental noise, white Gaussian noise
is incorporated into natural death rate of prey species. The impact of this noise term on the dynamics of both populations is examined. For this
purpose, a particular attention is paid on a predator free axial steady state.

2 Mathematical model

A nonlinear population model including prey harvesting with Holling type-IV functional response considered in [7] is modified by incorporating
natural death rate of prey species below:

dx

dt
= rx

(
1− x

k

)
− m1xy

b+ x2
− qex

ce+ lx
− ax, (1)

dy

dt
=

m2xy

b+ x2
− dy. (2)

where parameters r, k,m1,m2, b, a, d respectively represent intrinsic growth rate of prey species, carrying capacity, predator max growth ratio,
conversion ratio, half saturation constant, natural death ratio of prey and natural death ratio of predator species. Besides q and e respectively
stand for catchability coefficient and external effort associated with harvesting.

© CPOST 2021 1

http://cpostjournal.org/


2.1 Dimensionless version of the model

In order to reduce the number of parameters and to get rid of dimensions of the model, the new variables are considered as follows

x̃ =
x

x0
ỹ =

y

y0
τ =

t

t0
(3)

and introducing new parameters

x0 = k t0 =
1

d
y0 =

x20
m1t0

=
k2d

m1
,

r =
r

d
b =

b

k2
, q =

qe

dlk

c =
ce

lk
m2 =

m

dk
a =

a

d
,

dimensionless form of the model can be written as

dx

dt
= rx (1− x)− xy

b+ x2
− qx

c+ x
− ax = H(x, y, t) (4)

dy

dt
=

mxy

b+ x2
− y = G(x, y, t). (5)

Here (̃·) is omitted for simplicity. Introducing Gaussian noise in the death rate of prey population, the model can be rewritten as

dx = H(x, y, t)dt− ε1x dP1, (6)

dy = G(x, y, t)dt, (7)

where ε1 > 0 is the strengths of the random perturbation. Furthermore, P1 denotes standard Brownian motion and all parameters are assumed
to be positive for their biological meaning.

The deterministic version of the model presented in equations (4) and (5) has five steady states. One steady state is trivial where both prey
and predator species are absent (0, 0), two steady states are predator free (x11, 0) and (x12, 0) which can be obtained using equation (4) for
y = 0:

rx2 − x
(
r(1− c)− a

)
x−

(
c(r − a)− q

)
= 0, (8)

that leads to

x11,2 =
r(1− c)− a±

√
∆

2r
, (9)

with ∆ =
(
r(1− c)− a

)2
+ 4r

(
c(r − a)− q

)
. Besides the system has two coexisting states (x21, y

2
1) and (x22, y

2
2). Here the prey state can

be found using equation (5) as

x21,2 =
m±

√
m2 − 4b

2
. (10)

Substituting equation (10) into equation (4) the states for predator are found as

y21,2 =
x21,2 + b

x1,2 + c

[
−rx21,2 +

(
r(1− c)− a

)
x1,2 + c(r − a)− q

]
. (11)

As seen in equations (8)-(11), the model has one trivial steady state and two predator free steady states and two non-trivial coexistence states.
In this paper, we only concentrate on one of the predator free steady states and explore the dynamical behaviour deterministically and stochas-
tically.

2 © CPOST 2021



Figure 1 demonstrates deterministic time simulations of prey (A) and predator (B) density (in the absence of noise) for a stable system. The
initial conditions are chosen as (x0, y0) = (0.8, 0.1) and the system converges to a predator free steady state (xs, ys) = (0.8662, 0). After
some initial oscillations, prey species converge to its steady state and predator species wipe out from the system, e.g. after t = 150.
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Fig. 1: Time simulations of predator free stable dynamics obtained with parameters r = 1, b = 0.2, q = 0.1, c = 0.2,m = 1, a = 0.04 for
t ∈ [0, 300]. Prey (x) and predator (y) species are respectively presented in (A) and (B) with respect to time in the absence of noise.
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Figure 2 demonstrates time evolutions of prey (A) and predator (B) density in the presence of noise term ε1 in the prey’s death rate, where
ε1 = 0.5. Green and blue colors correspond to deterministic case, whilst gray colors stand for the noise induced stochastic dynamics. As seen
noise in the death rate of prey species has a dramatic effect on the prey density, leading to irregular oscillations in time. On the contrary, it
has been observed that increasing noise gives rise to extinction of predator species in a smaller time interval, compared to deterministic case.
As seen in Figure 1, predator species undergoes extinction at t = 150. In contrast, the extinction in the presence of noise (ε1 = 0.5) occurs at
around t = 60.
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Fig. 2: Deterministic and stochastic simulations of predator free dynamics obtained with parameters r = 1, b = 0.2, q = 0.1, c = 0.2,m =
1, a = 0.04 for t ∈ [0, 300]. Prey (x) and predator (y) species are respectively presented in (A) and (B) with respect to time for ε1 = 0.5. Gray
line in both case represents noise perturbed dynamics.
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Figure 3 demonstrates phase portraits of the system given by (6)-(7) in the absence and presence of noise term ε1 for a stable system. The
black color stands for deterministic case, whilst gray color represents noise perturbed the stochastic system with various noise strengths, e.g.
ε1 = 0.01 (A), ε1 = 0.05 (B), ε1 = 0.1 (C), ε1 = 0.5 (D). Here, the initial condition is chosen as (x0, y0) = (0.277, 0.132). Besides, the red
dot represents the steady state (xs, ys) = (0.2764, 0.1309) for a coexisting system, the yellow dot represents the initial condition of the system
and the blue dot stands for the case where the system converges to predator free steady state (xs, ys) = (0.8662, 0).
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Fig. 3: Phase portraits of deterministic and stochastic model for various noise values ε1 = 0.01 (A), ε1 = 0.05 (B), ε1 = 0.1 (C), ε1 = 0.5
(D). Red, yellow and blue points respectively represent steady state of the system, initial point of the trajectory and final point of the trajectory.
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Abstract: In this work, some new properties of amply cofinitely g-radical supplemented modules are studied. Let M be an amply
cofinitely g-radical supplemented module. Then M is cofinitely g-radical supplemented.

Keywords: Small Submodules, g-Small Submodules, Supplemented Modules, g-Supplemented Modules.

1 Introduction

Throughout this paper all rings will be associative with identity and all modules will be unital left modules.
Let R be a ring and M be an R -module. We will denote a submodule N of M by N ≤M . Let M be an R -module and N ≤M . If L = M

for every submodule L of M such that M = N + L, then N is called a small submodule of M and denoted by N �M . Let M be an R
-module and N ≤M . If there exists a submodule K of M such that M = N +K and N ∩K = 0, then N is called a direct summand of M
and it is denoted by M = N ⊕K. A submodule N of an R -module M is called an essential submodule of M , denoted by N EM , if K = 0
for every K ≤M with K ∩N = 0. A submodule K of an R−module M is said to be cofinite if M/K is finitely generated. Let M be an R
-module and K be a submodule of M . K is called a generalized small (briefly, g-small) submodule of M if for every T EM with M = K + T
implies that T = M , this is written by K �g M . Let M be an R−module. M is called an hollow module if every proper submodule of M is
small in M . M is called a generalized hollow (briefly, g-hollow) module, if every proper submodule of M is g-small in M . M is called a local
module if M has the largest submodule, i. e. a proper submodule which contains all other proper submodules. Let U and V be submodules of M .
If M = U + V and V is minimal with respect to this property, or equivalently, M = U + V and U ∩ V � V , then V is called a supplement
of U in M . M is called a supplemented module if every submodule of M has a supplement in M . M is said to be cofinitely supplemented
if every cofinite submodule of M has a supplement in M . Let M be an R-module and U, V ≤M . If M = U + V and M = U + T with
T E V implies that T = V , or equivalently, M = U + V and U ∩ V �g V , then V is called a g-supplement of U in M . M is said to be
g-supplemented if every submodule of M has a g-supplement in M . M is said to be cofinitely supplemented if every cofinite submodule
of M has a g-supplement in M . Let M be an R−module and U ≤M . If for every V ≤M such that M = U + V , U has a supplement
(g-supplement) V

′
in M with V

′
≤ V , then we say U has ample supplements (g-supplements) in M . If every submodule of M has ample

supplements (g-supplements) in M , then M is called an amply supplemented (g-supplemented) module. If every cofinite submodule of M has
ample supplements (g-supplements) in M , then M is called an amply cofinitely supplemented (g-supplemented) module. The intersection of all
maximal submodules of an R-module M is called the radical of M and denoted by RadM . If M have no maximal submodules, then we denote
RadM = M.M is said to be semilocal if M/RadM is semisimple, i. e. every submodule of M/RadM is a direct summand of M/RadM .
Let M be an R-module and U, V ≤M . If M = U + V and U ∩ V ≤ RadV , then V is called a generalized (radical) supplement (briefly,
Rad-supplement) of U in M . M is said to be generalized (radical) supplemented (briefly, Rad-supplemented) if every submodule of M has a
generalized (radical) supplement in M . M is said to be cofinitely Rad-supplemented if every cofinite submodule of M has a Rad-supplement
in M . Let M be an R−module and U ≤M . If for every V ≤M such that M = U + V , U has a Rad-supplement V

′
in M with V

′
≤ V ,

then we say U has ample generalized (radical) supplements (briefly, ample Rad-supplements) in M . If every submodule of M has ample
Rad-supplements in M , then M is called an amply generalized (radical) supplemented (briefly, amply Rad-supplemented) module. M is said
to be amply cofinitely Rad-supplemented if every cofinite submodule of M has ample Rad-supplements in M . The intersection of all essential
maximal submodules of an R-module M is called the generalized radical (briefly, g-radical) of M and denoted by RadgM . If M have no
maximal essential submodules, then we denote RadgM = M.M is said to be g-semilocal if M/RadgM is semisimple, i. e. every submodule
of M/RadgM is a direct summand of M/RadgM . Let M be an R-module and U, V ≤M . If M = U + V and U ∩ V ≤ RadgV , then V is
called a g-radical supplement of U in M . If every submodule of M has a g-radical supplement in M , then M is called a g-radical supplemented
module. M is said to be cofinitely g-radical supplemented if every cofinite submodule of M has a g-radical supplement in M . Let M be an
R−module and U ≤M . If for every V ≤M such that M = U + V , U has a g-radical supplement V

′
in M with V

′
≤ V , then we say U

has ample g-radical supplements in M . If every submodule of M has ample g-radical supplements in M , then M is called an amply g-radical
supplemented module.

More informations about (amply) supplemented modules are in [2, 12]. More details about (amply) cofinitely supplemented modules are
in [1]. More informations about g-small submodules and (amply) g-supplemented modules are in [5]. More details about (amply) cofinitely
g-supplemented modules are in [3]. The definition of (amply) generalized supplemented modules and some properties of them are in [11]. More
details about (amply) cofinitely Rad-supplemented modules are in [10]. More informations about (amply) g-radical supplemented modules are
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in [4, 7] . The definition of cofinitely g-radical supplemented modules and some properties of them are in [8]. The definition of g-semilocal
modules and some properties of them are in [6].

Lemma 1. Let M be an R−module.
(1) If K ≤ L ≤M , then K EM if and only if K E L EM .
(2) Let N be an R−module and f : M −→ N be an R−module homomorphism. If K E N , then f−1 (K) EM .
(3) For N ≤ K ≤M , if K/N EM/N , then K EM .
(4) If K1 E L1 ≤M and K2 E L2 ≤M , then K1 ∩K2 E L1 ∩ L2.
(5) If K1 EM and K2 EM , then K1 ∩K2 EM .

Proof: See [12, 17.3]. �

Lemma 2. Let M be an R−module. The following assertions are hold.
(1) If K ≤ L ≤M , then L�M if and only if K �M and L/K �M/K.
(2) Let N be an R−module and f : M −→ N be an R−module homomorphism. If K �M , then f (K)� N . The converse is true if f

is an epimorphism and Kef �M .
(3) If K �M , then K+L

L � M
L for every L ≤M .

(4) If L ≤M and K � L, then K �M .
(5) If K1,K2, ...,Kn �M , then K1 +K2 + ...+Kn �M .
(6) Let K1,K2, ...,Kn, L1, L2, ..., Ln ≤M . If Ki � Li for every i = 1, 2, ..., n, then K1 +K2 + ...+Kn � L1 + L2 + ...+ Ln.

Proof: See [2, 2.2] and [12, 19.3]. �

Lemma 3. Let M be an R−module. The following assertions are hold.
(1) RadM =

∑
L�M

L.

(2) Let N be an R−module and f : M −→ N be an R−module homomorphism. Then f (RadM) ≤ RadN . If Kef ≤ RadM , then
f (RadM) = Radf (M).

(3) If N ≤M , then RadN ≤ RadM .
(4) For K,L ≤M , RadK +RadL ≤ Rad (K + L).
(5) Rx�M for every x ∈ RadM .

Proof: See [12, 21.5 and 21.6]. �

Lemma 4. Let M be an R−module. The following assertions are hold.
(1) Every small submodule in M is g-small in M .
(2) If K ≤ L ≤M and L�g M , then K �g M and L/K �g M/K.
(3) Let N be an R−module and f : M −→ N be an R−module homomorphism. If K �g M , then f (K)�g N .
(4) If K �g M , then K+L

L �g
M
L for every L ≤M .

(5) If L ≤M and K �g L, then K �g M .
(6) If K1,K2, ...,Kn �g M , then K1 +K2 + ...+Kn �g M .
(7) Let K1,K2, ...,Kn, L1, L2, ..., Ln ≤M . If Ki �g Li for every i = 1, 2, ..., n, then K1 +K2 + ...+Kn �g L1 + L2 + ...+ Ln.

Proof: See [2, 3, 9]. �

Lemma 5. Let M be an R−module. The following assertions are hold.
(1) RadM ≤ RadgM .
(2) RadgM =

∑
L�gM

L.

(3) Let N be an R−module and f : M −→ N be an R−module homomorphism. Then f (RadgM) ≤ RadgN .
(4) For K,L ≤M , RadgK+L

L ≤ Radg
K+L
L . If L ≤ RadgK, then RadgK/L ≤ Rad (K/L).

(5) If L ≤M , then RadgL ≤ RadgM .
(6) For K,L ≤M , RadgK +RadgL ≤ Radg (K + L).
(7) Rx�g M for every x ∈ RadgM .

Proof: See [4–6]. �

2 Amply cofinitely g-radical supplemented modules

Lemma 6. Let V be a g-supplement of U in M . Then
(1) If W + V = M for some W ≤ U , then V is a g-supplement of W in M .
(2) If every nonzero submodule of M is essential in M , then V is a supplement of U in M .
(3) If U is an essential maximal submodule of M , then U ∩ V = RadV is the unique essential maximal submodule of V .
(4) If K �g M and U EM , then V is a g-supplement of U +K in M .
(5) Let U EM and K �g M . Then K ∩ V �g V and hence RadgV = V ∩RadgM .
(6) Let U EM and K ≤ V . Then K �g V if and only if K �g M .
(7) For L ≤ U , V+L

L is a g-supplement of U/L in M/L.

Proof: See [4–6]. �
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Lemma 7. Let M be an R−module.
(1) If V is a supplement of U in M , then V is a g-suppement of U in M .
(2) If M = U ⊕ V then V is a g-supplement of U in M . Also U is a g-supplement of V in M .
(3) For M1, U ≤M , if M1 + U has a g-supplement in M and M1 is g-supplemented, then U also has a g-supplement in M .
(4) Let M = M1 +M2. If M1 and M2 are g-supplemented, then M is also g-supplemented.
(5) Let Mi ≤M for i = 1, 2, ..., n. If Mi is g-supplemented for every i = 1, 2, ..., n, then M1 +M2 + ...+Mn is also g-supplemented.
(6) If M is g-supplemented, then M/L is g-supplemented for every L ≤M .
(7) If M is g-supplemented, then every homomorphic image of M is also g-supplemented.
(8) If M is g-supplemented, then M/RadgM is semisimple.
(9) Hollow, local and g-hollow modules are g-supplemented.
(10) If M is g-supplemented, then every finitely M−generated module is g-supplemented.
(11) RR is g-supplemented if and only if every finitely generated R−module is g-supplemented.
(12) If M is g-supplemented and every nonzero submodule of M is essential in M , then M is supplemented.

Proof: See [4, 5]. �

Lemma 8. Let M be an R−module.
(1) If M is g-supplemented, then M is cofinitely g-supplemented.
(2) If M is supplemented, then M is cofinitely g-supplemented.
(3) If M is cofinitely supplemented, then M is cofinitely g-supplemented.
(4) If M is cofinitely g-supplemented and every nonzero submodule of M is essential in M , then M is cofinitely supplemented.
(5) If M is finitely generated and cofinitely g-supplemented, then M is g-supplemented.
(6) For M1 ≤M and U cofinite submodule of M , if M1 + U has a g-supplement in M and M1 is cofinitely g-supplemented, then U also

has a g-supplement in M .
(7) Let M =

∑
i∈I

Mi. If Mi is cofinitely g-supplemented for every i ∈ I , then M is also cofinitely g-supplemented.

(8) Let Mi ≤M for i = 1, 2, ..., n. If Mi is cofinitely g-supplemented for every i = 1, 2, ..., n, then M1 +M2 + ...+Mn is also cofinitely
g-supplemented.

(9) If M is cofinitely g-supplemented, then M/L is cofinitely g-supplemented for every L ≤M .
(10) If M is cofinitely g-supplemented, then every homomorphic image of M is also cofinitely g-supplemented.
(11) If M is cofinitely g-supplemented, then every cofinite submodule of M/RadgM is a direct summand of M/RadgM .
(12) Hollow, g-hollow and local modules are cofinitely g-supplemented.
(13) If M is cofinitely g-supplemented, then every M−generated module is cofinitely g-supplemented.
(14) RR is g-supplemented if and only if every generated R−module is cofinitely g-supplemented.

Proof: See [3]. �

Lemma 9. Let M be an R−module.
(1) If M is Rad-supplemented, then M is g-radical supplemented.
(2) If V is a g-radical supplement of U in M and W + V = M for some W ≤ U , then V is a g-radical supplement of W in M .
(3) If U is an essential maximal submodule of M and V is a g-radical supplement of U in M , then U ∩ V = RadgV is the unique essential

maximal submodule of V .
(4) If V is a g-radical supplement of U in M and L ≤ U , V+L

L is a g-radical supplement of U/L in M/L.
(5) For M1, U ≤M , if M1 + U has a g-radical supplement in M and M1 is g-radical supplemented, then U also has a g-radical

supplement in M .
(6) Let M = M1 +M2. If M1 and M2 are g-radical supplemented, then M is also g-radical supplemented.
(7) Let Mi ≤M for i = 1, 2, ..., n. If Mi is g-radical supplemented for every i = 1, 2, ..., n, then M1 +M2 + ...+Mn is also g-radical

supplemented.
(8) If M is g-radical supplemented, then M/L is g-radical supplemented for every L ≤M .
(9) If M is g-radical supplemented, then every homomorphic image of M is also g-radical supplemented.
(10) If M is g-radical supplemented, then M/RadgM is semisimple.
(11) If M is g-radical supplemented, then every finitely M−generated module is g-radical supplemented.

Proof: See [4]. �

Definition 1. Let M be an R−module. If every cofinite submodule of M has ample g-radical supplements in M , then M is called an amply
g-radical supplemented module. (See also [9])

Lemma 10. Every amply cofinitely g-radical supplemented module is cofinitely g-radical supplemented.

Proof: Clear from definitions. �

Corollary 1. Let M be an R−module and M =
∑

i∈I Mi for Mi ≤M . If Mi is amply cofinitely g-radical supplemented for every i ∈ I ,
then M is cofinitely g-radical supplemented.

Proof: Since Mi is amply cofinitely g-radical supplemented for every i ∈ I , by Lemma 10, Mi is cofinitely g-radical supplemented. Then by
[8, Proposition 2.5], M is cofinitely g-radical supplemented. �

Proposition 1. Every amply cofinitely g-supplemented module is amply cofinitely g-radical supplemented.
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Proof: Let M be an amply cofinitely g-supplemented module and U ≤M . Let M = U + V with V ≤M . Since M is amply cofinitely g-
supplemented, U has a g-supplement X in M with X ≤ V . Here M = U +X and U ∩X �g X . Since U ∩X �g X , U ∩X ≤ RadgX .
Hence X is a g-radical supplement of U in M . Moreover, X ≤ V . Hence M is amply cofinitely g-radical supplemented. �

Proposition 2. Every amply g-radical supplemented module is amply cofinirely g-radical supplemented.

Proof: Clear from definitions. �

Lemma 11. Every amply cofinitely Rad-supplemented module is amply cofinitely g-radical supplemented.

Proof: Let M be an amply cofinitely Rad-supplemented module and U ≤M . Let M = U + V with V ≤M . Since M is amply cofinitely Rad-
supplemented, U has a Rad-supplement X in M with X ≤ V . Here M = U +X and U ∩X ≤ RadX . Since U ∩X ≤ RadX ≤ RadgX ,
X is a g-radical supplement of U in M . Moreover, X ≤ V . Hence M is amply cofinitely g-radical supplemented. �

Corollary 2. Every amply cofinitely supplemented module is amply cofinitely g-radical supplemented.

Proof: Clear from Lemma 11, since every amply cofinitely supplemented module is amply cofinitely Rad-supplemented. �

Proposition 3. Let M be an amply cofinitely g-radical supplemented R−module. If every nonzero submodule of M is essential in M , then M
is amply cofinitely Rad-supplemented.

Proof: Clear from definitions. �

Corollary 3. Let M be an amply cofinitely g-radical supplemented R−module. If every nonzero submodule of M is essential in M , then M
is cofinitely Rad-supplemented.

Proof: Clear from Proposition 3. �

Lemma 12. Every factor module of an amply cofinitely g-radical supplemented module is amply cofinitely g-radical supplemented.

Proof: Let M be any amply cofinitely g-radical supplemented module and K ≤M . Let U/K be a cofinite submodule of M/K and
M/K = U/K + V/K with V/K ≤M/K. Then M = U + V and since M is amply cofinitely g-radical supplemented, there exists a
g-radical supplement T of U with T ≤ V . Then by [4, Lemma 8], (T +K) /K is a g-radical supplement of U/K in M/K. Moreover,
(T +K) /K ≤ V/K. Hence U has ample g-radical supplements in M and M is amply cofinitely g-radical supplemented. �

Corollary 4. The homomorphic image of an amply cofinitely g-radical supplemented module is amply cofinitely g-radical supplemented.

Proof: Clear from Lemma 12. �

3 Conclusion

Amply cofinitely g-radical supplemented modules are more general than amply cofinitely supplemented modules.
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Abstract: In this work, every ring has unity and every module is unital left module. Let M be an R−module. If every submodule of
M has a g-radical supplement that is a direct summand of M , then M is called a ⊕− g −Rad−supplemented module (See also
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1 Introduction

Throughout this paper all rings will be associative with identity and all modules will be unital left modules.
Let R be a ring and M be an R -module. We will denote a submodule N of M by N ≤M . Let M be an R -module and N ≤M . If

L =M for every submodule L of M such that M = N + L, then N is called a small submodule of M and denoted by N �M . Let M be
an R -module and N ≤M . If there exists a submodule K of M such that M = N +K and N ∩K = 0, then N is called a direct summand
of M and it is denoted by M = N ⊕K. For any R−module M, we have M =M ⊕ 0. The intersection of all maximal submodules of M is
called the radical of M and denoted by RadM . If M have no maximal submodules, then it is defined RadM =M . M is said to be semilocal
if M/RadM is semisimple. A submodule N of an R -module M is called an essential submodule of M and denoted by N EM in case
K ∩N 6= 0 for every submodule K 6= 0, or equivalently, K = 0 for every K ≤M with N ∩K = 0. Let M be an R -module and K be
a submodule of M . K is called a generalized small (or briefly, g−small) submodule of M if for every essential submodule T of M with
the property M = K + T implies that T =M , then we write K �g M (in [12], it is called an e-small submodule of M and denoted by
K �e M ). It is clear that every small submodule is a generalized small submodule but the converse is not true in general. Let M be an R
-module. M is called a hollow module if every proper submodule of M is small in M . M is called a generalized hollow (or briefly, g−hollow)
module if every proper submodule of M is g-small in M . Here it is clear that every hollow module is generalized hollow. The converse of this
statement is not always true.M is called a local module ifM has the largest submodule, i.e. a proper submodule which contains all other proper
submodules. M is called a generalized local (briefly, g-local) if M has a large proper essential submodule which contain all proper essential
submodules ofM orM have no proper essential submodules. LetU and V be submodules ofM . IfM = U + V and V is minimal with respect
to this property, or equivalently, M = U + V and U ∩ V � V , then V is called a supplement of U in M . M is said to be supplemented if
every submodule of M has a supplement in M . If every submodule of M has a supplement that is a direct summand in M , then M is called
a ⊕−supplemented module. Let M be an R −module and U, V ≤M . If M = U + V and M = U + T with T E V implies that T = V , or
equivalently, M = U + V and U ∩ V �g V , then V is called a g-supplement of U in M . M is said to be g-supplemented if every submodule
ofM has a g-supplement inM .M is said to be⊕− g−supplemented if every submodule ofM has a g-supplement that is a direct summand in
M (see [8]). LetM be anR-module and U, V ≤M . IfM = U + V and U ∩ V ≤ RadV , then V is called a generalized (radical) supplement
(briefly, Rad-supplement) of U in M . M is said to be generalized (radical) supplemented (briefly, Rad-supplemented) if every submodule of
M has a Rad-supplement inM .M is said to be generalized (radical)⊕−supplemented (briefly,Rad−⊕−supplemented) if every submodule
ofM has a Rad-supplement that is a direct summand inM . The intersection of all essential maximal submodules of anR−moduleM is called
the generalized radical of M and denoted by RadgM (in [12], it is denoted by RadeM ). If M have no essential maximal submodules, then
we denote RadgM =M . An R−module M is said to be g-semilocal if M/RadgM is semisimple (see [7]). Let M be an R−module and
U, V ≤M . If M = U + V and U ∩ V ≤ RadgV , then V is called a generalized radical supplement (or briefly, g-radical supplement) of U
in M . M is said to be generalized radical supplemented (briefly, g-radical supplemented) if every submodule of M has a g-radical supplement
in M .

More informations about supplemented modules are in [1, 11]. More results about ⊕−supplemented modules are in [4]. More details about
generalized (radical) supplemented modules are in [10]. More details about generalized (radical)⊕−supplemented modules are in [2, 3]. More
informations about g-supplemented modules are in [5]. More informations about g-radical supplemented modules are in [6].

Lemma 1. Let M be an R−module.
(1) If K ≤ L ≤M , then K EM if and only if K E L EM .
(2) Let N be an R−module and f :M −→ N be an R−module homomorphism. If K E N , then f−1 (K) EM .
(3) For N ≤ K ≤M , if K/N EM/N , then K EM .
(4) If K1 E L1 ≤M and K2 E L2 ≤M , then K1 ∩K2 E L1 ∩ L2.
(5) If K1 EM and K2 EM , then K1 ∩K2 EM .
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Proof: See [11, 17.3]. �

Lemma 2. Let M be an R−module. The following assertions are hold.
(1) If K ≤ L ≤M , then L�M if and only if K �M and L/K �M/K.
(2) Let N be an R−module and f :M −→ N be an R−module homomorphism. If K �M , then f (K)� N . The converse is true if f

is an epimorphism and Kef �M .
(3) If K �M , then K+L

L � M
L for every L ≤M .

(4) If L ≤M and K � L, then K �M .
(5) If K1,K2, ...,Kn �M , then K1 +K2 + ...+Kn �M .
(6) Let K1,K2, ...,Kn, L1, L2, ..., Ln ≤M . If Ki � Li for every i = 1, 2, ..., n, then K1 +K2 + ...+Kn � L1 + L2 + ...+ Ln.

Proof: See [1, 2.2] and [11, 19.3]. �

Lemma 3. Let M be an R−module. The following assertions are hold.
(1) Every small submodule in M is g-small in M .
(2) If K ≤ L ≤M and L�g M , then K �g M and L/K �g M/K.
(3) Let N be an R−module and f :M −→ N be an R−module homomorphism. If K �g M , then f (K)�g N .
(4) If K �g M , then K+L

L �g
M
L for every L ≤M .

(5) If L ≤M and K �g L, then K �g M .
(6) If K1,K2, ...,Kn �g M , then K1 +K2 + ...+Kn �g M .
(7) Let K1,K2, ...,Kn, L1, L2, ..., Ln ≤M . If Ki �g Li for every i = 1, 2, ..., n, then K1 +K2 + ...+Kn �g L1 + L2 + ...+ Ln.

Proof: See [5–7]. �

Lemma 4. Let M be an R−module. The following assertions are hold.
(1) RadM ≤ RadgM .
(2) RadgM =

∑
L�gM

L.

(3) Let N be an R−module and f :M −→ N be an R−module homomorphism. Then f (RadgM) ≤ RadgN .
(4) For K,L ≤M , RadgK+L

L ≤ Radg K+L
L . If L ≤ RadgK, then RadgK/L ≤ Rad (K/L).

(5) If L ≤M , then RadgL ≤ RadgM .
(6) For K,L ≤M , RadgK +RadgL ≤ Radg (K + L).
(7) Rx�g M for every x ∈ RadgM .

Proof: See [5–7]. �

2 ⊕− g−rad supplemented modules

Lemma 5. Let V be a supplement of U in M . Then
(1) If W + V =M for some W ≤ U , then V is a supplement of W in M .
(2) If M is finitely generated, then V is also finitely generated.
(3) If U is a maximal submodule of M , then V is cyclic and U ∩ V = RadV is the unique maximal submodule of V .
(4) If K �M , then V is a supplement of U +K in M .
(5) For K �M , K ∩ V � V and hence RadV = V ∩RadM .
(6) Let K ≤ V . Then K � V if and only if K �M .
(7) For L ≤ U , V+L

L is a supplement of U/L in M/L.

Proof: See [11, 41.1]. �

Lemma 6. Let V be a g-supplement of U in M . Then
(1) If W + V =M for some W ≤ U , then V is a g-supplement of W in M .
(2) If every nonzero submodule of M is essential in M , then V is a supplement of U in M .
(3) If U is an essential maximal submodule of M , then U ∩ V = RadV is the unique essential maximal submodule of V .
(4) If K �g M and U EM , then V is a g-supplement of U +K in M .
(5) Let U EM and K �g M . Then K ∩ V �g V and hence RadgV = V ∩RadgM .
(6) Let U EM and K ≤ V . Then K �g V if and only if K �g M .
(7) For L ≤ U , V+L

L is a g-supplement of U/L in M/L.

Proof: See [5–7]. �

Lemma 7. Let M be an R−module.
(1) If M = U ⊕ V then V is a supplement of U in M . Also U is a supplement of V in M .
(2) For M1, U ≤M , if M1 + U has a supplement in M and M1 is supplemented, then U also has a supplement in M .
(3) Let M =M1 +M2. If M1 and M2 are supplemented, then M is also supplemented.
(4) Let Mi ≤M for i = 1, 2, ..., n. If Mi is supplemented for every i = 1, 2, ..., n, then M1 +M2 + ...+Mn is also supplemented.
(5) If M is supplemented, then M/L is supplemented for every L ≤M .
(6) If M is supplemented, then every homomorphic image of M is also supplemented.
(7) If M is supplemented, then M/RadM is semisimple.
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(8) Hollow and local modules are supplemented.
(9) If M is supplemented, then every finitely M−generated module is supplemented.
(10) RR is supplemented if and only if every finitely generated R−module is supplemented.

Proof: See [11, 41.2]. �

Lemma 8. Let M be an R−module.
(1) If V is a supplement of U in M , then V is a g-suppement of U in M .
(2) If M = U ⊕ V then V is a g-supplement of U in M . Also U is a g-supplement of V in M .
(3) For M1, U ≤M , if M1 + U has a g-supplement in M and M1 is g-supplemented, then U also has a g-supplement in M .
(4) Let M =M1 +M2. If M1 and M2 are g-supplemented, then M is also g-supplemented.
(5) Let Mi ≤M for i = 1, 2, ..., n. If Mi is g-supplemented for every i = 1, 2, ..., n, then M1 +M2 + ...+Mn is also g-supplemented.
(6) If M is g-supplemented, then M/L is g-supplemented for every L ≤M .
(7) If M is g-supplemented, then every homomorphic image of M is also g-supplemented.
(8) If M is g-supplemented, then M/RadgM is semisimple.
(9) Hollow, local and g-hollow modules are g-supplemented.
(10) If M is g-supplemented, then every finitely M−generated module is g-supplemented.
(11) RR is g-supplemented if and only if every finitely generated R−module is g-supplemented.
(12) If M is g-supplemented and every nonzero submodule of M is essential in M , then M is supplemented.

Proof: See [5, 6]. �

Lemma 9. Let M be an R−module.
(1) If M is supplemented, then M is Rad-supplemented.
(2) If V is a Rad-supplement of U in M and W + V =M for some W ≤ U , then V is a Rad-supplement of W in M .
(3) If U is a maximal submodule of M and V is a Rad-supplement of U in M , U ∩ V = RadV is the unique maximal submodule of V .
(4) If V is a Rad-supplement of U in M and L ≤ U , then V+L

L is a Rad-supplement of U/L in M/L.
(5) For M1, U ≤M , if M1 + U has a Rad-supplement in M and M1 is Rad-supplemented, then U also has a Rad-supplement in M .
(6) Let M =M1 +M2. If M1 and M2 are Rad-supplemented, then M is also Rad-supplemented.
(7) Let Mi ≤M for i = 1, 2, ..., n. If Mi is Rad-supplemented for every i = 1, 2, ..., n, then M1 +M2 + ...+Mn is also Rad-

supplemented.
(8) If M is Rad-supplemented, then M/L is Rad-supplemented for every L ≤M .
(9) If M is Rad-supplemented, then every homomorphic image of M is also Rad-supplemented.
(10) If M is Rad-supplemented, then M/RadM is semisimple.
(11) If M is Rad-supplemented, then every finitely M−generated module is Rad-supplemented.

Proof: See [2, 3, 10]. �

Lemma 10. Let M be an R−module.
(1) If M is Rad-supplemented, then M is g-radical supplemented.
(2) If V is a g-radical supplement of U in M and W + V =M for some W ≤ U , then V is a g-radical supplement of W in M .
(3) If U is an essential maximal submodule ofM and V is a g-radical supplement of U inM , then U ∩ V = RadgV is the unique essential

maximal submodule of V .
(4) If V is a g-radical supplement of U in M and L ≤ U , V+L

L is a g-radical supplement of U/L in M/L.
(5) For M1, U ≤M , if M1 + U has a g-radical supplement in M and M1 is g-radical supplemented, then U also has a g-radical

supplement in M .
(6) Let M =M1 +M2. If M1 and M2 are g-radical supplemented, then M is also g-radical supplemented.
(7) Let Mi ≤M for i = 1, 2, ..., n. If Mi is g-radical supplemented for every i = 1, 2, ..., n, then M1 +M2 + ...+Mn is also g-radical

supplemented.
(8) If M is g-radical supplemented, then M/L is g-radical supplemented for every L ≤M .
(9) If M is g-radical supplemented, then every homomorphic image of M is also g-radical supplemented.
(10) If M is g-radical supplemented, then M/RadgM is semisimple.
(11) If M is g-radical supplemented, then every finitely M−generated module is g-radical supplemented.

Proof: See [6]. �

Lemma 11. Let M be an R−module.
(1) If M is ⊕−supplemented, then M is supplemented.
(2) Let M =M1 ⊕M2. If M1 and M2 are ⊕−supplemented, then M is also ⊕−supplemented.
(3) Let M =M1 ⊕M2 ⊕ ...⊕Mn. If Mi is ⊕−supplemented for every i = 1, 2, ..., n, then M is also ⊕−supplemented.
(4) Hollow and local modules are ⊕−supplemented.
(5) If M is supplemented and π−projective, then M is ⊕−supplemented.

Proof: See [4, 11]. �

Lemma 12. Let M be an R−module.
(1) If M is Rad−⊕−supplemented, then M is Rad-supplemented.
(2) Let M =M1 ⊕M2. If M1 and M2 are Rad−⊕−supplemented, then M is also Rad−⊕−supplemented.
(3) Let M =M1 ⊕M2 ⊕ ...⊕Mn. If Mi is Rad−⊕−supplemented for every i = 1, 2, ..., n, then M is also Rad−⊕−supplemented.
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(4) Hollow and local modules are Rad−⊕−supplemented.
(5) If M is ⊕−supplemented, then M is ⊕−supplemented.

Proof: See [2, 3]. �

Definition 1. Let M be an R−module. If every submodule of M has a g-radical supplement that is a direct summand of M , then M is called
a ⊕−generalized radical supplemented (briefly ⊕−g −Rad− supplemented) module. (See also [9])

Lemma 13. Every ⊕− g −Rad−supplemented module is g−radical supplemented.

Proof: Clear from definitions. �

Corollary 1. Let M be a ⊕− g −Rad−supplemented module. Then every factor module of M is g-radical supplemented.

Proof: Since M is ⊕− g −Rad−supplemented, by Lemma 13, M is g-radical supplemented. Then by [6, Lemma 9], every factor module of
M is g-radical supplemented. �

Corollary 2. Let M be a ⊕− g −Rad−supplemented module. Then every homomorphic image of M is g-radical supplemented.

Proof: Clear from Corollary 1. �

Lemma 14. Let M be an R−module and M =M1 +M2. If M1 and M2 are ⊕− g −Rad−supplemented, then M is g-radical
supplemented.

Proof: Since M1 and M2 are ⊕− g −Rad−supplemented, by Lemma 13, these are g-radical supplemented. Then by [6, Lemma 7], M is
g-radical supplemented. �

Corollary 3. The finite sum of ⊕− g −Rad−supplemented modules is g-radical supplemented.

Proof: Clear from Lemma 14. �

Corollary 4. Let M be a ⊕− g −Rad−supplemented module. Then every finitely M−generated module is g-radical supplemented.

Proof: Since M is ⊕− g −Rad−supplemented, by Lemma 13, M is g-radical supplemented. Then by [6, Lemma 10], every finitely
M−generated module is g-radical supplemented. �

Corollary 5. Let R be a ring. If RR is ⊕− g −Rad−supplemented, then every finitely generated R−module is g-radical supplemented.

Proof: Clear from Corollary 4. �

Proposition 1. Every Rad−⊕−supplemented module is ⊕− g −Rad−supplemented.

Proof: Clear from definitions. �

Corollary 6. The finite direct sum of Rad−⊕−supplemented modules is ⊕− g −Rad−supplemented.

Proof: Let M1,M2, ...,Mn be Rad−⊕−supplemented modules and M =M1 ⊕M2 ⊕ ...⊕Mn. By [3, Proposition 3.1], M is Rad−
⊕−supplemented. Then by Proposition 1, M is ⊕− g −Rad−supplemented. �

Corollary 7. Every ⊕−supplemented module is ⊕− g −Rad−supplemented.

Proof: Clear from Proposition 1, since every ⊕−supplemented module is Rad−⊕−supplemented. �

Corollary 8. The finite direct sum of ⊕−supplemented modules is ⊕− g −Rad−supplemented.

Proof: Clear from Corollary 6 and Corollary 7. �

3 Conclusion

⊕− g −Rad−supplemented modules are more general than ⊕−supplemented modules.

© CPOST 2021 13



4 References
1 J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting Modules Supplements and Projectivity In Module Theory, Frontiers in Mathematics, Birkhauser, Basel, 2006.
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Abstract: The parabolic partial differential equation has been used as a model for many situations. Therefore, the accuracy of
numerical solutions is important in the literature. In this study, finite difference method is developed with Lagrange polynomials
and applied to heat equation. The equation made discrete with this approach is solved by the implicit method to find the solution
at each grid point. The numerical solutions were found to be more accurate when compared with the results obtained with the
classical finite difference method. The results obtained were supported by tables and graphs.

Keywords: Finite difference method, Implicit method, Lagrange interpolation, Partial differential equation.

1 Introduction

Partial differential equations are used to characterize many phenomena in nature. In recent years, most physical events have been expressed
through mathematical models. Solutions of such equations are important in understanding and interpreting events. A lot of work has been done
in this area recently. Some of these are as follows. In [1] the Pade approach has been applied to a parabolic partial differential equation. A local
mesh-free method for solving ill-posed problem was presented in [2]. Physical events are modeled with partial differential equation. An example
of metrology is solved in [3]. In [4, 5], non local boundary conditional problems have been used in the quasistatic theory of thermoelasticity.
Studies have been done about the accuracy of numerical solution methods [6]-[8]. Finite difference and finite element method has been used
to solve similar problems [9]-[11]. Additionally, there are many numerical studies in the literature such as Taylor method [12, 13], collacation
method [14], variational iteration method [15], cubic trigonometric B splines method [16], homotopy analysis method [17].

In this work, we examine the one dimensional parabolic equation [1],

∂u(x, t)

∂t
=
∂2u(x, t)

∂x2
+ f(x, t), (x, t) ∈ [0, L]× [0, T ] (1)

with the initial conditions
u(x, 0) = h(x), (2)

and the boundary conditions
u(0, t) = g0(t), u(L, t) = g1(t), (3)

where h, g0 and g1 are functions that describe the initial boundary and boundary conditions, respectively, and T is a given positive value of the
final time, g0 and g1 are the boundary temperatures.

We investigate the numerical solution of Eq.(1) with initial and boundary condition Eqs.(2,3) by finite difference method. Finite difference
approximations are obtained by using Taylor series. In this work we used finite difference equations obtained Lagrange interpolation. By using
this interpolation we approximate the first and second derivatives of any function. Here we apply these finite difference formulas to parabolic
one dimensional heat equation. The finite difference method solves many partial differential equations [18]-[20].

This paper is organized as follows: Numerical scheme for the solution of Eq.(1) in Section 2. The mentioned method is applied to some
examples and the usefulness of the method is supported by tables and graphics in Section 3. In Section 4, a conclusion is given.

2 Solution method

In this section, an approximation to the first and second derivatives of any function is constructed using quadratic interpolation polynomials. If
we take the Lagrange interpolating polynomial form.

y(x) ≈ p2(x) = y(x0)L
(2)
0 (x) + y(x1)L

(2)
1 (x) + y(x2)L

(2)
2 (x) (4)

The approximate derivatives are
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y
′
(x0) ≈ p

′

2(x0) = y(x0)(L
(2)
0 )

′
(x0) + y(x1)(L

(2)
1 )

′
(x0) + y(x2)(L

(2)
2 )

′
(x0) (5)

y
′′
(x0) ≈ p

′′

2 (x0) = y(x0)(L
(2)
0 )

′′
(x0) + y(x1)(L

(2)
1 )

′′
(x0) + y(x2)(L

(2)
2 )

′′
(x0) (6)

where (L
(2)
j )(x) is Lagrange interpolation polynomials of degree 2 and x1 = x0 + h and x2 = x0 + 2h. We evaluate the values of

(L
(2)
j )

′
(x0) and (L

(2)
j )

′′
(x0) in Eq.3. If we compute these values, we obtain,

(L
(2)
0 )

′
(x0) = −

3

2h
, (L

(2)
1 )

′
(x0) =

2

h
, (L

(2)
2 )

′
(x0) = −

1

2h
, (7)

(L
(2)
0 )

′′
(x0) =

1

h2
, (L

(2)
1 )

′′
(x0) = −

2

h2
, (L

(2)
2 )

′′
(x0) =

1

h2
, (8)

So, we have the following approximate of the first and second derivatives,

y
′
(x) =

1

2h
(−y(x+ 2h) + 4y(x+ h)− 3y(x)) (9)

y
′′
(x) =

1

h2
(y(x+ 2h)− 2y(x+ h) + y(x)) (10)

The relation (9) and (10) can be extended the approximations to partial derivatives to numerically solve the Eq.(1). For this proposed, we
divide the spatial domain W = [0, L] into the uniform mesh with N + 1 nodes xi = ih for i = 0, ..., N , where h = L

N . The time interval
[0, T ] is divided into F subintervals where the subinterval length equals dt = T

F and the time nodes are tj = jdt for j = 0, ..., F. At these
points, the value of the function is represented by u(xi, tj) = uji . The equivalents of the above approaches in partial derivatives are as follows:

∂u

∂x
=

1

2h
(−uji+2 + 4uji+1 − 3uji ) (11)

∂2u

∂x2
=

1

h2
(uji+2 − 2uji+1 + uji ) (12)

∂u

∂t
=

1

2dt
(−uj+2

i + 4uj+1
i − 3uji ) (13)

∂2u

∂t2
=

1

(dt)2
(uj+2

i − 2uj+1
i + uji ) (14)

If the Eq. (11)-(14) put into Eq. (1), the following discrete form is obtained for Eq.(1)

uj+1
i−1 (−

1

(dx)2
) + uj+1

i (
2

(dx)2
− 1

2dt
) + uj+1

i+1 (−
1

(dx)2
) = uji (−

2

dt
) + uj−1

i (
3

2dt
) + fji (15)

If j = 0, u−1
i is obtained and this means the external mesh point (−h, jdt). It is called external mesh point (Figure 1). We can find the

equivalent of this point with the help of derivative in boundary conditions. The boundary condition can be represented by [20].

u1
i − u

−1
i

2dt
=
∂uji
∂t

= g(xi) (16)

If the unknown is eliminated with Eq.(15), the following equation is achieved for j = 0,

u1
i−1(−

1

(dx)2
) + u1

i (−
2

(dx)2
− 1

2dt
) + u1

i+1(−
1

(dx)2
) = u0

i (−
2

dt
+

3

2dt
) + fji (17)
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Fig. 1: Graph of the external mesh point

Fig. 2: Nodes display graph of the given scheme

If the solutions of the difference equations are all of the form

uts = ξteik∆x (18)

where k is a real number, ξ = ξ(k) is a complex number that depends on k. The number ξ is called the amplification factor at a given number
k.

To find ξ(k) we substitute uts into Eq.(15) and get ξ(k). As a von-Neumann stability analysis shows [21], the amplification factor is given
by ξ(k) < 1 so that the finite-differencing Eq .(15) is unconditionally stable.

3 Examples

3.1 Example 1

We consider the Eq.(1) representing the heat phenomena with the following conditions [1];

h(x) = ex

g0(t) =
1

1 + t2
, g1(t) =

e

1 + t2

f(x, t) = − (1 + t)2ex

(1 + t2)2

The exact solution is given by uexact =
ex

(1 + t2)
. The absolute errors corresponding to different N values at different times are given in the

Table 1 withdt = 0.000001. Table 2 shows the absolute error using the technique presented with N = 100 with different dt.
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i N = 10 N = 20 N = 30 N = 40
1 8.8658e-5 3.9126e-5 5.9119e-7 1.2940e-5
2 8.8670e-5 4.6928e-5 4.9290e-5 3.8531e-5
3 8.8599e-5 3.3295e-5 1.0600e-6 3.4142e-5
4 8.8965e-5 4.8299e-5 3.9786e-5 9.2400e-7
5 1.2418e-4 1.2924e-5 1.2879e-5 1.3333e-5
6 1.7725e-4 3.9431e-5 1.6000e-8 3.4319e-5
7 4.9559e-5 5.2588e-5 1.3474e-5 1.2987e-5
8 1.7738e-4 4.8079e-5 1.3736e-5 2.0800e-7
9 9.8402e-5 5.3010e-5 1.4443e-5 2.0600e-7

Table 1 Absolute Values of Errors for u(x, t) with dt = 0.000001 with Different Values of N

i dt = 0.001 dt = 0.00001
1 1.8509e-3 1.9000e-8
2 2.6650e-3 2.3000e-8
3 3.3512e-3 6.0000e-9
4 3.8766e-3 2.0000e-9
5 4.2161e-3 1.2000e-8
6 4.3534e-3 5.0000e-9
7 4.2821e-3 1.0000e-9
8 4.0059e-3 6.0000e-9
9 3.5382 e-3 5.0000e-9

Table 2 Absolute values of errors for u(x, t) with N = 100 with different values of dt

Fig. 3: Numerical and exact solutions at any time level with h = 0.1, dt = 0.000001

Fig. 4: Comparison of exact and numerical solutions for h = 0.01, dt = 0.000001
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In Figure 1, numerical and exact solutions at any time level withh = 0.1, dt = 0.000001 are compared. It has been observed that they have
close values. Figure 2 shows the exact and numerical values of the solution with h = 0.01, t = 0.000001. It has been observed that the errors
decrease when the N value increases.

3.2 Example 2

We consider the following parabolic equation representing the heat phenomena

∂u(x, t)

∂t
= a

∂2u(x, t)

∂x2
+ f(x, t)

with the following conditions [2];

h(x) = x2

g0(t) = −t2, g1(t) = 1− t2

f(x, t) = −2t− 2a

The exact solution is given by uexact = x2 − t2. The following Table 3 show the absolute error using the technique presented with different

N and dt values. Absolute errors at different a values are given in Table 4 for h =
1

100
, dt = 0.00001.

dt N = 10 N = 20 N = 30
0.001 4.2687e-6 1.6181e-6 3.0868e-6
0.0005 6.6789e-6 6.9043e-5 5.8113e-5

Table 3 Absolute errors for u(0.2, 0.001) with a = 1 and different values of N and dt.

i a = 1 a = 100
1 4.0722e-8 5.0409e-6
2 1.6955e-8 9.8380e-6
3 2.9441e-8 1.4159e-5
4 1.0040e-9 1.7796e-5
5 1.7178e-8 2.0573e-5
6 6.5250e-9 2.2355e-5
7 1.3103e-8 2.3056e-5
8 8.4600e-9 2.2644e-5
9 1.2178e-8 2.1137e-5

Table 4 Absolute errors with N = 100, dt = 0.00001 at different space level for different value a.

Fig. 5: Numerical solutions for a = 1 with N = 10,dt = 0.00001

Figure 5, shows the numerical results with N = 10, dt = 0.00001. Numerical and exact values are given in Figure 6 for N = 100,
dt = 0.00001.
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Fig. 6: Numerical and Exact solutions for a = 1 with N = 100, dt = 0.00001

Algorithm

1. Input the time step (dt) , and space step (dx).
2. Compute grid points "xi" for i = 0, ..., N and "tj" for j = 0, ..., T
3. Compute u1

i for all mesh points by Eq.17.
4. Step1: Compute the right hand side of Eq.17 for all mesh points.
• For each fixed i = 0, , N and j = 0, , T compute uji and uj−1

i by using Eqs. 15-17.
• For each fixed i = 0, , N and j = 0, , T compute fji .
5. Step2: Compute the boundary conditions uji for i = 0, , N and j = 0, , T .
6. Step3: Calculate uj+1

i by using given scheme Eq. 15-17.
7. Evaluate absolute errors.

4 Conclusion

In this study, finite differences, Lagrange polynomials are developed with interpolation forms and applied to the heat equation. The equation
was made discrete with these formulas and solutions in each time step were obtained. Implicit method is used in each step. This method is
unconditionally stable according to Von-Neumann stability analysis. Since the heat equation is very important in the literature, its solutions
must be very close to the exact solution. The solutions obtained are sufficient and suitable errors in some steps are shown in the tables.
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Abstract: In this work, we give approximate solutions for the nonlinear Blasius equations. To solve Blasius equation, the truncated
shifted Chebyshev polynomials and collocation matrix-vector method are considered. The proposed method converts the Blasius
equation into a nonlinear system equation with unknown Chebyshev coefficients. Some examples are presented to approve the
given method.
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1 Introduction

The Blasius equation is a third order nonlinear differential equation which describes as a laminar viscous flow over a semi-infinite flat plate
[1, 2]

y′′′(x) +
1

2
y(x)y′′(x) = 0 (1)

with conditions

y(0) = y′(0) = 0 (2)

y′(M) = 1 (3)

where y is unknown function and M is constant and sufficiently large. The Blasius equation is characterized by the value of α = y′′(0)
[1, 2]. The existence and the uniqueness of the solution have been studied in [3]. But, the analytical solution of Blasius can not be obtained.
Since some numerical schemes can not be applied Eqs. (1)-(3), some transformations are arose to obtain numerical solution of Eqs. (1)-(3). In
literature, some authors investigate some feature and approximate solutions such as the case of two paralel streams [3, 4], the lower stream is
at rest as well as when it is in motion [5], two fluids of different viscosities and densities [6], Adomian decomposition method [7], homotopy
perturbation method [8], totally analytic method [9], Pade approximation [10], and others [11]-[18]. For solving this problem, we assume that
the following truncated shifted Chebyshev series is a solution of the Eq.(1)

yN (t) =

N∑
n=0

anT
∗
n(t), T

∗
n(t) = cos(nθ), 2t− 1 = cosθ, t ∈ [0, 1] (4)

where T ∗n(t) is a polynomial in t of degree n, is called the shifted Chebyshev polynomial of the first kind and an are unknown Chebyshev
coefficients, N ≥ 3.

2 The shifted Chebyshev polynomials of the first kind and some their properties

The shifted Chebyshev polynomials T ∗n(t) of the first kind is defined by the following relation relation [19, 20]

T ∗n(t) = 2(2t− 1)T ∗n−1(t)− T ∗n−2(t), n ≥ 1

with T ∗0 (t) = 1, T ∗1 (t) = 2t− 1.
The leading coefficient of tn in T ∗n(t) to be 22n−1.
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tn,i =
1

2
[1 + cos

(2(n− i) + 1)π

2(n+ 1)
], i = 0, 1, ..., n (5)

are zeroes on the interval [0, 1] of T ∗n+1(t). The relation between the powers tn and the second kind Chebyshev polynomials T ∗n(t) is

tn = 2−2n+1
n∑

k=0

(
2n

k

)
T ∗n−k(t) (6)

where
∑′

denotes a sum whose first term is halved. For more details see [19, 20].

3 Fundamental relations

In this analysis, we are using the collocation method with the truncated shifted Chebyshev series. We want to find a truncated shifted Chebyshev
series which is represented the solution of the Eq.(1) with the conditions Eqs.(2)-(3). Initially, we want to write a matrix-vector form of yN (t)

and its derivative y(k)N (t) . Those forms can be written as the following form

yN (t) = T ∗N (t)A, y
(k)
N (t) = T ∗N

(k)
(t)A (7)

where

T ∗(t) =
[
T ∗0 (t) T ∗1 (t) · · · T ∗N (t)

]

T ∗
(k)

(t) =
[
T ∗0

(k
(t) T ∗1

(k)
(t) · · · T ∗N

(k)
(t)

]

A =
[
a0 a1 · · · aN

]T
If we want to find a relation between X(t) and T ∗(t). , using the expression (6), the following relation can be written

XT (t) = DT ∗
T
(t) and so X(t) = T ∗(t)DT (8)

where
X(x) =

[
1 t ... tN

]
.

and

D =


20
(0
0

)
0 0 . . . 0

2−2
(2
1

)
0 2−1

(2
2

)
. . . 0

2−4
(4
2

)
2−3

(4
3

)
2−3

(4
4

)
. . . 0

...
...

...
. . .

...
2−2N

(2N
N

)
2−2N+1( 2N

N+1

)
2−2N+1( 2N

N+2

)
. . . 2−2N+1(2N

2N

)


Since the D has an inverse, Eq.(8) can be rewritten as

T ∗(t) = X(t)(DT )−1 (9)

The B matrix can be found is satisfied the following relation:

X(k)(t) = X(t)Bk (10)

where

B =


0 1 0 · · · 0

0 0 2 · · · 0

...
...

...
. . .

...
0 0 0 · · · N

0 0 0 · · · 0

 .
To obtain the matrix form of the approximate solution of and its derivatives y(k)N (t) , if Eqs.(9)-(10) are put into Eq.(7), we have the

matrix-vector form

y
(k)
N (t) = X(t)Bk(DT )−1A, k = 0, 1, 2, 3 (11)

Also, the matrix-vector form of the nonlinear part of Eq.(1) can be written from [21, 22]
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Ym(t) = (Y (t))m−1Y (t) (12)

where

Y (t)m =


ym(t)
ym(t)

...
ym(t)

Y (t) =


y(t) 0 · · · 0
0 y(t) · · · 0
...

...
. . .

...
0 0 · · · y(t)


and

Y (t) = T (t)A (13)

where

T (t) =


T (t) 0 · · · 0
0 T (t) · · · 0
...

...
. . .

...
0 0 · · · T (t)

A =


A 0 · · · 0
0 A · · · 0
...

...
. . .

...
0 0 · · · A


Then, we construct the following relation

yN (ti)y
′′

N (ti) = (T (t)A)X(t)(BT )2(DT )−1A (14)

From Eq.(11), the matrix form for conditions Eqs. (2)-(3) are obtained by the following relations

yN (0) = X(0)(DT )−1A =
[
u00 u01 · · · u0N

]
=
[
0
]

(15)

y
′

N (0) = X(0)BT (DT )−1A =
[
u10 u11 · · · u1N

]
=
[
0
]

(16)

y
′

N (M) = X(M)BT (DT )−1A =
[
u20 u21 · · · u2N

]
=
[
1
]

(17)

4 Method of solution

In this section, we convert the (1) into a matrix-vector equation. The numerical solutions of (1) with conditions (2)-(3) try to find as a Chebyshev
series using collocation method. If (11)-(14) put into (1), we get the system of matrix equations

X(ti)(B
T )3(DT )−1A+ 0.5(T (ti)A)X(ti)(B

T )2(DT )−1A = 0 (18)

where ti, 0 ≤ i ≤ N are the zeroes of the T ∗n+1(t). WE can briefly write the (18)

(X(BT )3(DT )−1A+ P (TA)X(BT )2(DT )−1A) = 0 (19)

where

P =


1/2 0 0 · · · 0
0 1/2 0 · · · 0
0 0 1/2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1/2

X =


1 x0 x20 · · · xN0
1 x1 x21 · · · xN1
1 x2 x22 · · · xN2
...

...
...

. . .
...

1 xN x2N · · · xNN

 0 =


0
0
0
...
0

T =


T (t0) 0 0 · · · 0
0 T (t1) 0 · · · 0
0 0 T (t2) · · · 0
...

...
...

. . .
...

0 0 0 · · · T (tN )


To obtain the solution of Eq.(1) under the conditions (2), by replacing the rows matrices (15)-(16)-(17) by the last 3 rows of the matrix (19).
Hence, (19) is described a system of (N + 1) nonlinear algebraic equation with unknown coefficients. If those nonlinear systems are solved
by Maple program, we find the unknown coefficients Â. Â is the approximate value of A. Those coefficients are put into (4) , the approximate
solution

ŷN (t) =

N∑
n=0

ânT
∗
n(t)

is obtained. The accuracy of the method can be investigated with the following relation which is called the error estimation function [19] :

EN (t) = |ŷ
′′′

N −
1

2
ŷN (t)ŷ

′′

N (t)| ∼= 0 (20)

5 Example

In this section, we shall test accuracy of the proposed method. In Table 1, we give the numerical results for various N and M = 2. Those
numerical results are plotted in Figure 1. Moreover, we have obtained the value of α, 0.527317, 527687, 0.503774 forN = 4, 6, 8, respectively.
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t E4 E6 E8

0.0 0.118E-2 0.495E-5 0.134E-5
0.1 0.268E-2 0.180E-5 0.177E-5
0.2 0.468E-3 0.161E-4 0.148E-5
0.3 0.139E-1 0.886E-5 0.277E-5
0.4 0.465E-1 0.790E-4 0.907E-5
0.5 0.103E-1 0.100E-4 0.121E-5
0.6 0.190E-0 0.866E-3 0.450E-4
0.7 0.313E-0 0.399E-2 0.492E-4
0.8 0.478E-0 0.123E-1 0.122E-3
0.9 0.690E-0 0.308E-1 0.536E-2
1.0 0.956E-0 0.680E-1 0.163E-1

Table 1 Comparison of estimation error functions.
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Fig. 1: Comparison of the estimation error functions for various N .

6 Conclusion

A collocation matrix-vector method has been proposed to obtained the numerical solution of Blasius equation. The solution algorithm of the
Blasius equation is written by Maple computer program and so, the unknown coefficients are found very easily. Numerical results arise the
effectiveness of the method.
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Abstract: Being one of the recently emerged modern teaching and learning tools, GeoGebra has become a widely utilized inter-
active mathematical application that can be employed for educational purposes for various branches of science and engineering.
In this particular study, the implementation of this software for an ideal two-dimensional flow field is presented. The developed
applet aims to enable the user to grasp a visual understanding of the relation between the velocity vector field, streamlines and
potential lines in a flow field. Besides, the applet portrays the pressure distribution given by the Euler equations which govern the
ideal fluid flow and it allows the user to examine the spatial variation of the terms in the Bernoulli equation.

Keywords: Bernoulli equation, Euler equations, GeoGebra, Potential lines, Streamlines

1 Introduction

GeoGebra is an interactive, easy-to-use mathematical tool developed for educational purposes from primary school up to college level [1]. It
enables the visualization of mathematical concepts by bridging the gap between algebra and geometry. As an open source software, GeoGebra
can be freely downloaded or it can be launched directly at www.geogebra.org. GeoGebra is a Java based software, thus it is executable on
every operating system (Windows, macOS, Linux, Android, iOS) . A cloud service is also supported enabling the users to upload and share
their GeoGebra applets. Various studies can be found in the literature focusing on the implementation of GeoGebra for picturing engineering
problems, e.g. [2]-[5].

Ideal flow theory constitutes an important part of fluid dynamics and the principles of ideal flow provides a basis for the analyses of more
complex flow types. Most of the undergraduate science and engineering students gain an understanding of fluid motion by first assimilating
ideal flow which is governed by a set of differential equations. This work aims to portray the solution of these differential equations with the
use of GeoGebra. The developed GeoGebra applet allows the user to observe the influence of various dynamically editable parameters on flow
behavior.

2 Mathematical background

In fluid dynamics, ideal flow is defined as flow of a fluid that is incompressible and inviscid. Incompressible flow refers to a flow where the fluid
density is constant everywhere in the flow field. For incompressible flow, the continuity equation, also known as the principle of conservation
of mass, can be formulated as;

∇ · ~V = 0 (1)

where ~V is the velocity vector describing the flow field. For a two dimensional flow field the continuity equation can be satisfied by introducing
stream function ψ, such that the curl of the stream function yields the velocity vector;

~V = ∇× ψ (2)

A streamline is a contour line obtained for the stream function. In the flow field, instantaneous velocity vector is tangential to the streamlines,
therefore, these curves are practical graphical constructs to portray the direction of fluid flow.

Inviscid flow designates the flow of a fluid with zero viscosity. Inviscid flow assumption is employed when viscous normal and shear stresses
are negligible in the flow field. Applying Newton’s second law of motion for an inviscid flow field gives the Euler equations, as follows;

© CPOST 2021 25

http://cpostjournal.org/


∂~V

∂t
+
(
~V · ∇

)
~V = −1

ρ
∇P + ~g (3)

where P denotes pressure, ρ is the density of the fluid and ~g is the gravity vector, that is ~g = −gk̂, where k̂ is the unit vector in vertical direction
and g is the magnitude of gravitational acceleration.

Analysis of incompressible, invisicid flow problems are further simplified with the assumption of irrotational flow. The angular velocity of
a fluid particle in an irrotational flow field is zero, so that the curl of the velocity vector becomes zero;

∇× ~V = 0 (4)

(4) can be satisfied by introducing a velocity potential function, φ, such that,

~V = ∇φ (5)

The value of the potential function drops in flow direction. Potential lines are provided by the potential function whose value is constant along a
potential line. The potential lines are perpendicular to the streamlines and a finite set of lines selected from these mutually orthogonal families
of lines form a flow net in the flow field.

For a steady (time-independent), incompressible, inviscid and irrotataional flow field, substituting (5) into (3) yields the well-known Bernoulli
relation, that is;

P

ρg
+
|~V |2

2g
+ z = constant (6)

where z stands for the elevation of a point in the flow field and |~V | is the magnitude of the velocity vector at that point. The Bernoulli equation
can be applied for points that are positioned along the same streamline, however, for irrotational flow, this relation is applicable to any selected
two points in the flow field.

3 GeoGebra application

To exhibit the use of GeoGebra as a tool for picturing ideal flow, a hypothetical, two-dimensional velocity field in Cartesian coordinate system
is taken into consideration, which has the following form;

~V = (ax+ by + c) î+ (bx− ay + d) ĵ (7)

where the steady-state velocity field ~V (m/s) is introduced as a function of the spatial variables x (m) and y (m) together with the user-
specified parameters; a (1/s), b (1/s), c (m/s) and d (m/s). î and ĵ stand for the unit vectors in x and y directions, respectively. Apart
from these parameters, the density of the fluid, ρ (kg/m3), the elevation with respect to a reference plane, z (m) and the reference pressure,
P0 (N/m2), which is assumed to be known at x = 0, y = 0, z = 0, can be interactively specified by the user as well. The interface of the
developed GeoGebra applet, which can be reached at https://www.geogebra.org/m/ueqdfywy, is presented in Fig. 1.

For an incompressible, irrotational flow field described in x-y plane, based on (2) and (5) the functional relationship between the velocity
components, stream function and potential function can be established as;

u =
∂ψ

∂y
=
∂φ

∂x
(8)

v = −∂ψ
∂x

=
∂φ

∂y
(9)

where

~V = u(x, y)̂i+ v(x, y)ĵ (10)

The stream and potential functions characterizing this flow field can be attained by solving the partial differential equations introduced in (8)
and (9), respectively, so to get;

ψ = − b
2
x2 +

b

2
y2 + axy − dx+ cy (11)

φ =
a

2
x2 − a

2
y2 + bxy + cx+ dy (12)

The produced stream and potential functions can be solved for y, as depicted in (13) and (14), respectively, to obtain two families of streamlines
and potential lines, constructing a flow net.
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y =
−c− ax∓

√
(a2 + b2)x2 + 2 (ac+ bd)x+ c2 + 2bψ

b
(13)

y =
d+ bx∓

√
(a2 + b2)x2 + 2 (ac+ bd)x+ d2 − 2aφ

a
(14)

Solving the three (x, y, z) components of the differential equation (Euler equations) given in (3) yields the spatial variation of the pressure
field, as follows;

P = −ρ
[
a2 + b2

2

(
x2 + y2

)
+ (ac+ bd)x+ (bc− ad)y + gz

]
+ P0 (15)

To visualize the pressure field, (15) can be solved for y to construct isobars (lines of constant pressure), as;

y =
ρ(ad− bc)∓ (−ρβ)1/2

ρ(a2 + b2)
(16)

where
β = ρ(a2 + b2)

[
x2(a2 + b2) + 2x(ac+ bd) + 2gz

]
− ρ(ad− bc)2 + 2(P − P0)(a2 + b2) (17)

The developed GeoGebra applet dynamically calculates and shows the spatially varying stream, potential and pressure functions with the use
of (11), (12) and (15), respectively. To visualize the flow field, the applet plots representative vectors describing the velocity field given by (7).
In addition, the application plots streamlines, potential lines and isobars by substituting representative values of ψ, φ and P into (13), (14) and
(16), respectively.

The applet also involves an animation depicting the motion of a fluid particle in the flow field. Midpoint Method (Modified Euler approach) is
employed to calculate the particle position varying as a function of time, (x(t), y(t)), as follows;

x(t+ ∆t) = x(t) + u

(
x(t) +

1

2
u (x(t), y(t)) ∆t, y(t) +

1

2
v (x(t), y(t)) ∆t

)
∆t (18)

y(t+ ∆t) = y(t) + v

(
x(t) +

1

2
u (x(t), y(t)) ∆t, y(t) +

1

2
v (x(t), y(t)) ∆t

)
∆t (19)

where ∆t denotes the time step increment which is taken as 0.01 s for this particular study. As the particle moves, the user will be able to
monitor the variation of the components of the Bernoulli equation introduced in (6).

Fig. 1: The interface of the developed GeoGebra Applet
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4 Conclusion

Analysis of ideal fluid flow is of crucial importance as it is the very first type of fluid flow that the engineering students study in hydrodynamics
and the theory of ideal flow establishes a basis for more complex flows. In order to enable the students to visualize the fundamental concepts
of ideal flow, this study proposes the use of an applet developed with GeoGebra. Employing this application the users will be able to observe
the impact of a set of dynamically editable parameters on the main constructs of an ideal flow field, such as streamlines, potential lines or equal
pressure lines. The developed application provides a picture of a flow net formed by a set of mutually perpendicular streamlines and potential
lines. At every point in the flow field, the streamlines are clearly seen to be tangent to the velocity vector, whereas flow always orthogonally
crosses the potential lines. The shape of the equal pressure lines provides a perception of the nature of the pressure field. In addition, the relation
between the magnitudes of flow velocity and pressure can be grasped quantitatively by following the representative fluid particle in the flow
field.
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1 Introduction

After Pringsheim [1] defined the concept of convergence for double sequences, this concept has attrached the attention of many authors. And as
a result, some new convergence concepts for double sequences were presented ([2, 3]). Recently, Çolak and Altın [4] introduced the concept of
statistical convergence of order α for double sequences in addition to these new concepts. Also, the concepts of asymptotical and asymptotical
statistical equivalence for double sequences were respectively defined by Patterson [5] and Patterson-Savaş [6].

There are many convergence concepts on set sequences. The concept of convergence in the Wijsman sense is based on this study (see, [7, 8]).
Using the concepts of statistical convergence, invariant mean etc., new convergence concepts in the Wijsman sense for double set sequences
were introduced by some authors ([9]-[11]). In [10], Nuray and Ulusu studied on the concepts of invariant summability and invariant statistical
convergence in the Wijsman sense for double set sequences. Also, for double set sequences, the concepts of asymptotical equivalence in the
Wijsman sense were introduced by Nuray et al. [12] and then Ulusu et al. [13] presented the concepts of asymptotical invariant and asymptotical
invariant statistical equivalence for double set sequences.

In this paper, using the concepts of invariant mean and order β, we studied on new asymptotical equivalence concepts in the Wijsman sense
for double set sequences.

More information on the concepts of convergence and asymptotic equivalence for real or set sequences can be found in [3, 9, 14, 16],
[18]-[21].

2 Definitions and notations

Before to continue main result, we now give some preliminaries necessary to better understand of our paper (see, [11, 12, 17]).
For a metric space (Y, ρ), d(y, C) denote the distance from y to C where

d(y, C) := dy(C) = inf
c∈C

ρ(y, c)

for any y ∈ Y and any non-empty set C ⊆ Y .
For a non-empty set Y , let a function h : N→ 2Y (the power set of Y ) is defined by h(i) = Ci ∈ 2Y for each i ∈ N. Then, the sequence

{Ci} = {C1, C2, . . .} is called set sequences.
Throughout this study, (Y, ρ) will be considered as a metric space and C,Cij , Dij will be considered as any non-empty closed subsets of

Y .
The double set sequence {Cij} is called convergent to the set C in the Wijsman sense if each y ∈ Y ,

lim
i,j→∞

dy(Cij) = dy(C).

The double set sequence {Cij} is called statistically convergent to the set C in the Wijsman sense if every ε > 0 and each y ∈ Y ,

lim
m,n→∞

1

mn

∣∣∣∣{(i, j) : i ≤ m, j ≤ n, ∣∣dy(Cij)− dy(C)
∣∣ ≥ ε}∣∣∣∣ = 0.
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The term dy
(Cij
Dij

)
is defined as follows:

dy
(Cij
Dij

)
=


d(y, Cij)

d(y,Dij)
, y 6∈ Cij ∪Dij

λ , y ∈ Cij ∪Dij .

Double set sequences {Cij} and {Dij} are called asymptotically equivalent in the Wijsman sense if each y ∈ Y ,

lim
i,j→∞

dy
(Cij
Dij

)
= 1

and denoted by Cij
W∼ Dij .

Let σ be a mapping such that σ : N+ → N+ (the set of positive integers). A continuous linear functional ψ on `∞ is called an invariant
mean (or a σ-mean) if it satisfies the following conditions:

1. ψ(xs) ≥ 0, when the sequence (xs) has xs ≥ 0 for all s,
2. ψ(e) = 1, where e = (1, 1, 1, . . .) and
3. ψ(xσ(s)) = ψ(xs) for all (xs) ∈ `∞.

The mappings σ are assumed to be one to one and such that σi(s) 6= s for all i, s ∈ N+, where σi(s) denotes the i th iterate of the mapping
σ at s. Thus ψ extends the limit functional on c, in the sense that ψ(xs) = limxs for all (xs) ∈ c.

Double set sequences {Cij} and {Dij} are called asymptotically invariant equivalent to multiple λ in the Wijsman sense if each y ∈ Y ,

lim
m,n→∞

1

mn

m,n∑
i,j=1,1

dy
(Cσi(s)σj(t)
Dσi(s)σj(t)

)
= λ

uniformly in s, t.
Double set sequences {Cij} and {Dij} are called asymptotically strongly invariant equivalent to multiple λ in the Wijsman sense if each

y ∈ Y ,

lim
m,n→∞

1

mn

m,n∑
i,j=1,1

∣∣∣∣dy(Cσi(s)σj(t)Dσi(s)σj(t)

)
− λ

∣∣∣∣ = 0

uniformly in s, t.

3 Main results

In this section, for double set sequences, the concepts of asymptotical invariant equivalence and asymptotical invariant statistical equivalence of
order β (0 < β ≤ 1) in the Wijsman sense were introduced. Also, some properties of these new equivalence concepts and the relations between
them were investigated.

Definition 1. Double set sequences {Cij} and {Dij} are asymptotically invariant statistical equivalent to multiple λ of order β in the Wijsman
sense if every ε > 0 and each y ∈ Y ,

lim
m,n→∞

1

(mn)β

∣∣∣∣∣
{
(i, j) : i ≤ m, j ≤ n,

∣∣∣∣dy(Cσi(s)σj(t)Dσi(s)σj(t)

)
− λ

∣∣∣∣ ≥ ε
}∣∣∣∣∣ = 0

uniformly in s, t where 0 < β ≤ 1 and this type of equivalence is denoted by Cij
Wλ

2 (Sβσ )∼ Dij , and simply called asymptotically invariant
statistical equivalent of order β in the Wijsman sense if λ = 1.

Example 1. Let Y = R2 and the double set sequences {Cij} and {Dij} be defined as following:

Cij :=

{ {
(a, b) ∈ R2 : a2 + b2 + ijb = 0

}
, if ij is a square integer,{

(1, 0)
}

, otherwise.

and

Dij :=

{ {
(a, b) ∈ R2 : a2 + b2 − ijb = 0

}
, if ij is a square integer,{

(1, 0)
}

, otherwise.

In this case, the double set sequences {Cij} and {Dij} are asymptotically invariant statistical equivalent of order β (0 < β ≤ 1) in the
Wijsman sense.

Remark 1. For β = 1, the concept of Wλ
2 (Sβσ )-equivalence coincides with the concept of asymptotically invariant statistical equivalence in

the Wijsman sense for double set sequences in [13].
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Theorem 1. If 0 < β ≤ γ ≤ 1, then

Cij
Wλ

2 (Sβσ )∼ Dij ⇒ Cij
Wλ

2 (Sγσ)∼ Dij .

Proof: Let 0 < β ≤ γ ≤ 1 and suppose that Cij
Wλ

2 (Sβσ )∼ Dij . For every ε > 0 and each y ∈ Y , we have

1

(mn)γ

∣∣∣∣∣
{
(i, j) : i ≤ m, j ≤ n,

∣∣∣∣dy(Cσi(s)σj(t)Dσi(s)σj(t)

)
− λ

∣∣∣∣ ≥ ε
}∣∣∣∣∣ ≤ 1

(mn)β

∣∣∣∣∣
{
(i, j) : i ≤ m, j ≤ n,

∣∣∣∣dy(Cσi(s)σj(t)Dσi(s)σj(t)

)
− λ

∣∣∣∣ ≥ ε
}∣∣∣∣∣

for all s, t. Hence, by our assumption, we get Cij
Wλ

2 (Sγσ)∼ Dij . �

If we take γ = 1 in Theorem 1, then we obtain the following corollary.

Corollary 1. Let β ∈ (0, 1]. If double set sequences {Cij} and {Dij} are asymptotically invariant statistical equivalent to multiple λ of order
β in the Wijsman sense, then the double set sequences are asymptotically statistical equivalent of multiple λ in the Wijsman sense, i.e.,

Cij
Wλ

2 (Sβσ )∼ Dij ⇒ Cij
Wλ

2 (Sσ)∼ Dij .

Definition 2. Double set sequences {Cij} and {Dij} are asymptotically invariant equivalent to multiple λ of order β in the Wijsman sense if
each y ∈ Y ,

lim
m,n→∞

1

(mn)β

m,n∑
i,j=1,1

dy
(Cσi(s)σj(t)
Dσi(s)σj(t)

)
= λ

uniformly in s, t where 0 < β ≤ 1 and this type of equivalence is denoted by Cij
Wλ

2 (V βσ )
∼ Dij , and simply called asymptotically invariant

equivalent of order β in the Wijsman sense if λ = 1.

Definition 3. Double set sequences {Cij} and {Dij} are asymptotically strong q-invariant equivalent to multiple λ of order β in the Wijsman
sense if each y ∈ Y ,

lim
m,n→∞

1

(mn)β

m,n∑
i,j=1,1

∣∣∣∣dy(Cσi(s)σj(t)Dσi(s)σj(t)

)
− λ

∣∣∣∣q = 0

uniformly in s, t where 0 < β ≤ 1 and 0 < q <∞, and this type of equivalence is denoted by Cij
Wλ

2 [V βσ ]q

∼ Dij , and simply called
asymptotically strong q-invariant equivalent of order β in the Wijsman sense if λ = 1.

If q = 1, the double set sequences {Cij} and {Dij} are simply called asymptotically strong invariant equivalent to multiple λ of order β in

the Wijsman sense and this type of equivalence is denoted by Cij
Wλ

2 [V βσ ]
∼ Dij .

Example 2. Let Y = R2 and the double sequences {Cij} and {Dij} be defined as following:

Cij :=

{ {
(a, b) ∈ R2 : (a− 1)2 + b2 = 1

ij

}
, if ij is a square integer,{

(0, 1)
}

, otherwise.

and

Dij :=

{ {
(a, b) ∈ R2 : (a+ 1)2 + b2 = 1

ij

}
, if ij is a square integer,{

(0, 1)
}

, otherwise.

In this case, the double set sequences {Cij} and {Dij} are asymptotically strong invariant equivalent of order β (0 < β ≤ 1) in the Wijsman
sense.

Remark 2. For β = 1, the concept of Wλ
2 [V βσ ]q-equivalence coincides with the concept of asymptotically strong q-invariant equivalence in

the Wijsman sense for double set sequences in [13].

Theorem 2. If 0 < β ≤ γ ≤ 1, then

Cij
Wλ

2 [V βσ ]q

∼ Dij ⇒ Cij
Wλ

2 [V γσ ]q

∼ Dij .

Proof: Let 0 < β ≤ γ ≤ 1 and suppose that Cij
Wλ

2 [V βσ ]q

∼ Dij . For each y ∈ Y , we have

1

(mn)γ

m,n∑
i,j=1,1

∣∣∣∣dy(Cσi(s)σj(t)Dσi(s)σj(t)

)
− λ

∣∣∣∣q ≤ 1

(mn)β

m,n∑
i,j=1,1

∣∣∣∣dy(Cσi(s)σj(t)Dσi(s)σj(t)

)
− λ

∣∣∣∣q

for all s, t. Hence, by our assumption, we get Cij
Wλ

2 [V γσ ]q

∼ Dij . �
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If we take γ = 1 in Theorem 2, then we obtain the following corollary.

Corollary 2. Let β ∈ (0, 1] and 0 < q <∞. If double set sequences {Cij} and {Dij} are asymptotically strong q-invariant equivalent to
multiple λ of order β in the Wijsman sense, then the double set sequences are asymptotically strong q-invariant equivalent to multiple λ in the
Wijsman sense, i.e.,

Cij
Wλ

2 [V βσ ]q

∼ Dij ⇒ Cij
Wλ

2 [Vσ]
q

∼ Dij .

Now, a theorem that gives a relation between Wλ
2 [V βσ ]q-equivalence and Wλ

2 [V βσ ]p-equivalence, where 0 < β ≤ 1 and 0 < q < p <∞,
will be stated.

Theorem 3. Let 0 < β ≤ 1 and 0 < q < p <∞. Then,

Cij
Wλ

2 [V βσ ]p

∼ Dij ⇒ Cij
Wλ

2 [V βσ ]q

∼ Dij .

Proof: Let 0 < β ≤ 1 and 0 < q < p <∞. Also, we suppose that Cij
Wλ

2 [V βσ ]p

∼ Dij . By Hölder inequality, we have for each y ∈ Y

1

(mn)β

m,n∑
i,j=1,1

∣∣∣∣dy(Cσi(s)σj(t)Dσi(s)σj(t)

)
− λ

∣∣∣∣q < 1

(mn)β

m,n∑
i,j=1,1

∣∣∣∣dy(Cσi(s)σj(t)Dσi(s)σj(t)

)
− λ

∣∣∣∣p

for all s, t. Hence, by our assumption, we get Cij
Wλ

2 [V βσ ]q

∼ Dij . �

Theorem 4. If double set sequences {Cij} and {Dij} are asymptotically strong q-invariant equivalent to multiple λ of order β in the Wijsman
sense, then the double set sequences are asymptotically invariant statistical equivalent to multiple λ of order γ in the Wijsman sense, where
0 < β ≤ γ ≤ 1 and 0 < q <∞.

Proof: Let 0 < β ≤ γ ≤ 1 and 0 < q <∞. Also, we suppose that the double set sequences {Cij} and {Dij} are asymptotically strong
q-invariant equivalent to multiple λ of order β in the Wijsman sense. For every ε > 0 and each y ∈ Y , we have

m,n∑
i,j=1,1

∣∣∣∣dy(Cσi(s)σj(t)Dσi(s)σj(t)

)
− λ

∣∣∣∣q =

m,n∑
i,j=1,1∣∣∣∣dy(Cσi(s)σj(t)D

σi(s)σj(t)

)
−λ

∣∣∣∣≥ε
∣∣∣∣dy(Cσi(s)σj(t)Dσi(s)σj(t)

)
− λ

∣∣∣∣q

+

m,n∑
i,j=1,1∣∣∣∣dy(Cσi(s)σj(t)D

σi(s)σj(t)

)
−λ

∣∣∣∣<ε
∣∣∣∣dy(Cσi(s)σj(t)Dσi(s)σj(t)

)
− λ

∣∣∣∣q

≥
m,n∑

i,j=1,1∣∣∣∣dy(Cσi(s)σj(t)D
σi(s)σj(t)

)
−λ

∣∣∣∣≥ε
∣∣∣∣dy(Cσi(s)σj(t)Dσi(s)σj(t)

)
− λ

∣∣∣∣q

≥ εq

∣∣∣∣∣
{
(i, j) : i ≤ m, j ≤ n,

∣∣∣∣dy(Cσi(s)σj(t)Dσi(s)σj(t)

)
− λ

∣∣∣∣ ≥ ε
}∣∣∣∣∣

and so

1

(mn)β

m,n∑
i,j=1,1

∣∣∣∣dy(Cσi(s)σj(t)Dσi(s)σj(t)

)
− λ

∣∣∣∣q ≥ εq

(mn)β

∣∣∣∣∣
{
(i, j) : i ≤ m, j ≤ n,

∣∣∣∣dy(Cσi(s)σj(t)Dσi(s)σj(t)

)
− λ

∣∣∣∣ ≥ ε
}∣∣∣∣∣

≥ εq

(mn)γ

∣∣∣∣∣
{
(i, j) : i ≤ m, j ≤ n,

∣∣∣∣dy(Cσi(s)σj(t)Dσi(s)σj(t)

)
− λ

∣∣∣∣ ≥ ε
}∣∣∣∣∣

for all s, t. Hence, by our assumption, we get that the double set sequences {Cij} and {Dij} are asymptotically invariant statistical equivalent
to multiple λ of order γ in the Wijsman sense. �

If we take γ = β in Theorem 4, then we obtain the following corollary.

Corollary 3. Let β ∈ (0, 1] and 0 < q <∞. If double set sequences {Cij} and {Dij} are asymptotically strong q-invariant equivalent to
multiple λ of order β in the Wijsman sense, then the double set sequences are asymptotically invariant statistical equivalent to multiple λ of
order β in the Wijsman sense.
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Conclusion

We gave the definitions of asymptotical invariant and asymptotical invariant statistical equivalence of order β in the Wijsman sense for double
set sequences where 0 < β ≤ 1. Also, we investigated some properties of these new equivalence concepts and the relations between them.

4 References
1 A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann., 53 (1900), 289–321.
2 M. Mursaleen, O. H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288 (2003), 223–231.
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1 Introduction

Long after the notion of convergence for double sequences was introduced by Pringsheim [1], using the notions of statistical convergence,
double lacunary sequence, invariant mean etc., this notion was extended to new convergence notions for double sequences by some authors
[2]-[4]. Recently, for double sequences, on two new convergence notions called double almost statistical and double almost lacunary statistical
convergence of order α were studied by Savaş [5, 6].

Over the years, on the various convergence notions for set sequences have been studied by many authors. One of them, discussed in this study,
is the notion of convergence in the Wijsman sense [7]-[9]. Using the notions of statistical convergence, double lacunary sequence, invariant
mean etc., this notion was extended to new convergence notions for double set sequences by some authors [10]-[13]. In [12], Nuray and Ulusu
studied on the notions of lacunary invariant summability and lacunary invariant statistical convergence in the Wijsman sense for double set
sequences. Recently, on the notions of lacunary statistical convergence of order α and strong p-lacunary summability of order α for double set
sequences were studied by Gülle and Ulusu [14].

In this paper, using the notions of invariant mean and order η, we studied on new convergence notions in the Wijsman sense for double set
sequences.

More information on the notions of convergence for real or set sequences can be found in [15]-[21].

2 Definitions and notations

In this section, let us remind the basic notions that need for a better understanding of our study (see, [3, 8, 18], [10]-[14]).
For a metric space (Y, d), µ(y, C) denote the distance from y to C where

µ(y, C) := µy(C) = inf
c∈C

d(y, c)

for any y ∈ Y and any non-empty set C ⊆ Y .
For a non-empty set Y , let a function g : N→ PY (the power set of Y ) is defined by g(m) = Cm ∈ PY for eachm ∈ N. Then, the sequence

{Cm} = {C1, C2, . . .}, which is the codomain elements of g, is called set sequences.
Throughout this study, (Y, d) will be considered as a metric space and C,Cmn will be considered as any non empty closed subsets of Y .
The double set sequence {Cmn} is called convergent to the set C in the Wijsman sense if each y ∈ Y ,

lim
m,n→∞

µy(Cmn) = µy(C).

The double set sequence {Cmn} is called statistical convergent to the set C in the Wijsman sense if every ε > 0 and each y ∈ Y ,

lim
i,j→∞

1

ij

∣∣∣∣{(m,n) : m ≤ i, n ≤ j,
∣∣µy(Cmn)− µy(C)

∣∣ ≥ ε}∣∣∣∣ = 0.
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A double sequence θ2 = {(ju, kv)} is called a double lacunary sequence if there exist increasing sequences (ju) and (kv) of the integers
such that

j0 = 0, hu = ju − ju−1 →∞ and k0 = 0, h̄v = kv − kv−1 →∞ as u, v →∞.

In general, the following notations are used for any double lacunary sequence:

huv = huh̄v, Iuv =
{

(m,n) : ju−1 < m ≤ ju and kv−1 < n ≤ kv
}
.

Throughout this study, θ2 = {(ju, kv)} will be considered as a double lacunary sequence.
The double set sequence {Cmn} is called lacunary statistically convergent to the set C in the Wijsman sense if every ε > 0 and each y ∈ Y ,

lim
u,v→∞

1

huv

∣∣∣∣{(m,n) ∈ Iuv :
∣∣µy(Cmn)− µy(C)

∣∣ ≥ ε}∣∣∣∣ = 0.

Let σ be a mapping such that σ : N+ → N+ (the set of positive integers). A continuous linear functional ψ on `∞ is called an invariant
mean (or a σ-mean) if it satisfies the following conditions:

1. ψ(xs) ≥ 0, when the sequence (xs) has xs ≥ 0 for all s,
2. ψ(e) = 1, where e = (1, 1, 1, . . .) and
3. ψ(xσ(s)) = ψ(xs) for all (xs) ∈ `∞.

The mappings σ are assumed to be one to one and such that σm(s) 6= s for all m, s ∈ N+, where σm(s) denotes the m th iterate of the
mapping σ at s. Thus ψ extends the limit functional on c, in the sense that ψ(xs) = limxs for all (xs) ∈ c.

The double set sequence {Cmn} is called lacunary invariant summable to the set C in the Wijsman sense if each y ∈ Y ,

lim
u,v→∞

1

huv

∑
(m,n)∈Iuv

µy(Cσm(s)σn(t)) = µy(C).

The double set sequence {Cmn} is called strong lacunary summable to the set C in the Wijsman sense if each y ∈ Y ,

lim
u,v→∞

1

huv

∑
(m,n)∈Iuv

∣∣µy(Cσm(s)σn(t))− µy(C)
∣∣ = 0.

3 Main results

In this section, for double set sequences, we introduce the notions of lacunary invariant summability and lacunary invariant statistical con-
vergence of order η (0 < η ≤ 1) in the Wijsman sense. Also, we investigate some properties of these new notions and the relations between
them.

Definition 1. The double set sequence {Cmn} is lacunary invariant summable of order η to the set C in the Wijsman sense if each y ∈ Y ,

lim
u,v→∞

1

hηuv

∑
(m,n)∈Iuv

µy(Cσm(s)σn(t)) = µy(C)

uniformly in s, t where 0 < η ≤ 1 and we denote this in Cmn
W θ

2 (Nησ )−→ C format.

Definition 2. The double set sequence {Cmn} is strong lacunary q-invariant summable of order η to the set C in the Wijsman sense if each
y ∈ Y ,

lim
u,v→∞

1

hηuv

∑
(m,n)∈Iuv

∣∣µy(Cσm(s)σn(t))− µy(C)
∣∣q = 0

uniformly in s, t where 0 < η ≤ 1 and we denote this in Cmn
W θ

2 [Nησ ]
q

−→ C format.
If q = 1, then the double set sequence {Cmn} is simply called strong lacunary invariant summable of order η to the set C and we denote

this in Cmn
W θ

2 [Nησ ]−→ C format.

Example 1. Let Y = R2 and a double set sequence {Cmn} be defined as following:

Cmn :=


{

(a, b) ∈ R2 : (a+m)2 + (y − n)2 = 1
}

; if (m,n) ∈ Iuv, m and n are
square integers,

{(1,−1)} ; otherwise.

In this case, the double set sequence {Cmn} is strong lacunary invariant summable of order η to the set C = {(1,−1)} in the Wijsman sense.
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Remark 1. For η = 1, respectively, the notions of W θ
2 (Nη

σ )-summability and W θ
2 [Nη

σ ]-summability coincide with the notions of lacunary
invariant summability and strong lacunary invariant summability in the Wijsman sense for double set sequences in [12].

Theorem 1. If 0 < η ≤ ϑ ≤ 1, then

Cmn
W θ

2 [Nησ ]
q

−→ C ⇒ Cmn
W θ

2 [Nϑσ ]
q

−→ C

for every double lacunary sequence θ2 = {(ju, kv)}.

Proof: Let 0 < η ≤ ϑ ≤ 1 and suppose that Cmn
W θ

2 [Nησ ]
q

−→ C. For each y ∈ Y , we have

1

hϑuv

∑
(m,n)∈Iuv

∣∣µy(Cσm(s)σn(t))− µy(C)
∣∣q ≤ 1

hηuv

∑
(m,n)∈Iuv

∣∣µy(Cσm(s)σn(t))− µy(C)
∣∣q

for all s, t. Hence, by our assumption, we get Cmn
W θ

2 [Nϑσ ]
q

−→ C. �

If ϑ = 1 is taken in Theorem 1, then following corollary is obtained.

Corollary 1. Let η ∈ (0, 1] and 0 < q <∞. If a double set sequence {Cmn} is strong lacunary q-invariant summable of order η to a set C
in the Wijsman sense, then the double set sequence is strong lacunary q-invariant summable to the set C in the Wijsman sense, i.e.,

Cmn
W θ

2 [Nησ ]
q

−→ C ⇒ Cmn
W θ

2 [Nσ ]
q

−→ C.

Now, we can state a theorem giving the relationship between W θ
2 [Nη

σ ]q-summability and W θ
2 [Nη

σ ]p-summability, where 0 < η ≤ 1 and
0 < q < p <∞.

Theorem 2. Let 0 < η ≤ 1 and 0 < q < p <∞. Then,

Cmn
W θ

2 [Nησ ]
p

−→ C ⇒ Cmn
W θ

2 [Nησ ]
q

−→ C

for every double lacunary sequence θ2 = {(ju, kv)}.

Proof: Let 0 < η ≤ 1 and 0 < q < p <∞. Also, we suppose that Cmn
W θ

2 [Nησ ]
p

−→ C. For every y ∈ Y , by Hölder inequality, we have

1

hηuv

∑
(m,n)∈Iuv

∣∣µy(Cσm(s)σn(t))− µy(C)
∣∣q < 1

hηuv

∑
(m,n)∈Iuv

∣∣µy(Cσm(s)σn(t))− µy(C)
∣∣p

for all s, t. Hence, by our assumption, we get Cmn
W θ

2 [Nησ ]
q

−→ C. �

Definition 3. The double set sequence {Cmn} is lacunary invariant statistically convergent of order η to the set C in the Wijsman sense if
every ε > 0 and each y ∈ Y ,

lim
u,v→∞

1

hηuv

∣∣∣∣{(m,n) ∈ Iuv :
∣∣µy(Cσm(s)σn(t))− µy(C)

∣∣ ≥ ε}∣∣∣∣ = 0

uniformly in s, t where 0 < η ≤ 1 and we denote this in Cmn
W θ

2 (Sησ)−→ C format.

Example 2. Let Y = R2 and a double set sequence {Cmn} be defined as following:

Cmn :=


{

(a, b) ∈ R2 : (a− 1)2 + b2 = 1
mn

}
; if (m,n) ∈ Iuv, m and n are

square integers
{(0, 1)} ; otherwise.

In this case, the double set sequence {Cmn} is lacunary invariant statistically convergent of order η to the set C = {(0, 1)} in the Wijsman
sense.

Remark 2. For η = 1, the notion of W θ
2 (Sησ)-convergence coincides with the notion of lacunary invariant statistical convergence in the

Wijsman sense for double set sequences in [12].
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Theorem 3. If 0 < η ≤ ϑ ≤ 1, then

Cmn
W θ

2 (Sησ)−→ C ⇒ Cmn
W θ

2 (Sϑσ )−→ C

for every double lacunary sequence θ2 = {(ju, kv)}.

Proof: Let 0 < η ≤ ϑ ≤ 1 and suppose that Cmn
W θ

2 (Sησ)−→ C. For every ε > 0 and each y ∈ Y , we have

1

hϑuv

∣∣∣∣{(m,n) ∈ Iuv :
∣∣µy(Cσm(s)σn(t))− µy(C)

∣∣ ≥ ε}∣∣∣∣ ≤ 1

hηuv

∣∣∣∣{(m,n) ∈ Iuv :
∣∣µy(Cσm(s)σn(t))− µy(C)

∣∣ ≥ ε}∣∣∣∣
for all s, t. Hence, by our assumption, we get Cmn

W θ
2 (Sϑσ )−→ C. �

If ϑ = 1 is taken in Theorem 3, then the following corollary is obtained.

Corollary 2. Let η ∈ (0, 1]. If a double set sequence {Cmn} is lacunary invariant statistically convergent of order η to a set C in the Wijsman
sense, then the double set sequence is lacunary invariant statistically convergent to the set C in the Wijsman sense, i.e.,

Cmn
W θ

2 (Sησ)−→ C ⇒ Cmn
W θ

2 (Sσ)−→ C.

Theorem 4. If a double set sequence {Cmn} is strong lacunary q-invariant summable of order η to a set C in the Wijsman sense, then the
double set sequence is lacunary invariant statistically convergent of order ϑ to the set C in the Wijsman sense, where 0 < η ≤ ϑ ≤ 1 and
0 < q <∞.

Proof: Let 0 < η ≤ ϑ ≤ 1 and 0 < q <∞. Also, we suppose that a double set sequence {Cmn} is strong lacunary q-invariant summable of
order η to a set C. For every ε > 0 and each y ∈ Y , we have∑

(m,n)∈Iuv

∣∣µy(Cσm(s)σn(t))− µy(C)
∣∣q =

∑
(m,n)∈Iuv∣∣µy(Cσm(s)σn(t))−µy(C)

∣∣≥ε
∣∣µy(Cσm(s)σn(t))− µy(C)

∣∣q

+
∑

(m,n)∈Iuv∣∣µy(Cσm(s)σn(t))−µy(C)
∣∣<ε
∣∣µy(Cσm(s)σn(t))− µy(C)

∣∣q

≥
∑

(m,n)∈Iuv∣∣µy(Cσm(s)σn(t))−µy(C)
∣∣≥ε
∣∣µy(Cσm(s)σn(t))− µy(C)

∣∣q

≥ εq
∣∣∣∣{(m,n) ∈ Iuv :

∣∣µy(Cσm(s)σn(t))− µy(C)
∣∣ ≥ ε}∣∣∣∣

and so

1

hηuv

∑
(m,n)∈Iuv

∣∣µy(Cσm(s)σn(t))− µy(C)
∣∣q ≥ εq

hηuv

∣∣∣∣{(m,n) ∈ Iuv :
∣∣µy(Cσm(s)σn(t))− µy(C)

∣∣ ≥ ε}∣∣∣∣
≥ εq

hϑuv

∣∣∣∣{(m,n) ∈ Iuv :
∣∣µy(Cσm(s)σn(t))− µy(C)

∣∣ ≥ ε}∣∣∣∣.
for all s, t. Hence, by our assumption, we get that the double set sequence {Cmn} is lacunary invariant statistically convergent of order ϑ to
the set C in the Wijsman sense. �

If ϑ = η is taken in Theorem 4, then the following corollary is obtained.

Corollary 3. Let η ∈ (0, 1] and 0 < q <∞. If a double set sequence {Cmn} is strong lacunary q-invariant summable of order η to a set C
in the Wijsman sense, then the double set sequence is lacunary invariant statistically convergent of order η to the set C in the Wijsman sense.

Conclusion

We gave the definitions of lacunary invariant summability and lacunary invariant statistical convergence of order η (0 < η ≤ 1) in the Wijsman
sense for double set sequences. Our results included the relations between these new notions.
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17 M. Et, H. Şengül, Some Cesàro-type summability spaces of order α and lacunary statistical convergence of order α, Filomat, 28(8) (2014), 1593–1602.
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Abstract: In the classical theory of functional analysis, a variational method is used to construct a sequence of eigenvalues and
corresponding eigenelements of a compact self-adjoint linear operator, given in some Hilbert space.
The number |λ1λ2| is called the modulus of a pair of numbers (λ1, λ2) in the hyperbolic sense. There is a similar variational
method for finding the eigenvalue with the minimum modulus in the hyperbolic sense and the corresponding eigenelements for the
two-parameter problem {

λ1Ki,1ϕi + λ2Ki,2ϕi = ϕi, ϕi ∈ Hi
i = 1; 2

with compact self-adjoint operators Ki,1 , Ki,2 , i = 1; 2 in the Hilbert space Hi , i = 1; 2. Moreover, the minimizing element is
found as an element of the weight space H∆0

= H1 ⊗ H2, which gives a minimum value to the functional F (ϕ) =
(∆1ϕ,ϕ)(∆2ϕ,ϕ)

(∆0ϕ,ϕ)2

and this element, generally speaking, is not a decomposable tensor and therefore, cannot be called an eigenelement of the
given problem. In this article, under the condition of right definiteness, we study a similar problem of constructing a sequence of
eigenelements of a given two-parameter problem. Moreover, a) all elements of this sequence are eigenelements of this problem,
b) all elements of this sequence are decomposable tensors and c) the sequence of eigenelements is a complete orthonormal
basis for the space H∆0

= H1 ⊗ H2.

Keywords: Multiparameter eigenvalue problems, Spectrum, Variational principles, Definiteness conditions.

1 Introduction

It is known that [1], a variational method can be used to construct a sequence of orthonormal systems of eigenelements of a compact, self-adjoint
operator given in some Hilbert space.

The modulus of a pair of numbers (λ1 , λ2) in the hyperbolic sense, we call the number |λ1 λ2|. In [2], [6], using a family of operators
separating spectral parameters (see [4], [5]), a variational method was studied for finding of the eigenvalue with minimal modulus, in the
hyperbolic sense, and the corresponding eigenelement for the two-parameter problem

{
λ1Ki,1ϕi + λ2Ki,2ϕi = ϕi, ϕi ∈ Hi
i = 1; 2

(1)

with compact self-adjoint operators Ki,1 , Ki,2 , i = 1; 2 in the space Hi , i = 1; 2 , where λ1, λ2 are the spectral parameters. More-
over, the minimizing element is found as an element of the weight space H∆0

= H1 ⊗ H2 that gives the minimum value to the functional
F (ϕ) =

(∆1ϕ,ϕ)(∆2ϕ,ϕ)
(∆0ϕ,ϕ)2

and this element, generally speaking, is not a decomposable tensor. Therefore, that element cannot be called an
eigenelement of the given problem (1). Here

∆0 = K1,1 ⊗ K2,2 − K1,2 ⊗ K2,1, ∆1 = I1 ⊗ K2,2 − K1,2 ⊗ I2, ∆2 = K1,1 ⊗ I2 − I1 ⊗ K2,1

In [3], the numerical range of problem (1) was defined as a subset of points of a two-dimensional plane in the form
M =

{(
(∆1ϕ,ϕ)
(∆0ϕ,ϕ)

;
(∆2ϕ,ϕ)
(∆0ϕ,ϕ)

)
: ∀ϕ ∈ H = H1 ⊗H2

}
.

The structure of the numerical range M suggests the form of the functional F (ϕ) . The structure of the numerical range of problem (1)
was studied in [3]. Note that if instead of the functional F (ϕ) we take the functional F1(ϕ) =

(∆1ϕ,ϕ)
(∆0ϕ,ϕ)

+
(∆2ϕ,ϕ)
(∆0ϕ,ϕ)

or functional F2(ϕ) =
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(∆1ϕ,ϕ)2

(∆0ϕ,ϕ)2
+

(∆2ϕ,ϕ)2

(∆0ϕ,ϕ)2
, then the minimizing element, generally speaking, does not correspond to any eigenvalue of problem (1) or of problem

{
λi ∆0ϕ = ∆iϕ , ϕ ∈ H = H1 ⊗H2
i = 1; 2

(2)

which is obtained from problem (1) by separating the spectral parameters. When studying the spectrum of problem (1), we also have to consider
a similar problem {

λ1K
t
i,1ϕ+ λ2K

t
i,2ϕ = ϕ, ϕ ∈ H = H1 ⊗H2

i = 1; 2
(3)

in the tensor product H = H1 ⊗H2. Here Kt
1,i = K1,i ⊗ I2 and Kt

2,i = I1 ⊗K2,i are operators in the space H = H1 ⊗H2 and Ii is the
unit operator in the space Hi.

2 Comparison of the spectra of problems (1), (2), and (3).

Let σ(K) , σ(Kt) and σ(∆) be the spectral set of problems (1), (3) and (2), respectively. It is known that σ(K) consists only of eigenvalues.
This is obtained from the compactness and self-adjointness of the operatorsKi,j , i, j = 1; 2. The sets σ(K) and σ(Kt) are equal to each other.
Since

σ(Kt) = σ(Kt
11,K

t
12) ∩ σ(Kt

21,K
t
22) = {σ(K11,K12)σ(I2)} ∩ {σ(I1)σ(K21,K22)} =

= σ(K11,K12) ∩ σ(K21,K22) = σ(K)

where the sets σ(Kt
11,K

t
12) and σ(Kt

21,K
t
22) are the spectral sets of the first and second equations of problem (3), respectively. The sets

σ(K11,K12) and σ(K21,K22) are the spectral sets of the first and second equations of problem (1), respectively. Therefore, the spectral set
σ(Kt) also consists of only eigenvalues. Let us prove the following theorem.

Theorem 1. Suppose that in problem (1) the operatorsKi,1 , Ki,2 , i = 1; 2 are compact self-adjoint operators in the spaceHi , i = 1; 2
and the operators ∆1 and ∆2 are positive definite, i.e., (∆iϕ, ϕ) > 0, ∀ϕ ∈ H . Then the equality σ(K) = σ(Kt) = σ(∆) holds, where
σ(K), σ(Kt) and σ(∆) are the spectral set of problems (1), (3) and (2) respectively.

Proof: Under the condition of the theorem, the spectral set of problem (1) and together with it, the spectral set σ(Kt) of problem (3), consist
of only eigenvalues and the inclusion σ(K) = σ(Kt) ⊆ σ(∆) is true. Let us now prove the reverse inclusion σ(∆) ⊆ σ(Kt). Let (λ1, λ2) ∈
σ(∆), i.e. there is such a sequence {ϕn}n=1,2,3, .... ⊂ H that ‖ϕn‖ = 1, n = 1, 2, 3, ..., and{

‖λr ∆0ϕn −∆rϕn‖ → 0
r = 1, 2

at n →∞.

Let us introduce the notation λr ∆0ϕn −∆rϕn = υr, n. Then sequence {υr, n} converges to 0 strongly, i.e.{
λr ∆0ϕn −∆rϕn = υr, n → 0 at n→∞
r = 1, 2

strongly.
Multiplying both sides of the first equation of the last system by (−λ2) and the second equation by λ1 and summing, we obtain

λ1 ∆2ϕn − λ2 ∆1ϕn = λ1 υ2n − λ2 υ1n → 0 at n →∞. Let us introduce the notation λ1 υ2n − λ2 υ1n = xn, then considering
υr n → 0 strongly, the sequence xn → 0 strongly. Therefore, λ1K

t
11ϕn − λ1K

t
21ϕn − λ2K

t
22ϕn + λ2K

t
12ϕn = xn → 0 strongly, or

(λ1K
t
11 + λ2K

t
12)ϕn − (λ1K

t
21 + λ2K

t
22)ϕn = xn → 0 strongly. We also introduce the notation Kr = λ1Kr1 + λ2Kr2 and fn =

Kt
1ϕn − xn

2 . Then fn = Kt
2ϕn + xn

2 . Hence fn = 1
2 (Kt

1ϕn +Kt
2ϕn) and xn = Kt

1ϕn −Kt
2ϕn. Let the sequence {er n}∞n=1 , r = 1; 2

be an orthonormal system of eigenelements of the operator Kr corresponding to the eigenvalues {νr n}∞n=1 , r = 1; 2, respectively. Due to
the selfadjointness and compactness of the operator Kr , the set {er n}∞n=1 , r = 1; 2 will be a complete and orthonormal basis in the space
Hr . Then the system {e1n ⊗ e2m}∞n,m=1 will be a complete orthonormal basis in the space H = H1 ⊗H2 and, therefore, for the element

ϕn ∈ H = H1 ⊗H2 occurs a decomposition ϕn =
∞∑

i, j=1
an i je1 i ⊗ e2 j . Hence,

fn =

∞∑
i, j=1

an i j
ν1 i + ν2 j

2
e1 i ⊗ e2 j (4)

xn =

∞∑
i, j=1

an i j(ν1 i − ν2 j) e1 i ⊗ e2 j (5)

The norm of the element ϕn is equal to one, ‖ϕn‖ = 1. Therefore
∞∑

i, j=1
a2
n i j = 1. Due to the boundedness of the operators Kr , r = 1; 2,

the set {fn} is bounded. Therefore, a weakly converging subsequence can be distinguished from it. For the sake of simplicity, we will assume
that fn → f0 (weakly). Let ϕn → ϕ0 also converge weakly. For each fixed value of the index n, series (4) converges uniformly with respect to
the parameter n. We will prove that this series converges uniformly. xn → 0 (strongly). Since, by a compact operator, any weakly converging
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sequence is mapped to a strongly converging sequence. Therefore, series (5) converges uniformly, i.e. for any ε > 0 there are numbers N1 and
N2 such that ∥∥∥∥∥∥xn −

N1∑
i,=1

N2∑
j=1

an i j(ν1 i − ν2 j) e1 i ⊗ e2 j

∥∥∥∥∥∥
2

≤ ε

4

for any n ∈ N . I.e.

N1∑
i,=1

∞∑
j=N2+1

a2
n i j(ν1 i − ν2 j)

2 +

∞∑
i,=N1+1

N2∑
j=1

a2
n i j(ν1 i − ν2 j)

2 +

∞∑
i,=N1+1

∞∑
j=N2+1

a2
n i j(ν1 i − ν2 j)

2 ≤ ε

4
(6)

For elements fn, the corresponding norm will be in the form

∥∥∥∥∥fn − N1∑
i,=1

N2∑
j=1

an i j
ν1 i+ν2 j

2 e1 i ⊗ e2 j

∥∥∥∥∥
2

=
N1∑
i,=1

∞∑
j=N2+1

a2
n i j

(ν1 i+ν2 j)2

4 +

+
∞∑

i,=N1+1

N2∑
j=1

a2
n i j

(ν1 i+ν2 j)2

4 +
∞∑

i,=N1+1

∞∑
j=N2+1

a2
n i j

(ν1 i+ν2 j)2

4

(7)

The sequence {er n}∞n=1 , r = 1; 2 is an orthonormal system of eigenelements of a compact self-adjoint operator Kr , corresponding to the
eigenvalues of {νr n}∞n=1 , r = 1; 2. Therefore, for any ε > 0, there are such numbers N0

1 and N0
2 that, for i > N0

1 , j > N0
2 , the inequality

(ν1 i+ν2 j)2

4 ≤ ε
2 holds, and for the third sum in equality (7), the inequality

∞∑
i,=N1+1

∞∑
j=N2+1

a2
n i j

(ν1 i+ν2 j)2

4 ≤ ε
2 is satisfied.

Let us now estimate the first two sums in equality (7). Using inequality (6), we write

N1∑
i,=1

∞∑
j=N2+1

a2
n i j

(ν1 i + ν2 j)
2

4
=

1

4

N1∑
i,=1

∞∑
j=N2+1

a2
n i j(ν1 i − ν2 j)

2 +

N1∑
i,=1

∞∑
j=N2+1

a2
n i jν1 iν2 j ≤

≤ ε

16
+ max

1≤i≤N1

|ν1 i| max
j≥N2+1

∣∣ν2 j

∣∣ N1∑
i,=1

∞∑
j=N2+1

a2
n i j ≤

ε

16
+ max

1≤i≤N1

|ν1 i| max
j≥N2+1

∣∣ν2 j

∣∣ ≤ ε

16
+ ‖K1 ‖ max

j≥N2+1

∣∣ν2 j

∣∣ ,
where ‖K1 ‖ = max

1≤i < ∞
|ν1 i|. We choose the number N0

2 so that, the inequality max
j≥N2+1

∣∣ν2 j

∣∣ ≤ 3ε
16‖K1‖ is satisfied. Then, for a natural

number N̄2 = max{N2, N
0
2 }, the inequality

N1∑
i,=1

∞∑
j=N̄2+1

a2
n i j

(ν1 i+ν2 j)2

4 ≤ ε
4 , ∀n ∈ N is satisfied. Similarly, we can prove that there

are such numbers Ñ1, Ñ2, that the inequality
∞∑

i,=Ñ1+1

Ñ2∑
j=1

a2
n i j

(ν1 i+ν2 j)2

4 ≤ ε
4 holds. Then, in equality (7), choosing the maximum of the

numbers N0
r , N̄r, Ñr as the value of the number Nr, r = 1; 2, respectively, we can write that

∥∥∥∥∥fn − N1∑
i,=1

N2∑
j=1

an i j
ν1 i+ν2 j

2 e1 i ⊗ e2 j

∥∥∥∥∥
2

=
N1∑
i,=1

∞∑
j=N2+1

a2
n i j

(ν1 i+ν2 j)2

4 +

+
∞∑

i,=N1+1

N2∑
j=1

a2
n i j

(ν1 i+ν2 j)2

4 +
∞∑

i,=N1+1

∞∑
j=N2+1

a2
n i j

(ν1 i+ν2 j)2

4 ≤ ε
4 + ε

4 + ε
2 = ε

for ∀n ∈ N . This means that series (7) converges uniformly and in it one can pass to the limit term by term , i.e. ‖fn‖ → ‖f0‖ at n→∞.Then
‖fn − f0‖2 = ‖fn‖2 − (fn, f0)− (f0, fn) + ‖f0‖2 = 2 ‖f0‖2 + εn −Re(f0, fn), where εn → 0.
The sequence {fn} converges weakly to the element f0. Therefore, (fn, f0)→ ‖f0‖2and ‖fn − f0‖2 → 0 for n→∞. So Kt

1ϕn = fn −
xn
2 → f0, at n→∞ (strongly).

The sequence {ϕn} converges weakly to the element ϕ0 at n→∞. Therefore, for ∀h ∈ H we can write (f0 −Kt
1ϕ0, h) = lim

n→∞
((fn −

Kt
1ϕ0, h) = lim

n→∞
(Kt

1ϕn −Kt
1ϕ0, h) = lim

n→∞
(ϕn − ϕ0, K

t
1 h) = 0, f0 −Kt

1ϕ0 = 0 or Kt
1ϕ0 = f0. Similarly, we can prove that

Kt
2ϕ0 = f0. I.e. {

λ1K
t
i,1ϕ0 + λ2K

t
i,2ϕ0 = f0,

i = 1; 2
(8)

or {
λi ∆0ϕ0 = ∆if0
i = 1; 2

It remains only to show that ϕ0 = f0. Equalities fn = Kt
1ϕn − xn

2 and fn = Kt
2ϕn + xn

2 will be written in the form
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{
λ1K

t
1,1ϕn + λ2K

t
1,2ϕn = fn − xn

2
λ1K

t
2,1ϕn + λ2K

t
2,2ϕn = fn + xn

2

or {
λi ∆0ϕn = ∆ifn +

(−1)i

2 (Kt
3−i, 3−i +Kt

i, 3−i )xn
i = 1; 2

xn → 0 strongly. Therefore, ‖∆ifn − λi∆0ϕn‖ =
∥∥(Kt

3−i,3−i +Kt
i,3−i)xn

∥∥→ 0 and ‖∆iϕn −∆ifn‖ ≤ ‖∆iϕn − λi∆0ϕn‖ +
‖λi∆0ϕn −∆ifn‖ → 0. Then ‖∆iϕn −∆if0‖ ≤ ‖∆iϕn −∆ifn‖ + ‖∆iϕn −∆if0‖ → 0, i.e. ∆iϕn → ∆if0 (strongly).
But on the other hand, from the weak convergence of the sequence {ϕn} to the element ϕ0, we write ∆iϕn → ∆iϕ0 weakly. By virtue
of the uniqueness of the weak limit, we obtain, ∆iϕ0 = ∆if0 or ∆i(ϕ0 − f0) = 0. By the condition (∆iϕ,ϕ) > 0, i = 1; 2, ∀ϕ ∈ H the
kernel of operators ∆i is trivial, i.e, ker ∆i = {0}. Then ϕ0 − f0 = 0 either ϕ0 = f0, and the system of equalities (8) shows that ϕ0 is an
eigenelement of problem (3), i.e. σ(∆) ⊆ σ(Kt) = σ(K). Combining this embedding with the relation σ(K) = σ(Kt∆) ⊆ σ(∆), we obtain
σ(K) = σ(Kt∆) = σ(∆). The theorem is proved. �

3 Constructing a sequence of eigenelements

The variational method for finding the eigenvalue with minimal modulus in the hyperbolic sense and the corresponding eigenelement for the
two-parameter problem (1), studied in [2], [6], makes it possible to find the first eigenvalue and the corresponding eigenelement. Here under
the right definiteness condition in the form

∆0 > 0; ∆1 > 0; ∆2 > 0, (9)

is solved the problem of constructing a sequence of eigenelements for the two-parameter problem (1) in the form of decomposable tensors in
space H∆0

= H1 ⊗H2.

Theorem 2. Under the of right definiteness condition (9) there is a sequence of decomposable tensors

ϕn = ϕ1n ⊗ ϕ2n , ϕn ∈ H∆0
= H1 ⊗H2, ϕ1n ∈ H1, ϕ2n ∈ H2 , n = 1, 2, 3, .....

for which
a) all elements of this sequence are eigenelements of the problem (1),
b) all elements of this sequence are decomposable tensors
c) this sequence of eigenelements is a complete orthonormal basis in space H∆0

= H1 ⊗ H2 , i.e.

[ϕn, ϕm] ≡ (∆0ϕn, ϕm) =

{
0, if n 6= m
1, if n = m

Proof: By Theorem 1, the spectra of problems (1) and (2) coincide. Each solution (ϕ10, ϕ20) of the problem (1) corresponds to a solution
ϕ10 ⊗ ϕ20 of the problem (2) in the form of a decomposable tensor. This means that among the eigenelements corresponding to each eigenvalue
of problem (2) there is always a decomposable tensor. Therefore, when finding the eigenelements of problem (1) by the variational method
in the weight space H∆ = H1 ⊗ H2, the extremum can be found on the subset of decomposable tensors, i.e., minimization can be carried
out in the subset H ′ ⊂ H∆ of decomposable tensors. Using the variational method, by minimizing the functional F (ϕ) =

(∆1ϕ,ϕ)(∆2ϕ,ϕ)
(∆0ϕ,ϕ)2

on the set of decomposable tensors, the first eigenelement of ϕ1 = ϕ11 ⊗ ϕ21, ϕ1 ∈ H ′ ⊂ H∆0
= H1 ⊗H2, ϕ11 ∈ H1, ϕ22 ∈ H2 the

corresponding eigenvalue of problem (2), and hence problem (1) can be found. By theorem 1, the second eigenelement ϕ2 = ϕ12 ⊗ ϕ22
of the problem (1) can also be found by minimizing the functional F (ϕ) on the subset H ′′ ⊂ H∆ = H1 ⊗ H2, where H ′′ is the set of all
decomposable tensors of the space H∆ and orthogonal to the element ϕ1 = ϕ11 ⊗ ϕ21 in this space.

The third eigenelementϕ3 = ϕ13 ⊗ ϕ23 of the problem (1) is also found by minimizing the functional F (ϕ) on the subset of the decompos-
able tensors H ′′′ ⊂ H∆ = H1 ⊗ H2, where H ′′′ is the set of all decomposable tensors of the space H∆ which is orthogonal to the elements
of ϕ1 = ϕ11 ⊗ ϕ21 and ϕ2 = ϕ12 ⊗ ϕ22 simultaneously. All other eigenelements of problem (1) can be found in a similar way. This process
shows that there is a sequence of decomposable tensors, all elements of which are eigenelements of the problem (1). And this is the proof of
items a) and c) of theorem 2. Let us now prove item c). Let L be the linear hull of the sequence {ϕn}n=1,2,... = {ϕ1n ⊗ ϕ2n}n=1,2,.... We
must show that the set L̄ which is the closure of the linear manifold L, coincides with the space H∆. Suppose the contrary, L̄ 6= H∆. The
manifold L̄ is a subspace in the space H∆. We denote the orthogonal complement of this subspace in the space H∆ by L̃, i.e. H∆ = L̄⊕ L̃.
The subset L̄ ⊂ H∆ is an invariant subspace for the operators Γ1 = ∆−1

0 ∆1 and Γ2 = ∆−1
0 ∆2 simultaneously. All elements of the sequence

{ϕn}n=1,2,... = {ϕ1n ⊗ ϕ2n}n=1,2,... are eigenelements of the Γ1 = ∆−1
0 ∆1 and Γ2 = ∆−1

0 ∆2 operators simultaneously. Then it is easy
to prove that L̃ ⊂ H∆ is also an invariant subspace for the operators Γ1 = ∆−1

0 ∆1 and Γ2 = ∆−1
0 ∆2 simultaneously. By virtue of the closed-

ness of the subspace L̃ ⊂ H∆, by minimizing the functional F (ϕ) =
(∆1ϕ,ϕ)(∆2ϕ,ϕ)

(∆0ϕ,ϕ)2
on the subspace L̃ ⊂ H∆, we can prove that there exists

an element ∃ϕ̃ ∈ L̃ ⊂ H∆ which is an eigenelement of problem (2) corresponding to the eigenvalue (λ̃1, λ̃2) =
(

(∆1ϕ̃,ϕ̃)
(∆0ϕ̃,ϕ̃)

,
(∆2ϕ̃,ϕ̃)
(∆0ϕ̃,ϕ̃)

)
, i.e.

(λ̃1, λ̃2) ∈ σ(∆). Since σ(K) = σ(Kt∆) = σ(∆), then (λ̃1, λ̃2) ∈ σ(K). This means that there is an ∃ϕ̂ = ϕ̂1 ⊗ ϕ̂2 ∈ L̃ ⊂ H∆ element
in the form of a decomposable tensor, which is an eigenelement of problem (1). However, this is impossible. Since, all the eigenelements that
have the form of a decomposable tensor are in the subspace. So, L̃ = {0} and L̄ = H∆. This proves the point c) of theorem 2. �

4 Conclusion

In this paper, by proving Theorem 2, a method for finding and ordering the remaining elements of sequence eigenvalues and corresponding
eigenelements of problem (1) is suggested.
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Abstract: In this work, we are interested in the synchronization and anti-synchronization of chaotic systems in 3d according to the
adaptive control method. Firstly, Complete synchronization is achieved between tow non identical 3d novel chaotic systems. Next,
Anti-synchronization between tow identical 3d chaotic systems is achieved via adaptive control method. Finally, illustrative figures
are obtained using numerical simulation in Matlab to validate the results.
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1 Introduction

Finding methods to synchronize chaotic dynamic systems is required because of its important applications, especially in the fields of secure
communication and encryption. Chaos synchronization was introduced in the work of Pecora and Carroll [1], then several powerful different
methodologies have been developed for chaos control and synchronization of chaotic systems such as, active control method [3], sliding mode
control [4], backstepping control [5], Projective synchronization [6],... etc. Another powerful method is the adaptive control technique which
is deferent from others control methods since it is used when parameters are unknown or initially uncertain and it does not need a priori
information about the bounds on these uncertain or time-varying parameters because this method of control is concerned with control law
changing them-selves. Recently, many papers are available on Synchronization of chaotic systems using this method of control [7]-[13]. In
This work, we consider, the synchronization and anti-synchronization between tow non identical and identical chaotic systems in 3D according
to the adaptive control method and Lyapunov theory of stability. Firstly, Complete synchronization is achieved between tow non identical 3d
novel chaotic systems. Next, Anti-synchronization between tow identical 3D chaotic systems is achieved via adaptive control method. Finally,
illustrative figures are obtained using numerical simulation in Matlab to validate the results.

2 Preliminaries

2.1 Description of the new chaotic system

In this work, we consider a new 3D chaotic system with two nonlinear quadratic forms, which is given by:


dx1
dt = a(x2 − x1)
dx2
dt = cx1 + x1x3
dx3
dt = −x1x2 + b(x1 − x3)

(1)

were a, b, c are positive real parameters. The system (1) is chaotic when the parameters have the following values:

a = 13, b = 2, 5, c = 50. (2)

For the values of the parameters (2), according to Matlab the Lyapunov exponents of the system (1) are given by:

L1 = 1, 4375, L2 = −0, 000166417, L3 = −16, 9373. (3)
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Definition 1. Complete synchronization occur between master-slave systems (4) and (5) when there exist controllers ui, i = 1, 2, ..., n, such
that the synchronization errors

ei (t) = yi (t)− xj (t) , i = 1, .., n (4)

satisfy that limt→+∞ ei (t) = 0.
For anti-synchronization the synchronization errors is defined as:

ei (t) = yi (t) + xj (t) , i = 1, .., n (5)

3 Complete synchronization of non-identical chaotic systems

As master system, we take the system: 
dx1
dt = a(x2 − x1)
dx2
dt = cx1 + x1x3
dx3
dt = −x1x2 + b(x1 − x3)

(6)

where x1, x2, x3 are the state variables and a, b, c are undefined real constant parameters of the system.
As slave system, we choose the controlled system of Lü as follows:


dy1
dt = α(y2 − y1) + u1
dy2
dt = γy2 − y1y3 + u2
dy3
dt = −βy3 + y1y2 + u3

(7)

such that y1, y2, y3 are state variables and α, β, γ are real constant parameters unknown to the system and u1, u2, u3 are nonlinear
controllers.

This system is chaotic for the given values: α = 36, β = 3, γ = 20.
we have the error of this type defined by:

ei = yi − xi, i = 1, 2, 3. (8)

it implies that:
·
ei =

·
yi −

·
xi, i = 1, 2, 3. (9)

we get the error as: 
.
e1 = α(y2 − y1) + u1 − a(x2 − x1).
e2 = γy2 − y1y3 + u2 − cx1 − x1x3.
e3 = −βy3 + y1y2 + u3 + x1x2 − b(x1 − x3)

(10)

therefore the controllers are:  u1 = −α1 (t) (y2 − y1) + a1 (t) (x2 − x1)− k1e1
u2 = −γ1 (t) y2 + y1y3 + c1 (t)x1 + x1x3 − k2e2
u3 = β1 (t) y3 − y1y2 − x1x2 + b1 (t) (x1 − x3)− k3e3

(11)

By substituting (13) into (12), the error dynamics is obtained as


.
e1 = (α− α1 (t))(y2 − y1)− (a− a1 (t)) (x2 − x1)− k1e1.
e2 = (γ − γ1 (t))y2 − (c− c1 (t))x1 − k2e2.
e3 = −(β − β1 (t)) y3 − (b− b1 (t)) (x1 − x3)− k3e3

(12)

we define the estimation of the errors of the parameters as follows:

ea = a− a1(t), eb = b− b1 (t) , ec = c− c1(t), (13)

eα = α− α1 (t) , eβ = β − β1(t), eγ = γ − γ1 (t) . (14)

Replacing (13-14) in (12), we get: 
.
e1 = eα(y2 − y1)− ea(x2 − x1)− k1e1.
e2 = eγy2 − ecx1 − k2e2.
e3 = −eβy3 − eb(x1 − x3)− k3e3

(15)

using Lyapunov’s function:

V =
1

2
(e21 + e22 + e23 + e2a + e2b + e2c + e2α + e2β + e2γ) (16)

that is a positive definite function on R9.
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and we have: {
dea(t)
dt = −da1(t)dt ,

deb(t)
dt = −db1(t)dt ,

dec(t)
dt = −dc1(t)dt ,

deα(t)
dt = −dα1(t)

dt ,
deβ(t)
dt = −dβ1(t)

dt ,
deγ(t)
dt = −dγ1(t)dt

(17)

Drifting V along the trajectories of the systems (17) and (15), we obtain:

V̇ =
.
e1e1 +

.
e2e2 +

.
e3e3 +

.
eaea +

.
ebeb +

.
ecec +

.
eαeα +

.
eβeβ +

.
eγeγ (18)

so:
V̇ = −k1e21 − k2e22 − k3e23 + ea (t)

[
−e1(x2 − x1)− da1(t)

dt

]
+

ec (t)
[
−e2x1 − dc1(t)

dt

]
+ eb (t)

[
−(x1 − x3)e3 − db1(t)

dt

]
+

eα (t)
[
(y2 − y1)e1 − dα1(t)

dt

]
+

eβ (t)
[
−y3e3 − dβ1(t)

dt

]
+ eγ (t)

[
y2e2 − dγ1(t)

dt

]
.

(19)

for 

da1(t)
dt = − e1(x2 − x1) + k4ea

db1(t)
dt = (x1 − x3)e3 + k5eb

dc1(t)
dt = −e2x1 + k6ec

dα1(t)
dt = (y2 − y1)e1 + k7eα

dβ1(t)
dt = −y3e3 + k8eβ

dγ1(t)
dt = y2e2 + k9eγ

(20)

such as ki, (i = 4, 5, 6, .., 9) positive constants.
Replacing (20) in (19) we obtain:

V̇ = −k1e21 − k2e22 − k3e23 − k4e2a − k5e2b − k6e
2
c − k7e2α − k8e2β − k9e

2
γ < 0 (21)

that is a negative definite function on R9.

Theorem 1. The non-identical master system (6) and slave system (7) with undefined parameters are globally synchronized under the law of
adaptive control (11) and the update parameter estimates law (20) .

Fig. 1: The synchronization of states x1 and y1
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Fig. 2: The synchronization of states x2 and y2

Fig. 3: The synchronization of states x3 and y3

4 Anti-synchronisation

We use the same master system (1) and as slave system the controled of the system (1) given by:
dy1
dt = a(y2 − y1) + u1
dy2
dt = cy1 + y1y3 + u2
dy3
dt = −y1y2 + b(y1 − y3) + u3

(22)

© CPOST 2021 47



Fig. 4: Time history of the synchronization error.

The anti-synchronization error between the chaotic systems (1) and (22) is defined as:

ei = yi + xi, i = 1, 2, 3. (23)

it implies that:
·
ei =

·
yi +

·
xi, i = 1, 2, 3. (24)

We obtain: 
.
e1 = a(e2 − e1) + u1.
e2 = ce1 + x1x3 + y1y3 + u2.
e3 = b(e1 − e3)− x1x2 − y1y2 + u3

(25)

The law of adaptive control is:  u1 = −a1(t)(e2 − e1)− k1e1
u2 = −c1(t)e1 − x1x3 − y1y3 − k2e2
u3 = −b1(t)(e1 − e3) + x1x2 + y1y2 − k3e3

(26)

with k1, k2, k3 are positive constants.
Introducing (26 in (25), we obtain: 

.
e1 = (a− a1(t))(e2 − e1)− k1e1.
e2 = (c− c1(t))e1 − k2e2.
e3 = (b− b1(t))(e1 − e3)− k3e3

(27)

then; 
.
e1 = ea(t)(e2 − e1)− k1e1.
e2 = ec(t)e1 − k2e2.
e3 = eb(t)(e1 − e3)− k3e3

(28)

We consider a quadratic Lyapunov function given by:

V (e1, e2, e3, ea, eb, ec) =
1

2
(e21 + e22 + e23 + e2a + e2b + e2c) (29)

with (29) is a positive definite function in R6 .
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Differentiating V along the trajectories of the systems (17) and (28), we obtain:

V̇ = −
3∑
i=1

kie
2
i + ea (t) (e1e2 − e21 −

da1(t)

dt
) +

eb (t) (e1e3 − e23 −
db1(t)

dt
) + ec (t) (e1e2 −

dc1(t)

dt
). (30)

From (30), let us set: 
da1(t)
dt = e1e2 − e21

db1(t)
dt = e1e3 − e23

dc1(t)
dt = e1e2

(31)

introducing (31) into (30), we obtain:

V̇ = −
3∑
i=1

kie
2
i < 0 (32)

where (32) is a negative definite function in R3, hence by Lyapunov’s stability theory it follows that ei(t) −→ 0 when t −→∞ for i =
1, 2, 3.

Fig. 5: Anti-synchronization of states x1 and y1
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Fig. 6: Anti-synchronization of states x2 and y2

Fig. 7: Anti-synchronization of states x3 and y3

5 Conclusion

In this work, the synchronization and anti-synchronization of 3D chaotic systems were introduced via adaptive control method. First, full
synchronization is achieved between two non-identical three-dimensional chaotic systems. Then, the anti-synchronization between two identical
3D chaotic systems is achieved via the adaptive control method. The results were validated by numerical simulation in Matlab.
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Fig. 8: Time history of the synchronization error.
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Abstract: The differential equations that describe many attractive natural phenomena are one of the most motivating fields of
mathematics. Solving Initial Value Problems (IVPs) in Ordinary Differential Equations (ODEs) via fundamental mathematical meth-
ods gives in general insuitable results especially face to difficult problems. Hence the solution of this lacks is found by using a
Meta-heuristic Algorithms (MAs). In this paper we propose by means of the Flower Pollination Algorithm (FPA) an approximative
solution of IVPs arising from a circuit consisting of a resistor and a capacitor in both constant voltage and variable voltage cases.
The conducted comparison between the exact solution and the algorithm outcomes in the investigated examples showed that FPA
yields satisfactorily precise approximation of the solutions.
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1 Introduction

Optimization is a process that locates a best, or optimal values of the variables that minimize or maximize the objective function while satisfying
the constraints, it arises in various disciplines. Engineering problems under growing dimensions, moment complexity, variables, and space
complications are becoming more and more difficult and hard to optimize; consequently optimization algorithms are then used to overcome
this situation but traditional optimization techniques, including many heuristic approaches still insufficient. To cope up with such situation,
many researchers focus on nature by creating a large collection of MAs which is characterized by its convergence speed and augmentation
searched variables number. These methods generate a simpler procedure to solve an optimization problem to find good solutions with less
computational effort than simple algorithms or traditional heuristics [3, 5]. MAs take dissimilar forms according to the inspired process of the
natural systems like Genetic algorithm [9, 11], Ant colony optimization algorithm [7], Bee algorithm [6, 16], Particle Swarm Optimization
[14], Bat algorithm [26], Fractional Lévy Flight Bat Algorithm (FLFBA) [4] and modified Salp Swarm Algorithm (SSA) [18]...etc. All these
algorithms have several advantages illustrated via a wide range of applications. The Flower Pollination Algorithm (FPA) [25] is a recent
bio-inspired optimization algorithm that takes off the real life processes of the fertilization (pollination) process of flowers. In FPA, abiotic
pollination is considered for local pollination while biotic pollination is considered for the global pollination between the flower plants. The
algorithm maintains a balance between local and global pollination. It took an interesting place between the more recent nature inspired
algorithms kept by its nice performance against several classical MAs. This is behind the vast utilization of FPA in various domains such as
chemical engineering, civil engineering, communication engineering, medical field, computer science. . . etc. FPA was hybridized with other
nature-inspired MAs. In order to overcome its limitations and to benefit from their strength e.g. PSO [27], frog leaping local search [15] and
simulated annealing [1], Bat algorithm [28] . . . etc. In electronics and electric engineering a first order RC circuit (RC filter or RC network)
[13]. It is an electric circuit composed of resistors and capacitors, either in series driven by a voltage source or in parallel driven by a current
source [12]. The importance of this study is to consider the ODEs arising from a series RC circuit in both constant voltage and variable voltage
cases as an IVPs then they are formulated as an optimization problem [17], when the FPA [25] is used as a tool to find numerical solutions for
this problem. The remainder paper is organized as follows: The formulation of the problem is revealed in section 2; section 3 provides basics
on FPA and its main steps for finding an approximate solution of IVP. The Section 4 gives essential formulae with brief explanation of series
RC circuit ODEs. The Section 5 exposes examples of series RC circuit IVPs to show how the FPA can lead to a satisfactory result for solving
IVP. The comments and conclusion are made in section 6.

2 Problem formulation

Let f = f(x, y) be a real-valued function of two real variables defined for a ≤ x ≤ b, where a and b are finite, and for all real values of y. The
equations {

y
′
= f(x, y)

y(a) = y0
, (1)
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are called IVP; they symbolize the following problem: To find a function y(x), continuous and differentiable for x ∈ [a, b] such that
y′ = f(x, y) from y(a) = y0 for all x ∈ [a, b] [10].
This problem possesses unique solutions when: f is continuous on [a, b]× R, and satisfies the Lipschitz condition; it exists a real constant
k > 0, as | f(x, θ1)− f(x, θ2) |≤ k | θ1 − θ2 |, for all x ∈ [a, b] and all couple (θ1, θ2) ∈ R× R.
Finding the optimal solutions numerically of an IVP is gotten with approximations: y(x0 + h), . . . , y(x0 + nh) where a = x0 and h =
(b− a)/n. For more precision of the solution, we must use a very small step size h that includes a larger number of steps, thus more computing
time which not available in the useful numerical methods like Euler and Runge-Kutta methods [10], which may approximate solutions of IVP
and perhaps yield useful information, often sufficing in the absence of exact, analytic solutions.

2.1 Objective function

The main idea behind the algorithm is to use the finite difference formula for the derivative and equation (1) we obtain,

y(xj)− y(xj−1)
h

≈ f(xj−1, y(xj−1)),

Thus,
yj − yj−1

h
≈ f

(
xj−1, yj−1

)
.

Consequently, we have to consider the error formula:[
yj − yj−1

h
− f

(
xj−1, yj−1)

)]2
.

The objective function associated to Y = (y1, y2, ..., yd) will be:

F (Y ) =

d∑
j=1

[
yj − yj−1

h
− f

(
xj−1, yj−1

)]2
. (2)

2.2 Consistency

We are interested in the calculation of Y = (y1, y2, ..., yd) which minimizes the objective function equation ((2)). We have from Taylor’s
Formula order 1;

yj = yj−1 + hy′j−1 +O
(
h2
)
, j = 1, · · · d.

So,
yj − yj−1

h
= y′j−1 +O(h)

If we subtract f(xj−1, yj−1) from both sides of last equation, we obtain

yj − yj−1
h

− f(xj−1, yj−1) = y′j−1 − f(xj−1, yj−1) +O(h), j = 1, · · · d

The last relation shows that the final value Y = (y1, y2, · · · , yd) is an approximate solution of IVP, for small value of h.

3 Flower pollination algorithm (FPA)

3.1 Flower pollination description

Pollination is very important. It leads to the creation of new seeds that grow into new plants. It begins in the flower. Flowering plants have
several different parts that are important in pollination. Flowers have male parts called stamens that produce a sticky powder called pollen.
Flowers also have a female part called the pistil. The top of the pistil is called the stigma, and is often sticky. Seeds are made at the base of the
pistil, in the ovule. To be pollinated, pollen must be moved from a stamen to the stigma [24]. There are two types of pollination:

• Self Pollination (Abiotic pollination): Only about 10% of plants fall in this category, it’s the fertilization of one flower, when the pollen from
a flower pollinates the same flower or flowers of the same plant, it does not require any pollinators. It occurs when a flower contains both the
male and the female gametes is a process where the pollination happens without involvement of external agents [23].
• Cross Pollination (biotic pollination): Is typically associated when pollen from a plant’s stamen is transferred to a different plant’s stigma (of
the same species), and such transfer is often linked with pollinators (see Figure 1). Pollination occurs in several ways:
◦ People: They can transfer pollen from one flower to another, but most plants are pollinated without any help from people.
◦ Animals: such as bees, butterflies, moths, flies pollinate plants by an accidental way when they are at the plant to get food. The pollinators
can fly a long distance, thus they can be considered as the global pollination. In addition, bees and birds may behave as Lévy flight behavior
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(a) Self pollination (b) Cross pollination

Fig. 1: Flower pollination.

[19], with jump or fly distance steps obey a Lévy distribution. Furthermore, flower constancy can be used an increment step using the similarity
or difference of two flowers [8, 22].
◦ Wind and Diffusion in water: it picks up pollen from one plant and blows it into another.

3.2 FPA formulation

The four rules given below are used to summarize the above characteristics of pollination process, flower constancy and pollinator behavior
[25] .

1. Biotic and cross-pollination is considered as global pollination process and pollinators carrying pollen move in a way that confirms to Lévy
flights.
2. For local pollination, abiotic pollination and self-pollination are used.
3. Flower constancy can be considered as the reproduction probability is proportional to the similarity of two flowers involved.
4. Local pollination and global pollination is controlled by a switch probability p ∈ [0, 1].

To formulate the updating formulas, these rules have to be changed into correct updating equations. In principle, flower pollination process can
happen at both local and global levels. But in reality, flowers in the neighborhood have higher chances of getting pollinated by pollen from local
flowers than those which are far away. To simulate this feature, a proximity probability (Rule 4) can be commendably used to switch between
intensive local pollination to common global pollination. To start with, a raw value of p = 0.5 may be used as an initial value. A preliminary
parametric study indicated that p = 0.8 may work better for most applications. The main steps of FPA, or simply the flower algorithm [24] are
illustrated below:

Pseudo code of the proposed Flower Pollination Algorithm (FPA).
Objective min or max f(x), x = (x1, x2, ..., xd)
Initialize a population of n flowers/pollen gametes with random solutions
Find the best solution g∗in the initial population
Define a switch probability p ∈ [0, 1]
while (t <MaxGeneration)

for i = 1 : n (all n flowers in the population)
if rand < p,

Draw a (d-dimensional) step vector L which obeys a Lévy distribution
Global pollination via xt+1

i = xti + L(g∗ − xti)
else

Draw ε from a uniform distribution in [0, 1]
Randomly choose j and k among all the solutions
Do local pollination via xt+1

i = xti + ε(xtj − x
t
k)

end if
Evaluate new solutions
If new solutions are better, update them in the population

end for
Find the current best solution g∗

end while

4 Case study: Solving IVP for a series RC Circuit

The RC circuit (RC filter or RC network) is an electric circuit composed of resistors and capacitors driven by a voltage or current source, when
the circuit is composed of one resistor and one capacitor then it’s called a first order RC circuit which is the simplest type of RC circuit [12]
(Figure 2). RC circuits have a several utilities, its may be used to filter a signal by blocking certain frequencies and passing others and charge
transport behavior in various complex systems described using models of many-element RC networks like the battery anodes and fuel cells
[13]. The two most common RC filters are the high-pass filters and low-pass filters; band-pass filters and band-stop filters usually require RLC
filters, though crude ones can be made with RC filters [2].
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Fig. 2: The RC circuit diagram.

4.1 Case 1: Constant voltage

The voltage across the resistor and capacitor are as follows: VR = Ri and VC = 1
C

∫
idt, Kirchhoff’s voltage law says the total voltages must

be zero. So applying this law to a series RC circuit results in the equation:

Ri+
1

C

∫
idt = V

One way to solve this equation is to turn it into a differential equation, by differentiating throughout with respect to t:

R
di

dt
+

i

C
= 0

Solving the equation gives us:

i =
V

R
exp(

−t
RC

) (3)

The time constant in the case of an RC circuit is:

τ = RC (4)

4.2 Case 2: Variable voltage and 2-mesh circuits

We need to solve variable voltage cases in q, rather than in i, since we have an integral to deal with if we use i. So we will make the substitutions:

i =
dq

dt
and q =

∫
idt. So the equation in i involving an integral: Ri+

1

C

∫
idt = V becomes the differential equation in q:

R
dq

dt
+

1

C
q = V (5)

5 Numerical experiments

5.1 Parameters settings

To illustrate the treated method and to demonstrate its computationally efficiency, the courant expression problem in both constant and variable
voltage cases is considered by taking a uniform step size h. In Table (1) the parameters settings to generate the FPA and RK4 are presented.
For convenience, the numerical results are exposed in graphical and tabular form. Table (4) offers the FPA results vs. the exact and RK4
results for the studied cases of the problem, as well as the absolute error that is summarized in Table (5). For a better analysis of the results,
each optimization procedure was repeated 50 times overall the objective function for the dimension D = 10, and the population size in all
algorithms is set to 30. The search space in all algorithms is restricted to the interval [−5; 5]D. The maximum number of iterations was set
to 50 times the dimension such as for D = 10 is 1000. All computations were performed on an MSWindow 2007 professional operating
system in the Matlab environment version R2013a compiler on Intel Duo Core 2.20Ghz PC. The problem treatment demanding, two types of
parameters, the first are related to FPA and the second are connected to IVP. These parameters are described as follows:

Parameter Value

Dimension of the search variables (d) 10
Total number of iterations (N) 2000
Population size (n) 20
Probabibility switch (p) 0.8

Table 1 Parameters adopted for the FPA.
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In the experimental study we introduce two IVP that arising from a RC circuit in both constant voltage and variable voltage cases. The
objective function defined as:

F (y1, y2, ..., y10) =
10∑
j=1

(
yj−yj−1

h − f
(
xj−1, yj−1

))2
=

10∑
j=1

(
yj−yj−1

h − yj−1
)2 (6)

When then, the essential differential equation is converting into discretization form. The backward difference formula is used to convert
differential equation into discretizations form when the derivative term is replaced by a difference quotient for approximations. The interval of
the IVP is equally partitioned into (n+ 1) equidistant subintervals with the length h = (b− a)/n+ 1. Where n = 9 is a number of interior
nodes. The IVP related parameters are as follows:

1. The step size h = 0.5, h = 0.02 for case 1 and case 2 respectively.
2. The initial condition in the first case is i = 0 for t = 0 and for the second case we assume that the charge on the capacitor is −0.05C for
t = 0. The interval between which the differential equation is solved is varying from case to case.

5.2 Computational time results

In Table ( 2), the average computational time (in seconds) by FPA algorithm of 50 different trials for the studied example computed by using
the dimensional space, D = 10, are presented. It is clear that FPA algorithm kept a competitive computational time compared to the RK4
algorithm which constitutes an important advantage and a direct result of simple population update procedures.

Algorithm Time
Case 1 Case 2

FPA 4.687 4.563
RK4 5.039 4.897

Table 2 Average computational time by the used algorithms using 50 trials for the examples.

5.3 Statistical analysis

After establishing the superiority of FPA with respect to computational times, this part of the article deals with the statistical analysis of results
obtained by proposed FPA and compared to RK4. These analyses should provide sufficient insight of how FPA outperforms RK4. Table (3)
reports the Mean and STD of the difference between true optimum and computed optimum values achieved in the dimension D = 10. The
results indicate that FPA was the best performing algorithm.

Algorithm Mean STD
Case 1 Case 2 Case 1 Case 2

FPA 0.8334 0.8226 0.9570 0.8762
RK4 0.8339 0.8198 0.9573 0.8956

Table 3 Statistical results obtained for the studied examples over Dim=10.

5.4 Application examples

Example 1 (Case 1: Constant Voltage): We want to Find the current in the RC circuit for t > 0 that has an emf of 100V , a resistance
R = 50W,C = 0.02F and no initial current. The time constant in this case is calculated via equation (4) gives τ = 1 Seconds.
Example 2 (Case 2: Variable Voltage and 2-mesh Circuits): We want to Find the charge and the current for t > 0 in a series RC circuit
where R = 10W,C = 4× 10− 3F and E = 85 cos 150tV . Assume that when the switch is closed at t = 0, the charge on the capacitor is
−0.05C. Since the voltage source is not constant, we cannot use the formulae in Eq.(3), and from the formula of Eq.(4) we have:

dq

dt
+ 25q = 8.5 cos 150t

Now, we can solve this differential equation in q using the linear ODE process so this gives us:

q(t) = 00092 cos 150t+ 0.055 sin 150t− 0.059 exp(−25t)
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5.5 Examples results

j tj Exact Results FPA Results RK4 Results
Case 1

0 0.0000 2.0000 2.0002 2.0402
1 0.5000 1.2131 1.2163 1.2569
2 1.0000 0.7358 0.7465 0.7845
3 1.5000 0.4463 0.4583 0.4964
4 2.0000 0.2707 0.2803 0.3253
5 2.5000 0.1642 0.1696 0.2223
6 3.0000 0.0996 0.1041 0.1598
7 3.5000 0.0604 0.0637 0.1228
8 4.0000 0.0366 0.0387 0.1084
9 4.5000 0.0222 0.0240 0.0978
10 5.0000 0.0135 0.0145 0.0912

Case 2

0 00000 -0.0498 -0.0491 -0.0451
1 0.0200 -0.0371 -0.0363 -0.0395
2 0.0400 -0.0282 -0.0264 -0.0304
3 0.0600 0.0011 0.0002 0.0000
4 0.0800 -0.0297 -0.0267 -0.0207
5 0.1000 0.0239 0.0209 0.0189
6 0.1200 -0.0382 -0.0352 -0.0297
7 0.1400 0.0392 0.0362 0.0292
8 0.1600 -0.0470 -0.0429 -0.0399
9 0.1800 0.0493 0.0453 0.0388
10 0.2000 -0.0533 -0.0509 -0.0469

Table 4 Numerical results of the case 1 and case 2 examples for d=10.

The graphical representation of Table (4) results are visualized via Figure (3) that shows an exponential decay shape which means the current
stops flowing as the capacitor becomes fully charged. A straightforward remark detection of difference between FPA performance and RK4’s
performance is very clear; hence FPA is better than RK4 because its results curve is very close to the exact results curve. We note that the
graph can be very smooth by augmenting the number of steps h. The absolute error between exact, FPA and RK4 method results are made in
Table (5) as well as their graphical representations which is given through Figure (4). In both representations of the absolute error, FPA method
provides a very minimal absolute error compared to RK4 method.

(a) Case 1 (b) Case 2

Fig. 3: Numerical Results
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j tj FPA RK4
Case 1

0 0.0000 0.0002 0.0402
1 0.5000 0.0032 0.0438
2 1.0000 0.0107 0.0487
3 1.5000 0.0120 0.0501
4 2.0000 0.0096 0.0546
5 2.5000 0.0054 0.0581
6 3.0000 0.0045 0.0602
7 3.5000 0.0033 0.0624
8 4.0000 0.0021 0.0718
9 4.5000 0.0018 0.0756
10 5.0000 0.0010 0.0777

Case 2

0 00000 0.0007 0.0047
1 0.0200 0.0008 0.0024
2 0.0400 0.0018 0.0022
3 0.0600 0.0009 0.0011
4 0.0800 0.0030 0.0090
5 0.1000 0.0030 0.0050
6 0.1200 0.0030 0.0085
7 0.1400 0.0030 0.0100
8 0.1600 0.0041 0.0071
9 0.1800 0.0040 0.0105
10 0.2000 0.0024 0.0064

Table 5 Absolute Error.

(a) Case 1 (b) Case 2

Fig. 4: Absolute Error.

6 Conclusion

In this study, we applied the FPA to solve approximately the IVPs arises in electronic engineering field that is ODEs of the series RC circuit
via a chosen examples in both voltage constant and voltage variable cases. After a comparison between the exact solutions and the algorithm
outcomes with RK4 method results; FPA conduct to a precise solution with least errors compared to the RK4’s. That is another argument given
by the MAs in demonstrating such good proprieties. Behind the evaluations of various research papers, FPA was found as an algorithm having
fabulous aptitude to solve a variety of optimization problems. As a future research, there are profound studies on FPA that will give hopeful
results such as the use of more diverse parameters, more extensive comparison studies with more open sort of algorithms; for this reason these
comparisons will enhance the qualities and back up the limitations of all the algorithms. Also, FPA should be looked into in several applications
of engineering and industrial optimization problems.
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duced to extend Bernstein operators and obtain more accurate and sensitive numerical results. In this study, we focus and compare
some recent positive linear operators to approximate functions. We also provide graphics to see convergence of these operators.
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1 Introduction

For any function f on C[0, 1] and m ∈ N (the set of natural numbers), the Bernstein operators constructed by

Bm(h; z) =

m∑
j=0

h

(
j

m

)
bm,j(z) (z ∈ [0, 1]),

where the Bernstein polynomials bm,j(z) of degree at most m defined as

bm,j(z) =

(
m

j

)
zj(1− z)m−j (j = 0, 1, · · · ,m; z ∈ [0, 1])

and

bm,j(z) = 0 (j < 0 or j > m).

The Bernstein polynomials satisfy the following recursive formula

bm,j(z) = (1− z)bm−1,j(z) + zbm−1,j−1(z).

There are several generalization mentioned regarding Bernstein operators, for example,

(a) λ-Bernstein operators [17] with b̃n,i(λ;x) Bézier bases and shape parameter λ (see [35]):

b̃n,0(λ;x) = bn,0(x)− λ

n+ 1
bn+1,1(x),

b̃n,i(λ;x) = bn,i(x) +
n− 2i+ 1

n2 − 1
λbn+1,i(x)− n− 2i− 1

n2 − 1
λbn+1,i+1(x), i = 1, 2 . . . , n− 1,

b̃n,n(λ;x) = bn,n(x)− λ

n+ 1
bn+1,n(x). (1)

(b) Bernstein type operators by using continuously differentiable∞ times function τ on [0, 1] [18].
(c) New variant of Bernstein operators [24]
(d) (p, q)-Bernstein operators [29].
(e) Stancu-type λ-Bernstein operators [34].
(f) Modified Un operators [15] and references therein.
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(g) α-Bernstein operators [19, 22] p(α)m,γ,j(z) denotes the α-Bernstein-Schurer polynomials defined by

p
(α)
1,γ,0 (z) = 1− z, p

(α)
1,γ,1(z) = z

and

p
(α)
m,γ,j (z) =

[
(1− α) z

(
m+ γ − 2

j

)
+ (1− α) (1− z)

(
m+ γ − 2

j − 2

)

+αz (1− z)

(
m+ γ

j

)]
zj−1 (1− z)m+γ−(j+1) (m ≥ 2). (2)

(h) Bivariate extension of α-Bernstein-Durrmeyer operators [23].
(i) Kantorovich modifications of α-Bernstein operators [26].
(j) λ-Bernstein-Schurer operators [32].
(k) Bivariate λ-Bernstein operators [5].
(l) λ-Bernstein-Kantorovich operators [20].
(m) Univariate and bivariate λ-Bernstein-Kantorovich operators [7].
(n) Genuine modified Bernstein-Durrmeyer operators [25].

We refer to see [13, 14, 21, 27, 28, 30] for certain further development, related concepts and statistical approximation.

2 Some positive linear operators

Assume that γ is a non-negative integer. For any m ∈ N, in the year 1962, Schurer [33] constructed the following linear positive operators

Sm,γ : C [0, 1 + γ]→ C[0, 1]

defined for all h ∈ [0, 1 + γ] by

Sm,γ(h; z) =

m+γ∑
j=0

h

(
j

m

)
sm,γ,j(z) (z ∈ [0, 1]) (3)

where sm,γ,j(z) is a fundamental Bernstein-Schurer polynomials given by

sm,γ,j(z) =

(
m+ γ

j

)
zj(1− z)m+γ−j (j = 0, 1, · · · ,m+ γ). (4)

We remark that the choice of γ = 0 in the operators Sm,γ(h; z) gives Bernstein operators Bm(h; z) and, in this case, the polynomials
pm,γ,j(z) reduces to the fundamental polynomials of Bernstein bm,j(z).

Consider a non-negative integer γ. For any m ∈ N and α ∈ R is fixed. Following α-Bernstein-Schurer operators Φm,γ,α : C [0, 1 + γ]→
C[0, 1] were defined for any h in C [0, 1 + γ] [2] by

Φm,γ,α (h; z) =

m+γ∑
j=0

hjp
(α)
m,γ,j (z) (z ∈ [0, 1]) , (5)

where

hj = h

(
j

m

)
.

In the last operators (5), Note that our α-Bernstein-Schurer operators are a class of linear positive operators for any α ∈ [0, 1]. We assume
throughout unless stated otherwise that α in [0, 1]. For some values of m and j, we obtain

p
(α)
2,γ,0 (z) = (1− αz)(1− z)γ+1;

p
(α)
2,γ,1 (z) = (1− αz)γz(1− z)γ + 2αz(1− z)γ+1;

p
(α)
3,γ,0 (z) = (1− αz)(1− z)γ+2.

In the following theorem, monotonicity preserving property of the α-Bernstein-Schurer operators is provided [2]:

Theorem 1. Suppose h ∈ C[0, 1]. If the function h(z) is monotonically increasing or decreasing on the interval [0, 1], so are all of its
α-Bernstein-Schurer operators for α ∈ [0, 1].

Convexity preserving property of α-Bernstein-Schurer operators is given in the next theorem [2].
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Theorem 2. Suppose h ∈ C[0, 1]. If the function h(z) is convex on the interval [0, 1], so are all of its α-Bernstein-Schurer operators for
α ∈ [0, 1].

By the following theorem we give uniform convergence of some positive linear operators.

Theorem 3. For any α ∈ [0, 1], then Lm,α(h) converge uniformly to h on [0, 1], that is,

lim
m→∞

‖Lm,α(h)− h‖ = 0,

where Lm,α = Φm,γ,α, Tm,α, K
β,θ
m,α, Km,α.

Proof: Taking into account moments of Bernstein type operators we have

Lm,α(e0) = e0 as m→∞, Lm,α(e1;x) = e1 as m→∞

and similarly Lm,α(e2) = e2 as m→∞. Hence, by the Korovkin theorem, we obtain

lim
m→∞

‖Lm,α(h)− h‖ = 0.

This comletes the proof. �

Finally, we use MATHEMATICA to give an application of Korovkin type theorem, and we consider two functions g(x) = cos(πx) and
g(x) = x3 sin(πx) to demonstrate convergence of some α Berntein operators. In Figure 1 and Figure 2 we provide convergence for operators
Φm,γ,α and Km,α, respectively. We also note that, this paper is based on the results in [2, 6, 9], this is why we refere these papers for further
literature.

Fig. 1: Function 1; Convergence of operators Φm,γ,α for some m values
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Fig. 2: Function 2; Convergence of operators Km,α for some m values
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1 Introduction

Chen et al. [12] constructed the α-Bernstein operators as follows:

Tm,α (g; y) =

m∑
i=0

g (i/m) p
(α)
m,i (y) (y ∈ [0, 1]) , (1)

where

p
(α)
1,0 (y) = 1− y, p

(α)
1,1 (y) = y

and

p
(α)
m,i(y) =

[
(1− α) y

(
m− 2

i

)
+ (1− α) (1− y)

(
m− 2

i− 2

)

+αy (1− y)

(
m

i

)]
yi−1 (1− y)m−i−1 (m ≥ 2),

and also or g ∈ C[0, 1], α ∈ [0, 1] is fixed and m ∈ N.
Recall that p(α)m,i in the relation (1) is called α-Bernstein polynomials of order m and the binomial coefficients

(
a

b

)
=

{ a!
b!(a−b)! (0 ≤ b ≤ a),

0̄ (otherwise).

For α = 1, (1) is reduced to classical Bernstein operators [6].
Chen [5] and Goodman and Sharma [1], independently, introduced the operators Um (we can also call it genuine Bernstein-Durrmeyer

operators) acting from LB(0, 1) into Πm, defined by

Um(f, y) = (m− 1)

m−1∑
i=1

(∫1
0
f(t)pm−2,i−1(t)dt

)
pm,i(y) + ymf(1)

+ (1− y)mf(0)

for all f ∈ LB(0, 1), where pm,i(y) (m, i ∈ N) is considered by

pm,i(y) =

(
m

i

)
yi(1− y)m−i (0 ≤ y ≤ 1, 0 ≤ i ≤ m).
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The above operators are limits of the Bernstein-Durrmeyer operators with Jacobi weights, Mc,d
m for c, d > −1 which was studied by Păltănea

[3], that is,
Um(f) = lim

c→−1,d→−1
Mc,d
m (f) (f ∈ C[0, 1]),

where C[0, 1] denotes the space of functions which are continuous on [0, 1] and

Mc,d
m (f, y) =

m∑
i=0

∫1
0 f(t)tc(1− t)dpm,i(t)dt∫1

0 t
c(1− t)dpm,i(t)dt

pm,i(y).

Păltănea [4] presented a generalization of the operators Um with the help of ρ > 0, namely, genuine ρ-Bernstein-Durrmeyer operators and
denoted by Uρm. For any f ∈ C[0, 1], in the same paper, he showed that the classical Bernstein operators are the limits of the operators Uρm
and also obtained a Voronovskaja type result. Gonska and Păltănea [2] proved that the operators Uρm preserves convexity of all orders and also
obtained the degree of simultaneous approximation.

For m ∈ N and ρ > 0, the functional (see [4])
F ρm,i : C[0, 1]→ R

is defined by

F ρm,i (g) =

1∫
0

µρm,i(t)g (t) dt (i = 1, 2, . . . ,m− 1), (2)

F ρm,0 (g) = g(0), F ρm,m (g) = g(1),

where µρm,i(t) in (2) is given by the formula

µρm,i(t) =
tiρ−1(1− t)(m−i)ρ−1

B(iρ, (m− i)ρ)

and the Euler’s beta function in the last equality is defined by

B(a, b) =

1∫
0

ta−1(1− t)b−1dt (a, b > 0).

Assume that θ and β are two real parameters satisfying 0 ≤ θ ≤ β. In view of α-Bernstein operators, for m ∈ N, α ∈ R is fixed and given
a function g ∈ C[0, 1], we define the operators Uβ,θ,ρm,α (or, genuine (α, ρ)-Durrmeyer-Stancu operators) by

Uβ,θ,ρm,α (g;x) =

m∑
i=0

Fβ,θ,ρm,i (g) p
(α)
m,i(x),

where

Fβ,θ,ρm,i (g) =

1∫
0

µρm,i(t)g

(
mt+ θ

m+ β

)
dt

for i = 1, 2, . . . ,m− 1, Fβ,θ,ρm,0 (g) = g
(

θ
m+β

)
and Fβ,θ,ρm,1 (g) = g

(
m+θ
m+β

)
. Consequently, we can re-write our operators Uβ,θ,ρm,α as

Uβ,θ,ρm,α (g;x) =

m−1∑
i=1

1∫
0

[
tiρ−1(1− t)(m−i)ρ−1

B(iρ, (m− i)ρ)
g

(
mt+ θ

m+ β

)
dt

]
p
(α)
m,i(x)

+g

(
θ

m+ β

)
p
(α)
m,0(x) + g

(
m+ θ

m+ β

)
p
(α)
m,m(x). (3)

For the choice of θ = 0 and β = 0, the operators defined by (3) reduce to the operators Uρm,α(g;x) which were studied in [8]. In addition,
if ρ = 1 then one get the genuine α-Bernstein-Durrmeyer operators Um,α defined in [7]. If one take ρ = 1, α = 1, θ = 0 and β = 0, then one
obtain genuine Bernstein-Durrmeyer operators.

2 Recent results for α-Bernstein type operators

Theorem 1. If g is continuous on [0, 1], for any α ∈ [0, 1], then T ρm,α(g) converge uniformly to g on [0, 1], that is,

lim
m→∞

∥∥T ρm,α(g)− g
∥∥ = 0,

where T ρm,α = Tm,α, M
c,d
m , Uβ,θ,ρm,α , Uρm,α.
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Proof: Using the moments of mentioned operators we have

lim
m→∞

T ρm,α(e0) = e0, lim
m→∞

T ρm,α(e1;x) = e1

and similarly limm→∞
∥∥T ρm,α(e2)− e2

∥∥ = 0. Hence, by the Korovkin theorem, we obtain

lim
m→∞

∥∥T ρm,α(g)− g
∥∥ = 0.

�

We also want to give a Voronovskaja type theorem for these kinds of operators. Voronovskaja type theorem provides a finite expression for
the following

lim
m→∞

m
{
T ρm,α(g;x)− g(x)

}
,

where T ρm,α = Tm,α, M
c,d
m , Uβ,θ,ρm,α , Uρm,α. For instance consider the following Voronovskaja type theorem for operators Uβ,θ,ρm,α [17]:

Theorem 2. For every g ∈ CB [0, 1] such that g′, g′′ ∈ CB [0, 1]. Then, for each x ∈ [0, 1] and ρ > 0, we have

lim
m→∞

m
{
Uβ,θ,ρm,α (g;x)− g(x)

}
= (θ − βx)g

′
(x) +

ρ+ 1

2ρ
x(1− x)g

′′
(x)

uniformly on [0, 1], where CB [0, 1] denotes the set of all real-valued bounded and continuous functions defined on [0, 1].

Finally, we use MATHEMATICA to give an application of Korovkin type theorem, and we consider the function g(x) = x4 cos(πx) +
sin(2πx) to demonstrate convergence and error of approximation of discussed operators. In Figure 1 and Figure 2 we provide convergence and
error of convergence of operators Uβ,θ,ρm,α , respectively. It is also possible to have convergnce graphics for other α− ρ type Bernstein operators.
We also note that, this paper is based on the results in [3, 4, 7, 8, 12, 17], this is why we refere these papers for further literature.

Fig. 1: Convergence of operators for some m values
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Fig. 2: Error of convergence of operators for some m values
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1 Introduction

Let A be a Banach algebra and a, b ∈ A. The map Ma,b : A → A given by Ma,b(x) = axb is called a multiplication operator. Properties of
compact multiplication operators have been investigated since 1964 when Vala published his work “On compact sets of compact operators”
[13]. Let X be a normed space and B(X ) the algebra of all bounded linear maps from X into X . Vala proved that a non-zero multiplication
operator Ma,b : B(X )→ B(X ) is compact if and only if the operators a, b ∈ B(X ) are both compact. Also, in [14] Vala defines an element a
of a normed algebra to be compact if the mapping x 7→ axa is compact. This concept enabled the study of compactness properties of elements
of abstract normed algebras. Ylinen in [15] characterized the compact elements in abstract C*-algebras.

Compactness questions have also been considered in the more general framework of elementary operators by Fong and Sourour [4], Mathieu
[7] and Timoney [12].

Akemann and Wright [1] characterized the weakly compact multiplication operators on B(H), where H is a Hilbert space. Saksman and
Tylli [10, 11] and Johnson and Schechtman [5] studied weak compactness of multiplication operators in a Banach space setting.

Moreover, strictly singular multiplication operators are studied by Lindström, Saksman and Tylli [6] and Mathieu and Tradacete [8].
Compactness properties of multiplication operators on nest algebras, a class of non selfadjoint operator algebras, are studied by Andreolas

and Anoussis in [2].
In this work we study multiplication operators on a semicrossed product C0(X)×φ Z+ where X is a locally compact metrizable space,

and φ : X → X a homeomorhism. We characterize the compact multiplication operators in terms of the corresponding dynamical system. As
a consequence, we obtain a characterization of the compact elements of the semicrossed product. We also characterize the ideal generated by
the compact elements.

2 Semicrossed products

Let X be a locally compact metrizable space and φ : X → X a homeomorphism. The pair (X,φ) is called a dynamical system. An action of
Z+ onC0(X) by isometric ∗-automorphisms αn, n ∈ Z+ is obtained by defining αn(f) = f ◦ φn. We write the elements of the Banach space
`1(Z+, C0(X)) as formal series A =

∑
n∈Z+

Unfn with the norm given by ‖A‖1 =
∑
‖fn‖C0(X). The multiplication on `1(Z+, C0(X))

is defined by setting
UnfUmg = Un+m(αm(f)g)

and extending by linearity and continuity. With this multiplication, `1(Z+, C0(X)) is a Banach algebra.
The Banach algebra `1(Z+, C0(X)) can be faithfully represented as a (concrete) operator algebra on a Hilbert space. This is achieved by

assuming a faithful action of C0(X) on a Hilbert spaceH0. Then, we can define a faithful contractive representation π of `1(Z+, C0(X)) on
the Hilbert spaceH = H0 ⊗ `2(Z+) by defining π(Unf) as

π(Unf)(ξ ⊗ ek) = αk(f)ξ ⊗ ek+n.

The semicrossed product C0(X)×φ Z+ is the closure of the image of `1(Z+, C0(X)) in B(H) in the representation just defined, where B(H)
is the algebra of bounded linear operators on H. We will denote the semicrossed product C0(X)×φ Z+ by A and an element π(Unf) of A
by Unf to simplify the notation. We refer to [9] and [3], for more information about the semicrossed product.
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For A =
∑
n∈Z+

Unfn ∈ `1(Z+, C0(X)) we call fn ≡ En(A) the nth Fourier coefficient of A. The maps En : `1(N+, C0(X))→
C0(X) are contractive in the (operator) norm of A, and therefore they extend to contractions En : A → C0(X).

3 Compact multiplication operators on semicrossed products

Let (X,φ) be a dynamical system. Then, a point x ∈ X is called recurrent if there exists a strictly increasing sequence (nk)k∈N ⊆ N, such
that limk→∞ φnk (x) = x. The set of the recurrent points of (X,φ) will be denoted by Xr . We will denote by Xi the set of the isolated points
of X and by Xa the set of the accumulation points of X .

To prove our main result, we first prove the following propositions:

Proposition 3.1. Let MA,B : A → A be a compact multiplication operator, where A,B ∈ A and Em(A) = fm, Em(B) = gm, for all
m ∈ Z+. Then,

1. (fm ◦ φn+lgn)(Xa) = {0}, for all m,n, l ∈ Z+.
2. liml→∞(fm ◦ φn+lgn)(x) = 0, for all m,n ∈ Z+ and x ∈ Xi.
3. the sequence {fm ◦ φn+lgn}l∈Z+

is pointwise equicontinuous, for all m,n ∈ Z+.

Proposition 3.2. Let m,n ∈ Z+ and A = Umf, B = Ung ∈ A1. Then, the multiplication operator MA,B : A → A is compact if the
following assertions are valid.

1. (f ◦ φn+lg)(Xa) = {0}, for all l ∈ Z+,
2. liml→∞(f ◦ φn+lg)(x) = 0, for all x ∈ Xi,
3. The sequence {f ◦ φn+lg}l∈Z+

is pointwise equicontinuous.

Let us decsribe briefly the idea of the proof of Proposition 3.2. The proof is devided in three steps: In the first step we construct an
approximation of MA,B by multiplication operators MAk,Bk

where Ak = Umfk and Bk = Ungk and fk, gk are compactly supported.
Hence, to prove that MA,B is compact, it suffices to show that there exists a natural number k0 such that MAk,Bk

is compact, for all k > k0.
In the second step we construct finitely supported functions g̃k for all k > k0, with the property that

fk ◦ φn+lgk = fk ◦ φn+lg̃k,

for all l ∈ Z+. It follows that MAk,Bk
=MAk,B̃k

, where B̃k = Ung̃k. It the third step we prove that there exists L0 ∈ N such that

MAk,B̃k
(U lh) = 0,

for all l ≥ L0 and h ∈ C0(X). Since g̃k has finite support, the operator MAk,B̃k
, is a finite rank operator and hence compact.

We now recall the concept of the kth arithmetic mean of an element of the semicrossed product, that we will need in the sequel. Let A
be an element of the semicrossed product A. We consider the sequence {Unfn}n∈Z+

⊆ A, where fn = En(A), for n ∈ Z+. We note that
the series

∑
n∈Z+

Unfn does not converge to A in general. The kth arithmetic mean of A is defined to be the element Ak = 1
k+1

∑k
l=0 Sl,

where Sl =
∑l
n=0 U

nfn. Then, the sequence {Ak}k∈Z+
is norm convergent to A [9, p. 524].

The following is our main result:

Theorem 3.3. Let A,B ∈ A and Em(A) = fm ∈ C0(X), Em(B) = gm ∈ C0(X), for all m ∈ Z+. The following statements are
equivalent.

1. The multiplication operator MA,B : A → A is compact.
2. The following assertions are valid, for all m,n ∈ Z+.
(a) (fm ◦ φn+lgn)(Xa) = {0}, for all l ∈ Z+.
(b) liml→∞(fm ◦ φn+lgn)(x) = 0, for all x ∈ Xi.
(c) The sequence {fm ◦ φn+lgn}l∈Z+

is pointwise equicontinuous.

Proof:
The condition (1) implies the condition (2) by Proposition 3.1. We will show the opposite direction.
If A =

∑p
m=0 U

mfm and B =
∑q
n=0 U

ngn, for p, q ∈ Z+, we have

MA,B =

p∑
m=0

q∑
n=0

MUmfm,Ungn

and the assertion folows from Proposition 3.2.
If A,B ∈ A and k ∈ Z+, we denote by Ak and Bk the kth arithmetic mean of A and B respectively. Since the Fourier coefficients of A

andB satisfy the condition (2), the Fourier coefficients ofAk andBk satisfy the condition (2) as well. Thus, the operatorMAk,Bk
is compact,

for all k ∈ Z+. The operator MA,B is the norm limit of the sequence {MAk,Bk
}k∈Z+

and hence is compact.
�

As a corollary of the above theorem, we obtain the following characterization of the compact elements of the algebra A.
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Corollary 3.4. Let A ∈ A and Em(A) = fm ∈ C0(X), for all m ∈ Z+. Then, A is a compact element of A, if and only if the following
conditions are satisfied, for all m,n ∈ Z+.

1. (fm ◦ φn+lfn)(Xa) = {0}, for all l ∈ Z+.
2. fm(Xr) = {0}.
3. The sequence {fm ◦ φn+lfn}l∈Z+

is pointwise equicontinuous.

Let us see now how Theorem 3.3 applies to two special cases.

Corollary 3.5. LetX be a discrete space,A,B ∈ A andEm(A) = fm, Em(B) = gm, for allm ∈ Z+. Then, the following are equivalent.

1. The multiplication operator MA,B : A → A is compact.
2. (fm ◦ φn+lgn)(Xr) = {0}, for all m,n, l ∈ Z+.
3. liml→∞(fm ◦ φn+lgn)(x) = 0, for all x ∈ X.

Corollary 3.6. Let X be a space without isolated points, A,B ∈ A and Em(A) = fm, Em(B) = gm, for all m ∈ Z+. Then, the following
are equivalent.

1. The multiplication operator MA,B : A → A is compact.
2. (fm ◦ φn+lgn)(X) = {0} for all l,m, n ∈ N.
3. MA,B = 0.

We would like to note that the equicontinuity condition 2c of Theorem 3.3 follows from condition 2a if X has no isolated points and is
automatically satisfied if X is discrete. However, in the general case condition 2c cannot be omitted as we show in the following example.

Example 3.7. We consider the dynamical system (X,φ) where

X = {0} ∪ {xn}n∈Z ∪ {2}, xn =

{
1
|n|+1

, n < 0

2− 1
n+1 , n ≥ 0

and φ is the homeomorphism

φ(0) = 0, φ(xn) = xn−1, φ(2) = 2.

We define the elements A = U1f and B = U1g of the semicrossed product A by the following formulae.

f(x) =

{
1, x = 1
0, else and g(x) =

{
1, x > 1
0, x ≤ 1

.

We observe that, (f ◦ φ1+lg)(Xa) = {0}, for all l ∈ Z+ and liml→∞(f ◦ φ1+lg)(x) = 0, for all x ∈ Xi. However, the sequence {f ◦
φ1+lg}l∈Z+

is not equicontinuous at x = 2 and the multiplication operator MA,B : A → A is not compact.

In the following theorem, we characterize the ideal generated by the set of compact elements of the semicrossed product A. Recall that
Y ⊆ X is called wandering if the sets φ−1(Y ), φ−2(Y ), ... are pairwise disjoint. A point x ∈ X is called wandering if it possesses an open
wandering neighborhood. We will denote by Xw the set of wandering points of X . It is clear that Xw is the the union of all open wandering
subsets of X .

Theorem 3.8. The ideal generated by the compact elements of A is the set

{A ∈ A | En(A)(X \Xw) = {0}, ∀n ∈ Z+ and E0(A)(Xa) = {0}}.
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1 Introduction

Harmonic functions are a classic title in the class of geometric functions. Many researchers have studied these function classes from past to
present, and since it has a wide range of applications, it is still a popular class. In this study, we will examine harmonic univalent functions, a
subclass of harmonic functions.

Let H denote the family of continuous complex valued harmonic functions which are harmonic in the open unit disk D =
{z : z ∈ C and |z| < 1} and let A be the subclass of H consisting of functions which are analytic in D. A function harmonic in D may
be written as f = h+ g, where h and g are members of A. We call h the analytic part and g co-analytic part of f . A necessary and sufficient
condition for f to be locally univalent and sense-preserving in D is that

∣∣h′(z)∣∣ > ∣∣g′(z)∣∣ (see Clunie and Sheil-Small [3]). To this end, without
loss of generality, we may write

h(z) = z +

∞∑
n=2

anz
n and g(z) =

∞∑
n=2

bnz
n. (1)

Let SH denote the family of functions f = h+ g which are harmonic, univalent, and sense-preserving in D for which f(0) = fz(0)− 1 =
0. Thus SH contains contains the standard class S of analytic univalent functions. Although the analytic part h of a function f ∈ SH is locally
univalent, it will become apparent that it need not be univalent. One shows easily that the sense-preserving property implies that |b1| < 1 .

The subclass SH0 of SH consists of all functions in SH which have the additional property fz̄(0) = b1 = 0.
In 1984 Clunie and Sheil-Small [3] investigated the class SH as well as its geometric subclasses and obtained some coefficient bounds.

Since then, there have been several related papers on SH and its subclasses. For example Avci and Zlotkiewicz [1], Flett [4], Jahangiri [5],
Jahangiri et. al. [6], Silverman [8], Uralegaddi and Somanatha [9], Cho and Srivastava [2] etc.

Also note that SH reduces to the class S of normalized analytic univalent functions in D, if the co-analytic part of f is identically zero.
For f ∈ S, the differential operator Dk (k ∈ N0 = N ∪ {0}) of f was introduced by Sălăgean [7]. For f = h+ g given by (1), Jahangiri

et al. [6] defined the modified Sălăgean operator of f as

Dnf(z) = Dnh(z) + (−1)nDng(z),

where

Dnh(z) = z +
∞∑
k=2

knakz
k, Dng(z) =

∞∑
k=2

knbkz
k.

Next for functions f ∈ A , Cho and Srivastava [2] defined multiplier transformations.
For f = h+ g given by (1), we introduced a differentian operator defined as follows

I0
βf(z) = D0f(z) = h(z) + g(z),

Inβ f(z) = z

∞
+
∑
k=2

(
βk + 1

1 + β

)n
akz

k + (−1)n
∞∑
k=1

(
βk − 1

1 + β

)n
bkzk (2)

where n ∈ N0 β ≥ 1. Denote by SH(β, n, µ) the subclass of SH consisting of functions f of the form (1) that satisfy the condition
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Denote by SH(β, n, µ) the subclass of SH consisting of functions f of the form (1) that satisfy the condition

Re

(
In+1
β f(z)

Inβ f(z)

)
≥ µ, 0 ≤ µ < 1 (3)

where Inβ f(z) is defined by (2).
We let the subclass SH(β, n, µ) consisting of harmonic functions fn = h+ gn in SH so that h and gn are of the form

h(z) = z −
∞∑
k=2

akz
k, gn(z) = (−1)n

∞∑
k=1

bkz
k, ak, bk ≥ 0. (4)

In the first theorem, we introduce a sufficient coefficient condition for harmonic functions in SH(β, n, µ).

2 Main results

Theorem 1. Let f = h+ g be so that h and g are given by (1) with b1 = 0 . Furthermore, let

∞∑
k=2

(
βk + 1

1 + β

)n(
βk + 1

1 + β
− µ

)
|ak|+

∞∑
k=2

(
βk − 1

1 + β

)n(
βk − 1

1 + β
+ µ

)
|bk| ≤ 1− µ, (5)

where 2 ≤ β, n ∈ N0,
1

1+β ≤ µ ≤
β

1+β . Then f is sense-preserving, harmonic univalent in D and f ∈ SH0(β, n, µ).

Proof: If z1 6= z2, ∣∣∣∣f(z1)− f(z2)h(z1)− h(z2)

∣∣∣∣ ≥ 1−
∣∣∣∣ g(z1)− g(z2)h(z1)− h(z2)

∣∣∣∣
= 1−

∣∣∣∣∣∣∣∣
∞∑
k=2

bk

(
zk1 − zk2

)
(z1 − z2) +

∞∑
k=2

ak
(
zk1 − zk2

)
∣∣∣∣∣∣∣∣

> 1−

∞∑
k=2

k |bk|

1−
∞∑
k=2

k |ak|

≥ 1−

∞∑
k=2

(
βk−1
1+β

)n( βk−1
1+β +µ

)
1−µ |bk|

1−
∞∑
k=2

(
βk+1
1+β

)n( βk+1
1+β −µ

)
1−µ |ak|

≥ 0,

which proves univalence. Note that f is sense preserving in D. This is because

∣∣h′(z)∣∣ ≥ 1−
∞∑
k=2

k |ak| |z|k−1

> 1−
∞∑
k=2

(
βk+1
1+β

)n (
βk+1
1+β − µ

)
1− µ |ak|

≥
∞∑
k=2

(
βk−1
1+β

)n (
βk−1
1+β + µ

)
1− µ |bk|

>

∞∑
k=2

k |bk| |z|k−1

≥
∣∣g′(z)∣∣ .

Using the fact that Rew ≥ α if and only if |1− α+ w| ≥ |1 + α− w|, it suffices to show that
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∣∣∣(1− µ)Inβ f(z) + In+1
β f(z)

∣∣∣− ∣∣∣(1 + µ)Inβ f(z)− I
n+1
β f(z)

∣∣∣ ≥ 0. (6)

Substituting for Inβ f(z) and In+1
β f(z) in (6), we obtain

∣∣∣(1− µ)Inβ f(z) + In+1
β f(z)

∣∣∣− ∣∣∣(1 + µ)Inβ f(z)− I
n+1
β f(z)

∣∣∣
≥ 2(1− µ) |z|

−
∞∑
k=2

(
βk + 1

1 + β

)n(
βk + 1

1 + β
+ 1− µ

)
|ak| |z|k

−
∞∑
k=2

(
βk − 1

1 + β

)n(
βk − 1

1 + β
− 1 + µ

)
|bk| |z|k

−
∞∑
k=2

(
βk + 1

1 + β

)n(
βk + 1

1 + β
− 1− µ

)
|ak| |z|k

−
∞∑
k=2

(
βk − 1

1 + β

)n(
βk − 1

1 + β
+ 1 + µ

)
|bk| |z|k

> 2(1− µ) |z|

{
1−

∞∑
k=2

(
βk + 1

1 + β

)n(
βk + 1

1 + β
− µ

)
|ak|

−
∞∑
k=2

(
βk − 1

1 + β

)n(
βk − 1

1 + β
+ µ

)
|bk|

}
.

This last expression is non-negative by (5), and so the proof is complete. �

We will give the next theorems without proof.

Theorem 2. Let fn = h+ gn be given by (4) with b1 = 0. Then fn ∈ SH
0
(β, n, µ) if and only if

∞∑
k=2

(
βk + 1

1 + β

)n(
βk + 1

1 + β
− µ

)
ak +

∞∑
k=2

(
βk − 1

1 + β

)n(
βk − 1

1 + β
+ µ

)
bk ≤ 1− µ, (7)

where 2 ≤ β, n ∈ N0,
1

1+β ≤ µ ≤
β

1+β .

Theorem 3. Let fn ∈ SH
0
(β, n, µ). Then for |z| = r < 1 and 2 ≤ β, n ∈ N0,

1
1+β ≤ µ ≤

β
1+β we have

|fn(z)| ≤ r +
(1− µ)(

2β+1
1+β

)n (
2β+1
1+β − µ

)r2,

and

|fn(z)| ≥ r −
(1− µ)(

2β+1
1+β

)n (
2β+1
1+β − µ

)r2.

Theorem 4. Let fn be given by (4). Then fn ∈ SH
0
(β, n, µ) if and only if

fn(z) =
∞∑
k=1

(Xkhk(z) + Ykgnk (z)) ,

where

h1(z) = z, hk(z) = z − 1−µ(
βk+1
1+β

)n( βk+1
1+β −µ

)zk (k = 2, 3, ...),

and

gn1(z) = z, gnk (z) = z + (−1)n 1−µ(
βk−1
1+β

)n( βk−1
1+β +µ

)zk (k = 2, 3, ...),

Xk ≥ 0, Yk ≥ 0,
∞∑
k=1

(Xk + Yk) = 1, 2 ≤ β, n ∈ N0,
1

1+β ≤ µ ≤
β

1+β .
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In particular, the extreme points of SH
0
(β, n, µ) are {hk} and {gnk}.

Theorem 5. The class SH
0
(β, n, µ) is closed under convex combinations.
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1 Introduction

Let A denote the class of all analytic functions in the open unit disc D = {z : z ∈ C and |z| < 1} and having the form for z ∈ D

f(z) = z +

∞∑
n=2

anz
n. (1)

A function f ∈ A is said to be belong to the class S∗(α) of starlike functions of order α if and only if

Re

{
zf ′(z)
f(z)

}
> α (2)

for z ∈ D; 0 ≤ α < 1 .
Also, a function f ∈ A is said to be belong to the class K(α) of convex functions of order α if and only if

Re

{
1 +

zf ′′(z)
f ′(z)

}
> α (3)

for z ∈ D; 0 ≤ α < 1 .
The classes S∗(α) and K(α) considered by Silverman [9]. We consider that S∗(0) and K(0) are respectively, the classes of starlike

functions and convex functions. For more details see [2], [3], [4], [10].
Let the functions f, g ∈ A be analytic in D. Then f is said to be subordinate g if there exists a Schwarz function w(z) on D with

w(0) = 0, |w(z)| < 1, such that f(z) = g(w(z)) for z ∈ D. We denote this subordination by f(z) ≺ g(z) (z ∈ D). In particular, if the
function g is univalent D, then we get f (z) ≺ g (z)⇔ f(0) = g(0) and f(D) ⊂ g(D).

Making use of the binomial series for k ∈ N = {1, 2, ...}, m ∈ N0 = N ∪ {0}

(1− λ)k =
k∑

m=0

(
k

m

)
(−1)mλm
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and for f ∈ A, λ ∈ R, µ ≥ 0 with λ+ µ > 0 and δ ∈ N0, Wanas in [11] introduced the differential operator W k,δ
λ,µf(z) which is defined as

follows:

W k,0
λ,µf(z) = f(z) (4)

W k,1
λ,µf(z) =

[
1− (1− λ)k

]
f(z) +

[
1− (1− µ)k

]
zf ′(z)

2− (1− λ)k − (1− µ)k

...

W k,δ
λ,µf(z) = W k,1

λ,µ

(
W k,δ−1
λ,µ f(z)

)
.

If f is given by (1), then from (4) we see that

W k,δ
λ,µf(z) = z +

∞∑
n=2

[
k∑

m=1

(
k

m

)
(−1)m

(
λm + nµm

λm + µm

)]δ
anz

n. (5)

1.1 Definition

Let p : D −→ C be a convex function such that p(0) = 1 and Re{p(z)} > 0, z ∈ D. We denote by S∗,δg (λ, k;α) the subclass of A given by

S∗,δg (λ, k;α) =

{
f : f ∈ A and

1

1− α

(
z(W k,δ

λ f(z))′

W k,δ
λ f(z)

− α

)
∈ g(D), z ∈ D

}
, (6)

where λ ∈ R with λ > 0 and δ ∈ N0, k ∈ N and α ∈ [0, 1).

1.2 Definition

A function f ∈ A in the class Cδg (λ, k, t; r) if it satisfies the following non-homogeneous Cauchy-Euler differential equation of order t;

zt
dtw

dzt
+

(
t

1

)
(r + t− 1)zt−1

dt−1w

dzt−1
+ ...+

(
t

t

)
w

t−1∏
i=0

(r + i) = g(z)

t−1∏
i=0

(r + i+ 1), (7)

where w = f(z), f ∈ A, g(z) ∈ S∗,δg (λ, k;α), r ∈ R\(−∞, − 1] and t ∈ N2 = N− {1} = {2, 3, ...}.
Clearly, by suitably specializing parameters for

g(z) =
1 +Az

1 +Bz
(−1 ≤ B ≤ A ≤ 1, z ∈ D)

and

g(z) =
1 + (1− 2α)z

1− z (0 ≤ α < 1, z ∈ D),

S∗,δg (λ, k;α) reduces to the various subclasses of analytic functions (see [9]). Motivated from the recent work of Al-Hawary et al. [1] (see also,
for example [5], [6], [7]) the main object of our investigation is to obtain some coefficient bounds for functions in the subclasses S∗,δg (λ, k;α)

and Cδg (λ, k, t; r) of analytic functions of order α by using the subordination principle between analytic functions.
To prove our main results, we recall lemma.

1.3 Lemma

Let the function

g(z) =

∞∑
n=1

bnz
n (z ∈ D)

be convex in E. Also let function f(z) given by

f(z) =
∞∑
n=1

anz
n (z ∈ D)

be analytic in D. If f(z) ≺ g(z) (z ∈ D), then

|an| ≤ |bn| (n ∈ N).
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2 Coefficient bounds for the classes S∗,δ
g (λ, k;α) and Cδ

g (λ, k, t; r).

We start by acquiring coefficient bounds for functions in the class S∗,δg (λ, k;α).

Theorem 1. Let the function f ∈ A be given by (1). If f ∈ S∗,δg (λ, k;α), then

|an| ≤

n−2∏
j=0

(
j + (1− α)|g′(0)|

)
(n− 1)!

∣∣∣∣∣ k∑
m=1

(
k

m

)
(−1)m+1

(
λm + n

λm + 1

)∣∣∣∣∣
δ

(8)

for n ∈ N2.

Proof: By the equation (5), the function W k,δ
λ f(z) has the Taylor-Maclaurin series expansion

W k,δ
λ f(z) = z +

∞∑
n=2

Anz
n (z ∈ D),

where

An =

[
k∑

m=1

(
k

m

)
(−1)m+1

(
λm + n

λm + 1

)]δ
an (9)

for n ∈ N2. We observe that W k,δ
λ f(z) is analytic in D with

W k,δ
λ f(0) =

(
W k,δ
λ f

)′
(0)− 1 = 0.

Now, from Definition 1.1 we have

1

1− α


z
(
W k,δ
λ f(z)

)′
W k,δ
λ f(z)

− α

 ∈ g(D).
Let us define the function p(z) by

p(z) =
1

1− α


z
(
W k,δ
λ f(z)

)′
W k,δ
λ f(z)

− α

 , (10)

we deduce that p(0) = g(0) = 1 and p(z) ∈ g(D), (z ∈ D). Therefore, we have p(z) ≺ g(z), (z ∈ D). Thus, according to Lemma 1.3, we
obtain ∣∣∣∣∣p(n)(0)n!

∣∣∣∣∣ ≤ |g′(0)| (n ∈ N), (11)

where p(z) = 1 + p1z + p2z + ... is analytic in D. From (10), we easily get

z
(
W k,δ
λ f(z)

)′
− αW k,δ

λ f(z) = (1− α)p(z)W k,δ
λ f(z), (z ∈ D). (12)

Since A1 = 1, from (12), it follows that

(n− α)An = (1− α)(pn−1 + pn−2A2 + ...+ p1An−1).

Especially, for n = 2, 3, 4, ..., we have
|A2| ≤ (1− α)|g′(0)|,

|A3| ≤
(1− α)|g′(0)|

(
1 + (1− α)|g′(0)|

)
2!

and

|A4| ≤
(1− α)|g′(0)|

(
1 + (1− α)|g′(0)|

) (
2 + (1− α)|g′(0)|

)
3!

,

respectively. Thus, by appealing to the principle of mathematical induction, we obtain

|An| ≤

n−2∏
j=0

(
j + (1− α)|g′(0)|

)
(n− 1)!

(13)
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for n ∈ N2 . We now immediately find from (9) that

|an| ≤

n−2∏
j=0

(
j + (1− α)|g′(0)|

)
(n− 1)!

∣∣∣∣∣ k∑
m=1

(
k

m

)
(−1)m+1

(
λm + n

λm + 1

)∣∣∣∣∣
δ
.

This completes the proof. �

Next, we give coefficient bounds for functions in the Cδg (λ, k, t; r).

Theorem 2. Let the function f ∈ A be given by (1). If f ∈ Cδg (λ, k, t; r), then

|an| ≤

n−2∏
j=0

(
j + (1− α)|g′(0)|

) t−1∏
i=0

(r + i+ 1)

(n− 1)!

∣∣∣∣∣ k∑
m=1

(
k

m

)
(−1)m+1

(
λm + n

λm + 1

)∣∣∣∣∣
δ
t−1∏
i=0

(r + i+ n)

(14)

for t, n ∈ N2 where r ∈ R\(−∞, − 1].

Proof: Let the function f ∈ A be given by (1) and

g(z) = z +
∞∑
n=1

bnz
n ∈ S∗,δg (λ, k;α).

Then from (7), we get

an =

t−1∏
i=0

(r + i+ 1)

t−1∏
i=0

(r + i+ n)

bn

for n ∈ N2, r ∈ R\(−∞, − 1] . Hence from Theorem 1, we obtain inequality (14). This completes the proof. �

3 References
1 T. Al-Hawary, B. A. Frasin, F. Yousef, Coefficients estimates for certain classes of analytic functions, Afrika Mathematika, 29(2018), 1265-1271.
2 F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sci., 27(2004), 1429-1436.
3 N. M. Cho, T. H. Kim, Multiplier transformations and strongly close to convex functions, Bull. Korean Math. Soc., 40-3(2003), 399-410.
4 N. M. Cho, H. M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modelling, 37-1-2(2003), 39-49.
5 S. S. Miller, P. T. Mocanu, Differential Subordination, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker Inc. New York, 2000, pp 225.
6 M. S. Robertson, On the theory of univalent functions, Annals of Mathematics, 37(1936),374-408.
7 W. Rogosinski, On the coefficients of subordinate functions, Proc. Lond. Math. Soc. (Ser 2), 48(1943), 48-82.
8 G. Salagean, Subclasses of univalent functions, Lecture Notes in Math., Springer Verlag, Berlin, 1013(1983), 362-372.
9 H. Silverman, Subclasses of starlike functions, Rev. Roum. Math. Pures et Appl., 23(1978), 1093-1099.

10 S. R. Swamy, Inclusion properties of certain subclasses of analytic functions, Int. Math. Forum, 7-36(2012), 1751-1760.
11 A. K. Wanas, New differential operator for holomorphic functions, Earthline Journal of Mathematical Sciences, 2-2(2019), 527-537.

© CPOST 2021 79



Conference Proceeding Science and Technology, 4(1), 2021, 80–87

Conference Proceeding of 4th International E-Conference on Mathematical Advances and
Applications (ICOMAA-2021).

A Generalization of New Periodicity
Concept on Time Scales

ISSN: 2651-544X
http://dergipark.gov.tr/cpost

Halis Can Koyuncuoğlu∗
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1 Introduction

Qualitative analysis of dynamic equations on continuous and discrete time domains is still a voguish research area in mathematical sciences
due to its potential for application in a wide range of disciplines. Motivated by the popularity of qualitative theory for differential and difference
equations, scholars have started generalizing and unifying the already established literature on arbitrary, nonempty, and closed subset of real
numbers so-called time scales in the last three decades. The theory of dynamic equations has become a very fruitful research subject for
mathematicians since it provides a joint study of continuous and discrete time models. By a quick literature review, one may easily see
remarkable applications of time scales in mathematical analysis [2]-[4], fractals and fractional calculus [5]-[8], biology [9]-[11], economics
[12]-[13], and optimization [14].

Study of periodic structures and the existence of periodic solutions of dynamic equations is one of the hot topics in applied mathematics.
Undoubtfully, periodic solutions of differential and difference equations are extensively studied in the existing literature, and these works have
been unified and generalized on time scales. In this work, we give a special emphasis on periodicity notion for classes of functions defined on
hybrid time domains. The motivation of the study is highlighted below:

• By conventional periodicity notion for a function, we indicate the property f (t+ T ) = f (t) which holds for a fixed T > 0 and for all t.
Notice that, in order to define a periodic function on a time scale T one has to ensure that T is translation invariant (additively periodic), that is
there exists a P > 0 such that t± P ∈ T for all t ∈ T (see [15]).
• Addition is not the only way to step forward and backward on a time scale. It should be emphasized that additive periodicity condition is
a very restrictive condition for time scales, and it rules out several time scales involving qN0 on which q-difference equations are constructed.
In [16], shift operators δ± are used the define forward and backward motion on time scales, and a new periodicity concept for time scales is
introduced with respect to shift operators in [1]. There are numerous papers handling existence of periodic solutions in shifts δ± for dynamic
equations on time scales. We refer to [17]-[22] as related studies.
• Periodicity is a relaxable and generalizable property for function classes. As a relaxation of periodicity notion, we can address almost
periodicity and almost automorphy concepts which have been introduced in 20th century. Besides, a generalization of periodicity is introduced
and studied as (ω, c)-periodicity in recent papers [23]-[25]. Also, the discrete counter part of (ω, c)-periodicity is defined in [26]. Precisely, a
function f is said to be (ω, c)-periodic if

f (t+ ω) = cf (t)

for c ∈ C\ {0} and ω > 0. Observe that
◦ If c = 1, then (ω, c)-periodicity coincides with conventional periodicity.
◦ If c = −1, then (ω, c)-periodicity coincides with anti-periodicity.
◦ If c = eikN , then (ω, c)-periodicity coincides with Bloch periodicity.

It should be noted that one may see a similar approach in literature for generalization of periodicity notion regarding vector/matrix valued
functions so-called affine periodicity (see [27]).

In this work, we aim to propose a generalized periodicity, (T, λ)-periodicity, by employing shift operators δ±. We generalize the new
periodicity concept for time scales given in [1], and use shift operators avoids separate definitions of periodicity for continuous, discrete and
hybrid calculus.

The organization of the manuscript is as follows: The next section is devoted to time scale essentials. In Section 3, we give basics of shift
operators, and recall the new periodicity concept on time scales. Section 4 contains the outcomes of the study. In the last section, we provide
concluding comments which involve our future directions.
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2 Preliminaries on time scale calculus

Throughout the manuscript, we assume a familiarity with the theory of time scales. In this section, we just give a very short summary about the
fundamentals of time scale calculus. Given definitions, results and examples can be found in excellent books [28] and [29].

A time scale, denoted by T, is an arbitrary, nonempty and closed subset of real numbers. The operator σ : T→ T called forward jump
operator is defined by σ (t) := inf {s ∈ T, s > t}. The step size function µ : T→ R is given by µ (t) := σ (t)− t. We say a point t ∈ T is
right dense if µ (t) = 0, and right scattered if µ (t) > 0. Furthermore, a point t ∈ T is said to be left dense if ρ (t) := sup {s ∈ T, s < t} = t
and left scattered if ρ (t) < t. The notation [s, t)T indicates the intersection [s, t) ∩ T and the intervals [s, t]T , (s, t)T , and (s, t]T can be
defined similarly.

A function f : T→ R is said to be rd-continuous if it is continuous at right dense points and its left sided limits exists at left dense points.
Moreover, we use the notation Crd in order to represent all rd-continuous functions on T. The set Tk is defined in the following way: If T
has a left-scattered maximum m, then Tk = T− {m} ; otherwise Tk = T. Moreover, the delta derivative of a function f : T→ R at a point
t ∈ Tk is defined by

f∆ (t) := lim
s→t
s6=σ(t)

f (σ (t))− f (s)

σ (t)− s .

The following table shows three important examples of time scales:

T R Z qZ ∪ {0}, q < 1
ρ (t) t t− 1 qt
σ (t) t t+ 1 t

q
µ (t) 0 1 (1− q)t
f∆(t) f ′(t) ∆f(t) Dqf(t) =

f(t)−f(qt)
(1−q)t

b∫
0

f(t)∆t

b∫
0

f(t)dt

b−1∑
t=0

f(t), (0 < b)

b∫
0

f(t)dqt = (1− q) b
∞∑
t=0

qjf(qjb)

Table 1

Theorem 1 (Substitution, [28, Theorem 1.98]). Assume υ : T→ R is strictly increasing and T̃ := υ (T) is a time scale. If f : T→ R is an
rd-continuous function and υ is differentiable with rd-continuous derivative, then for a, b ∈ T,

b∫
a

g (s) v∆ (s) ∆s =

v(b)∫
v(a)

g
(
v−1 (s)

)
∆̃s.

Definition 1. A function p : T→ R is said to be regressive if 1 + µ (t) p (t) 6= 0 for all t ∈ Tk. We denote the set of all regressive functions
byR. Also,R+ stands for the set of all positively regressive elements ofR defined by

R+ = {p ∈ R : 1 + µ (t) p (t) > 0 for all t ∈ T} .

Definition 2 (Exponential function). For h > 0, set Ch := {z ∈ C : z 6= −1/h}, Jh := {z ∈ C : −π/h < Im(z) ≤ π/h} and C0 :=
J0 := C. For h ≥ 0 and z ∈ Ch, the cylinder transformation ξh : Ch → Jh is given by

ξh(z) :=

{
z, h = 0
1

h
Log(1 + zh), h > 0.

Then, the exponential function on T is presented in the form

ep(t, s) := exp

{∫ t
s
ξµ(τ)

(
p(τ)

)
∆τ

}
for s, t ∈ T.

Lemma 1. Let p, q ∈ R. Then

i. e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
ii. ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);
iii. 1

ep(t,s)
= e	p(t, s), where 	p(t) = − p(t)

1+µ(t)p(t)
;

iv. ep(t, s) = 1
ep(s,t)

= e	p(s, t);
v. ep(t, s)ep(s, r) = ep(t, r);

vi.
(

1
ep(·,s)

)∆
= − p(t)

eσp (·,s) ;
vii. ep(t, s)eq(s, r) = ep⊕q(t, r), where p⊕ q = p (t) + q (t) + p (t) q (t)µ (t) .
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The following table demonstrates some exponential functions over particular time scales

T eα(t, t0)

R eα(t−t0)

Z (1 + α)t−t0

hZ (1 + hα)(t−t0)/h

qN0
∏

s∈[t0,t)

[1 + (q − 1)αs] , t > t0

1
nZ

(
1 + α

n

)n(t−t0)

.

Theorem 2 (Variation of constants). Let t0 ∈ T and y0 ∈ R. The unique solution of the regressive initial value problem{
y∆ (t) = p (t) y (t) + f (t)

y (t0) = y0

is given by

y (t) = ep (t, t0) y0 +

t∫
t0

ep (t, σ (s)) f (s) ∆s.

We direct readers to the pioneering book [28] for further reading on time scale calculus.

3 Shift operators and periodic time scales in shifts

In this section, we introduce basics of shift operators and the new periodicity concept on time scales under the guidance of [1] and [16]. The
definitions, results and examples given in this part of the paper can be found in [1].

Definition 3. Let T∗ be a nonempty subset of the time scale T including a fixed number t0 ∈ T∗ such that there exists operators δ± :
[t0,∞)T × T∗ → T∗ satisfying the following properties:

1. The function δ± are strictly increasing with respect to their second arguments, if

(T0, t) , (T0, u) ∈ D± :=
{

(s, t) ∈ [t0,∞)T × T∗ : δ± (s, t) ∈ T∗
}
,

then
T0 ≤ t ≤ u implies δ± (T0, t) ≤ δ± (T0, u) ;

2. If (T1, u) , (T2, u) ∈ D− with T1 < T2, then δ− (T1, u) > δ− (T2, u) and if (T1, u) , (T2, u) ∈ D+ with T1 < T2, then δ+ (T1, u) <
δ+ (T2, u) ;
3. If t ∈ [t0,∞)T , then (t, t0) ∈ D+ and δ+ (t, t0) = t. Moreover, if t ∈ T∗, then (t0, t) ∈ D+ and δ+ (t0, t) = t;
4. If (s, t) ∈ D±, then (s, δ± (s, t)) ∈ D∓ and δ∓ (s, δ± (s, t)) = t;
5. If (s, t) ∈ D± and (u, δ± (s, t)) ∈ D∓, then (s, δ∓ (u, t)) ∈ D± and δ∓ (u, δ± (s, t)) = δ± (s, δ∓ (u, t)) .

Then the operators δ+ and δ− are called forward and backward shift operators associated with the initial point t0 on T∗ and the sets D+

and D− are domain of the operators, respectively.

Example 1. The following table shows shift operators δ± (s, t) on some time scales:

T t0 T∗ δ− (s, t) δ + (s, t)
R 0 R t− s t+ s
Z 0 Z t− s t+ s

qZ ∪ {0} 1 qZ t
s st

N1/2 0 N1/2
(
t2 − s2

)1/2 (
t2 + s2

)1/2

.

Lemma 2. Let δ± be the shift operators associated with the initial point t0. Then we have the following:

1. δ− (t, t) = t0 for all t ∈ [t0,∞)T ;
2. δ− (t0, t) = t for all t ∈ T∗;
3. If (s, t) ∈ D+, then δ+ (s, t) = u implies δ− (s, u) = t and if (s, u) ∈ D−, then δ− (s, u) = t implies δ+ (s, t) = u;
4. δ+ (t, δ− (s, t0)) = δ− (s, t) for all (s, t) ∈ D+ with t ≥ t0;
5. δ+ (u, t) = δ+ (t, u) for all (u, t) ∈

(
[t0,∞)T × [t0,∞)T

)
∩ D+;

6. δ+ (s, t) ∈ [t0,∞)T for all (s, t) ∈ D+ with t ≥ t0;
7. δ− (s, t) ∈ [t0,∞)T for all (s, t) ∈

(
[t0,∞)T × [s,∞)T

)
∩ D−;

8. If δ+ (s, .) is ∆-differentiable in its second variable, then δ∆t
+ (s, .) > 0;

9. δ+ (δ− (u, s) , δ− (s, v)) = δ− (u, v) for all (s, v) ∈
(
[t0,∞)T × [s,∞)T

)
∩ D−

and (u, s) ∈
(
[t0,∞)T × [u,∞)T

)
∩ D−;
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10. If (s, t) ∈ D− and δ− (s, t) = t0, then s = t.

Definition 4 (Periodicity in shifts). Let T be a time scale with the shift operators δ± associated with the initial point t0 ∈ T∗, then T is said
to be periodic in shifts δ±, if there exists a p ∈ (t0,∞)T∗ such that (p, t) ∈ D∓ for all t ∈ T∗. P is called the period of T if

P = inf
{
p ∈ (t0,∞)T∗ : (p, t) ∈ D∓ for all t ∈ T∗

}
> t0.

Observe that an additive periodic time scale must be unbounded. However, unlike additive periodic time scales a time scale, periodic in
shifts, may be bounded.

Example 2. The following time scales are not additive periodic but periodic in shifts δ±.

1. T1=
{
±n2 : n ∈ Z

}
, δ±(P, t) =


(√

t±
√
P
)2

if t > 0

±P if t = 0

−
(√
−t±

√
P
)2

if t < 0

, P = 1, t0 = 0,

2. T2=qZ, δ±(P, t) = P±1t, P = q, t0 = 1,
3. T3=∪n∈Z [22n, 22n+1], δ±(P, t) = P±1t, P = 4, t0 = 1,

4. T4=
{

qn

1+qn : q > 1 is constant and n ∈ Z
}
∪ {0, 1},

δ±(P, t) =
q

 ln( t
1−t )±ln( P

1−P )
ln q



1 + q

(
ln( t

1−t )±ln( P
1−P )

ln q

) , P =
q

1 + q
.

Notice that the time scale T4 in Example 2 is bounded above and below and

T∗4 =

{
qn

1 + qn
: q > 1 is constant and n ∈ Z

}
.

Corollary 1. Let T be a time scale that is periodic in shifts δ± with the period P . Then we have

δ±(P, σ(t)) = σ(δ±(P, t)) for all t ∈ T∗. (1)

Definition 5 (Periodic function in shifts δ±). Let T be a time scale P -periodic in shifts. We say that a real valued function f defined on T∗ is
periodic in shifts δ± if there exists a T ∈ [P,∞)T∗ such that

(T, t) ∈ D± and f
(
δT± (t)

)
= f (t) for all t ∈ T∗, (2)

where δT± (t) = δ± (T, t). T is called period of f, if it is the smallest number satisfying (2).

Definition 6 (∆-periodic function in shifts δ±). Let T be a time scale P -periodic in shifts. A real valued function f defined on T∗ is ∆-periodic
function in shifts if there exists a T ∈ [P,∞)T∗ such that

(T, t) ∈ D± for all t ∈ T∗ (3)

the shifts δT± are ∆-differentiable with rd-continuous derivatives (4)

and
f
(
δT± (t)

)
δ∆T
± (t) = f (t) (5)

for all t ∈ T∗, where δT± (t) = δ± (T, t). The smallest number T satisfying (3-5) is called period of f .

Lemma 3 ([21, Lemma 3.1]). Let T be a time scale that is periodic in shift operators δ± with period P. Suppose that the shift operators δT±
are ∆-differentiable on t ∈ T∗ where T ∈ [P,∞)T∗ . Then the graininess function µ : T→ [0,∞) satisfies

µ
(
δT± (t)

)
= δ∆T
± (t)µ (t) .

4 Design of a generalized periodicity with respect to shift operators

Henceforth, we suppose that T is a P -periodic time scale in shifts δ±, and the shift operators δ± are ∆-differentiable with rd-continuous
derivatives. We use the phrase "periodic in shifts" to indicate periodicity in shifts δ±. Moreover, by δ(k)

± (T, t), k ∈ N we denote k-times
composition of shifts of δT± with itself, namely,

δ
(k)
± (T, t) := δT± ◦ δT± ◦ ... ◦ δT±︸ ︷︷ ︸

k−times

(t) .

© CPOST 2021 83



Definition 7. A function f defined on T∗ is said to be (T, λ)-periodic in shifts if for a fixed λ ∈ C\ {0} there exists a T ∈ [P,∞)T∗ such that

(T, t) ∈ D+ and f
(
δT+ (t)

)
= λf (t) for all t ∈ T∗.

In preparation for auxiliary results, we define

P (t0) :=
{
δ
(k)
+ (T, t0) , k = 0, 1, 2, . . .

}
, (6)

m (t) := max
{
k ∈ N : δ

(k)
+ (T, t0) ≤ t

}
, (7)

and accordingly any point t ≥ t0 of T∗ can be decomposed as

t = δ
(m(t))
+ (T, t0) + tr, (8)

where

tr :=

{
0 if t ∈ P (t0)

δ−
(
δ
(m(t))
+ (T, t0) , t

)
if t /∈ P (t0)

. (9)

Lemma 4. Let f be a (T, λ)-periodic function in shifts. Then, f can be represented as

f (t) =

{
λm(t)f (t0) if t ∈ P (t0)

λm(t)f (tr) if t /∈ P (t0)
.

The proof of the above result is omitted since it is a direct consequence of Definition 7 and (6-9).

Lemma 5. A function f is (T, λ)-periodic in shifts if and only if there exists a function g which is T -periodic in shifts so that

f (t) = λm(t)g (t) .

Proof: Assume that f is (T, λ)-periodic function in shifts, and define

g (t) = λ−m(t)f (t) .

Then,

g
(
δT+ (t)

)
= λ−m(δT+(t))f

(
δT+ (t)

)
= λ−m(t)−1λf (t) = g (t)

which shows g is T -periodic in shifts.
On the other hand, we suppose that f (t) = λm(t)g (t) . Then, one may easily obtain (T, λ)-periodicity of f as

f
(
δT+ (t)

)
= λm(δT+(t))g

(
δT+ (t)

)
= λm(t)+1g (t) = λf (t) .

The proof is complete. �

Example 3. Let T =qZ ∪ {0} , q > 1 which is a q-periodic time scale with shift operators δ±(P, t) = P±1t. Then the function

f (t) = (−2)logq t

is
(
q2, 4

)
-periodic in shifts. To see this, we write

f
(
δ+
(
q2, t

))
= (−2)logq q

2t = (−1)2+logq t (2)2+logq t = 4 (−2)logq t = 4f (t) .

Remark 1. In [1], it is highlighted that set of real numbers R is not only an additively periodic time scale but also a time scale periodic in
shifts with t0 = 1, where

δ− (s, t) =

{
t/s if t ≥ 0
st if t < 0

, for s ∈ [1,∞) , (10)

and

δ+ (s, t) =

{
st if t ≥ 0
t/s if t < 0

, for s ∈ [1,∞) . (11)

In the next example, we slightly modify [1, Example 5] in order to give an example of (T, λ)-periodic function on R corresponding to shift
operator given in (11).
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Example 4. Let T = R with shift operators given in (10-11). We define the function

f (t) = sin

(
− ln t

ln 3
π

)
3− log3 t, t > 0

as a
(
9, 1

9

)
-periodic function on the half line since

f (δ+ (9, t)) = sin

(
− ln 9t

ln 3
π

)
3− log3 9t

= sin

(
− ln 9 + ln t

ln 3

)
3−2−log3 t

=
1

9
sin

(
− ln t

ln 3
π

)
3− log3 t

=
1

9
f (t) .

Next, we introduce (T, λ)-∆-periodic function in shifts in a similar fashion with [1, Definition 6] (see Definition 6).

Definition 8. A function f defined on T∗ is said to be (T, λ)-∆-periodic function in shifts if there exists a T ∈ [P,∞)T∗ such that

(T, t) ∈ D+ and f
(
δT+ (t)

)
δ∆T
+ (t) = λf (t) for all t ∈ T∗.

We present the next result whose proof is omitted since it is similar to the proof of Lemma 5.

Lemma 6. A function f is (T, λ)-∆-periodic in shifts if and only if there exists a function h which is ∆-periodic function in shifts with period
T such that

f (t) = λm(t)h (t) .

Example 5. Let T =qZ ∪ {0} , q > 1 with shift operators δ±(P, t) = P±1t. Then, the function

f (t) =
2− logq t

t

is
(
q, 1

2

)
-∆-periodic in shifts, that is

f
(
δq+ (t)

)
δ∆q
+ (t) =

2− logq qt

qt
q =

1

2

2− logq t

t
=

1

2
f (t) .

The following result is straightforward due to [1, Theorem 2].

Theorem 3. Let f be a (T, λ)-∆-periodic function in shifts δ±. If f ∈ Crd(T), then

λ

t∫
t0

f(s)∆s =

δT+(t)∫
δT+(t0)

f(s)∆s.

Next, we give a remarkable property regarding time scale exponential function:

Lemma 7. Let p ∈ R be a (T, λ)-∆-periodic function in shifts on T and suppose that also λp ∈ R. Then

ep
(
δT+(t), δT+(t0)

)
= eλp (t, t0) for t, t0 ∈ T∗.

Proof: We assume p is a (T, λ)-∆-periodic function and p, λp ∈ R. Then, we present the time scale exponential function as

ep
(
δT+(t), δT+(t0)

)
=



exp


δT+(t)∫
δT+(t0)

1
µ(z)

Log(1 + µ(z)p(z)) ∆z

 if µ(z) 6= 0

exp


δT+(t)∫
δT+(t0)

p(z) ∆z

 if µ(z) = 0

.
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By using Theorem 1, Lemma 3, and (T, λ)-∆-periodicity of p in shifts, we obtain

ep
(
δT+(t), δT+(t0)

)
=



exp

 t∫
t0

δ∆T
+ (z)

µ(δT+(z))
Log(1 + µ(δT+ (z))p(δT+ (z))) ∆z

 if µ(z) 6= 0

exp

 t∫
t0

p
(
δT+ (z)

)
δ∆T
+ (z) ∆z

 if µ(z) = 0

=



exp

 t∫
t0

δ∆T
+ (z)

µ(δT+(z))
Log(1 +

δ∆T
+ (z)

δ∆T
+ (z)

µ(δT+ (z))p(δT+ (z))) ∆z

 if µ(z) 6= 0

exp

 t∫
t0

λp (z) ∆z

 if µ(z) = 0

=



exp

 t∫
t0

1
µ(z)

Log(1 + λµ(z)p(z)) ∆z

 if µ(z) 6= 0

exp

 t∫
t0

λp (z) ∆z

 if µ(z) = 0

= eλp (t, t0) ,

which proves our assertion. �

5 Concluding comments

Consider the following dynamic equation {
x∆ (t) = a (t)x (t) + f (t)

x (t0) = x0
, t ∈ T, (12)

where a and f are (T, λ)-∆-periodic functions in shifts, a ∈ R, and f ∈ Crd.
One may focus on the relationship between the existence of a bounded solution and a (T, λ)-periodic solution of (12). Inspired by [30,

Definition 1], we introduce an alternative boundedness concept called λ-boundedness for a function defined on a time scale.

Definition 9. Let T ∈ [P,∞)T∗ be fixed constant, where P is the period of the time scale. A function x : T∗ → R is said to be λ-bounded if∣∣∣λ−m(t)x (t)
∣∣∣ ≤M for all t ∈ T∗,

where λ is a fixed nonzero constant and m (t) is as in (7).

Then, we present the following result:

Theorem 4. If the dynamical equation (12) has a (T, λ)-periodic solution in shifts, then it has a λ-bounded solution.

Proof: Suppose that the dynamical equation in (12) has a (T, λ)-periodic solution in shifts, and fix

M = sup
k∈[t0,T )

|x (k)| .

Then, we write

∣∣∣λ−m(t)x (t)
∣∣∣ =


∣∣∣λ−m(t)x

(
δ
(m(t))
+ (T, t0)

)∣∣∣ if t ∈ P (t0)∣∣∣λ−m(t)x
(
δ
(m(t))
+ (T, tr)

)∣∣∣ if t /∈ P (t0)

=


∣∣∣λ−m(t)λm(t)x (t0)

∣∣∣ if t ∈ P (t0)∣∣∣λ−m(t)λm(t)x (tr)
∣∣∣ if t /∈ P (t0)

≤M,

where we employ the representation given in (9) and use the fact t0 < tr < T for the case t /∈ P (t0) . Thus, the proof is complete. �

On the other hand, by assuming x be a λ-bounded solution of the dynamical equation given in (12), we aim to prove a Massera type theorem
by employing Brouwer’s fixed point theorem as the continuation of this work. By obtaining some more detailed results regarding the time scale
exponential function based on the new defined periodicity notion, we believe (T, λ)-periodic solutions of several types of dynamic equations
can be studied.
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Abstract: Deep learning methods are one of the machine learning models that have spread rapidly in the field of education as
well as in many other fields in the last decade. This method is a fairly new method in educational literature. The aim of this study
is to model and predict the mathematics achievement of the successful and the unsuccessful students using the deep learning
method. For this purpose, Turkey’s International Student Assessment Program (PISA) survey data was used. As a result of the
analysis, Jordan method was found the most successful method among Elman, Logistics and MLP methods.

Keywords: Deep Learning, Elman Method, Jordan Method, Mathematics Achievement, PISA.

1 Introduction

Deep learning is one of the key artificial intelligence methods for prediction, classification or clustering. Deep learning is widely used in
areas such as engineering, medicine and finance [1]. The success of the method is due to the functions that allow it to easily model complex
relationships. Also, deep learning approach obtains higher accuracy than traditional artificial neural networks [2]. These features encourage
the researchers to use Deep learning in the field of education for educational data mining purposes [3]. Studies show that the deep learning
approach produces successful results in educational researches [1].

The complex relationship between variables that affect mathematics achievement encourages the use of deep learning in educational era
[4]. For this purpose we used Turkish students’ PISA mathematics score. PISA has been conducted by the OECD every 3 years since 2000 to
15-year-old students [5]. PISA consists of student, school and teacher questionnaires. Main purpose of this program is providing educational
equality [6]. It also provides a comparison of the education systems of the countries.

Turkey got an average of 454 points in mathematics. The OECD average was 459 points. Turkey became 42th in mathematics with this
score. Additionally, Turkey ranked 48th among 72 countries in mathematics achievement in the PISA 2015 [7]. Turkey’s average mathematics
score reached its highest level since 2003 [8]. Although this improvement is important, it is not sufficient. As it is seen, we need to detect and
provide effective variables for continuous success. The main object of this study is detecting students’ key predictors for mathematical success
with deep learning approach. Also we aim to compare results with MLP and logistic regression.

2 Method and materials

2.1 Variables

Many variables are used to evaluate mathematics achievement. While some of these variables consist of indices, some of them are the questions
in the PISA questionnaire. In this study, we preferred student gender, home possessions, Subjective well-being: sense of belenging to school,
economic, social and cultural status, Parents’ emotional support perceived by student and digital device usesage for learning or teaching during
mathematics lessons in the last month as independent variables. We used the most successful 30% and the least successful 30% of the students
in mathematics achievement as dependent variable.

2.2 Methodology

In this study, four different methods were used, namely Multilayer Perceptron, Elman neural network, Jordan neural network and Logistic
regression.

Multi Layer Perceptrion (MLP): Multilayer Perceptron is one of the most important artificial neural network algorithms used for educational
data mining. In many studies, artificial neural networks are used to predict achievement [9, 10]. However, deep learning methods are new
in educational researches. A Deep Neural Network (DNN) is form from an input and output layers with a number of hidden layers between
them. DNN is similar to MLP but it has many hidden layers than MLP. The multiple hidden layers are advantageous to solve complex decision
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problems.

A Deep Neural Network (DNN) is form from an input and output layers with a number of hidden layers between them. DNN is similar to
MLP but it has many hidden layers than MLP. The multiple hidden layers are advantageous to solve complex decision problems.

Hidden layers produce new weighted values to transmit input values to the output layers. In learning DNN, network weights are updated to
reduce error with output and the target values. The last DNN solution reveals the most appropriate symphysis of weights, and so the network
characteristic approaches a given decision function. So, the DNN learns the decision function via implicit examples [11].

Elman Neural Network: This network is a kind of recurrent neural network (RNN). In a recurrent neural network, as neurons reconnect to
other neurons, activation of neurons flows in a loop, making the flow of information multi-directional.

Elman neural networks are similar to MLP powered by context layers. Context layer neurons are equal number to the hidden layer neurons.
And neurons in the context layer and neurons in the hidden layer are completely interconnected [12].

Jordan neural networks: Although Jordan and Elman neural networks are similar, the only difference is that in Jordan neural network the
context neurons are fed with the output layer, not the hidden layer [13].

Logistic Regression: Logistic regression is a special case of regression analysis. Logistic regression method is widely used in the field of
education to determine the factors affecting achievement [14]. Assumptions in logistic regression are same with classical regression. But, in the
logistic regression models dependent variable is categorical [15].

3 Results and conclusions

A confusion matrix is a precise table format that approves evaluation of the algorithm performances. Each row of the matrix represents the
cases in a true category while each column represents the cases in a estimated class [16]. The Confusion matrixes of the models are given in
Table 1.

MLP Method Elman Method Jordan Method Logistic Method
Unsuccessful Successful Unsuccessful Successful Unsuccessful Successful Unsuccessful Successful Total

Actual

Unsuccessful 1117 503 1190 430 1215 405 1100 520 1620
Successful 442 1071 499 1014 447 1066 462 1051 1513

Total 1559 1574 1689 1444 1662 1471 1562 1571

Table 1 Confusion matrixes of the Models

Comparison criteria are used in order to understand the results obtained in this Confusion matrix correctly. The results of some comparison
criteria are given in Table 2 below. Accuracy rate refers to the total rate of predictions with correct predictions.

Precision is the ratio of successfully estimated positive observations to the complete estimated positive observations. Specificity measures
how exact the assignment to the positive class. The recall rate is the ratio of positive correct prediction all observations in the real class. The F1
score is an equirilium measure between precision and recall [15, 17].

In Table 2, we obtained the highest comparison values with Jordan method. As a result of the analysis, Jordan method was found as the most
successful method among Elman, Logistics and MLP methods.

MLP Elman Jordan Logistic
Accuracy 0.698 0.703 0.728 0.687
Precision 0.716 0.705 0.731 0.704
Recall 0.690 0.735 0.750 0.679
Specificity 0.708 0.670 0.705 0.695
F1 0.703 0.719 0.740 0.691

Table 2 Comparison of the Model Performance
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17 H.A. Karaboğa, A. Gunel, S.V. Korkut, I. Demir, R. Celik, Bayesian network as a decision tool for predicting ALS disease, Brain Sciences, 11(2)(2021), 150, https://doi.

org/10.3390/brainsci11020150.

90 © CPOST 2021



Conference Proceeding Science and Technology, 4(1), 2021, 91–94

Conference Proceeding of 4th International E-Conference on Mathematical Advances and
Applications (ICOMAA-2021).

On the Solution of Mathematical Problem
Including Sequential Time Fractional Wave
Equation

ISSN: 2651-544X
http://dergipark.gov.tr/cpost

Muharrem Akyol1,∗ Ali Demir2 Süleyman Cetinkaya3

1Department of Mathematics, Faculty of Science and Arts, Kocaeli University, Kocaeli, Turkey, ORCID:0000-0003-2855-3128
2Department of Mathematics, Faculty of Science and Arts, Kocaeli University, Kocaeli, Turkey, ORCID:0000-0003-3425-1812
3Department of Mathematics, Faculty of Science and Arts, Kocaeli University, Kocaeli, Turkey, ORCID:0000-0002-8214-5099
* Corresponding Author E-mail: muharremakyol@gmail.com

Abstract: The purpose of this study is to establish the analytic solution of sequential time fractional wave equation subject to
Dirichlet boundary and initial conditions, by separation of variables method. The fractional derivative is taken in Caputo sense. The
analytic solution is constructed in series form in terms of fractional trigonometric functions.
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1 Introduction

Analytical solutions of fractional order differential equations has been a very intriguing topic for many researchers since various fields such as
mathematics, physics, chemistry, biology, and engineering focus on this subject [1]-[14]. Due to these interests, various fractional derivative
methods have emerged. The time and space-fractional derivatives are taken in Caputo sense which is more common and more suitable than
other fractional derivatives. In this study, we investigate the analytical solution of the wave equation subject to the Dirichlet boundary and initial
conditions. In this study, we deal with the following initial-boundary value problem involving time fractional wave equation by separation of
variables 

D2α
t u(x, t) = c2uxx(x, t) , 0 < x < 1, 0 < α < 1,

u(x, 0) = Φ(x), Dαt u(x, 0) = Ψ(x),

u(0, t) = u(1, t) = 0.

(1)

For α = 1, we have the following problem: 
utt (x, t)− c2uxx (x, t) = 0, 0 < x < 1,

u (x, 0) = Φ (x) , ut (x, t) = Ψ (x) ,

u (0, t) = u (1, t) = 0.

The separation of variables method is applied to reduce the problem to two separate fractional ODEs. The analytic solution is acquired in
the form of a Fourier series with respect to the eigenfunctions of a certain eigenvalue problem.

2 Preliminary results

In this section, the fundamental definitions and properties of fractional calculus are presented.

Definition 1. Riemann-Liouville time-fractional integral of a real valued function u (x, t) is defined as

Iαt u (x, t) =
1

Γ (α)

∫ t
0

(t− s)α−1 u (x, s) ds, (2)

where α > 0 denotes the order of the integral.

Definition 2. The qth order Caputo fractional derivative of u(t) is defined as follows:

Dqt u (t) =
1

Γ (m− q)

∫ t
0

(t− s)m−q−1 dm

dsm
u (s) ds,m− 1 < q < m(m ∈ Z). (3)
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Definition 3. The two parameter Mittag-Leffler function is defined as:

Eα,β (z) =

∞∑
k=0

zk

Γ (αk + β)
, Re (α) > 0, z, β ∈ C. (4)

Some properties of Mittag-Leffler function are given as follows:

• If α = 1 and β = 1, E1,1 (t) = et. Thus, it can be said that Mittag-Leffler function is generalization of usual exponential function.
• Eq,1 (t) > 0if0 < q < 1.
• Eq,1 (t) is monotone increasing if 0 < q < 1 and t > 0.
• Dq(Eq,1 (tq)) = Eq,1 (tq).
• Dnq(Eq,1 (rtq)) = rnEq,1 (rtq) where 0 < q < 1, r is a constant and n ∈ N.

Definition 4. The functions

sinq (µt) =
Eq,1 (iµtq)− Eq,1 (−iµtq)

2i
=

∞∑
k=0

(−1)k (µtq)2k+1

Γ ((2k + 1) q + 1)

and

cosq (µt) =
Eq,1 (iµtq) + Eq,1 (−iµtq)

2
=

∞∑
k=0

(−1)k (µtq)2k

Γ (2kq + 1)

are called fractional trigonometric functions. Notice that these functions are usual trigonometric functions sin (µt) and cos (µt) when
q = 1.

3 Main results

Since we assume D2α
t u(x, t) to be sequential, it obeys the following composite rule: D2αu = Dα(Dαu).

A particular solution of the problem (1), we seek is in the following form:

u (x, t;α) = X (x)T (t;α) (5)

where 0 ≤ x ≤ l, 0 ≤ t ≤ T .
Let us try to find all the separated solutions of the wave equation. Substituting (5) into the equation leads to the following:

X(x)D2α
t T(t;α) = c2X

′′
(x)T (t;α).

Dividing both sides of this equation by −c2X(x)T (t;α) results in

−X
′′

(x)

X (x)
= −D

2α
t T (t;α)

T (t;α)
= λ. (6)

Clearly λ is a constant, since it is independent of space variable x since λ = −D2α
t T(t;α)
c2T(t;α)

and is independent of t since λ = −X
′′
(x)

X(x)
. From

the boundary conditions in (1), we have

X(0)T (t) = X(l)T (t) = 0, ∀t→ X(0) = X(l) = 0. (7)

The equations in (6) reduce the problem to two separate ODEs including fractional derivatives with respect to time. The equation on the left
with boundary conditions (7) gives the following fractional differential equation

X ′′ (x) + λ X (x) = 0, (8)

X (0) = 0, X (l) = 0

which has the solution in the following form

X(x) = Ccos(βx) +Dsin(βx) (9)

Boundary condition for X(x) leads to X(0) = C = 0 and X(l) = Dsin(βl) = 0. The solution with D = 0 will lead to the trivial zero
solution, so we consider the case when sin(βl) = 0. As a result we get βl = nπ for n = 1, 2, 3, . . . and λn = (nπl )2,Xn(x) = sin(nπxl ) for
n = 1, 2, 3, . . .

The equation on the right of (7) for each eigenvalue λn gives the following fractional differential equation

D2αTn(t;α) + c2
(nπ
l

)2
Tn(t;α) = 0

which has the following solution for n = 1, 2, 3, . . .
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Tn(t;α) = An cosα
(cnπ

l
tα
)

+Bn sinα
(cnπ

l
tα
)
.

For each eigenvalue λn = (nπl )2, we construct the following functions for n = 1, 2, 3, ...

un (x, t;α) = Xn (x)Tn (t;α) =
[
An cosα

(cnπ
l
tα
)

+ Bn sinα
(cnπ

l
tα
)]

sin
(nπx

l

)
(10)

where An, Bn are arbitrary constants. Since a linear combination of solutions of the wave equation is also a solution, any finite sum
u(x, t) =

∑∞
n=1

[
An cosα

(
cnπ
l tα

)
+Bn sinα

(
cnπ
l tα

)]
sin
(
nπx
l

)
is also a solution which satisfies both the fractional equations and

boundary conditions in (1). Returning to our boundary value problem (1), we would like to find the solution as a linear combination of
separated solutions. However, finite sums in the form (10) are very special, since not every function is as a sum of sines and cosines. Writing
the initial conditions, we have

Φ(x) =

∞∑
n=1

Ansin
(nπx

l

)
,

Dαu(x, t) =

∞∑
n=1

[
An

cnπ

l
sinα

(cnπ
l
tα
)

+Bn
cnπ

l
cosα

(cnπ
l
tα
)]
sin
(nπx

l

)
,

Ψ(x) =

∞∑
n=1

Bn
cnπ

l
sin
(nπx

l

)
In order to determine the coefficients An, Bn, taking the initial conditions u(x, 0) = Φ(x), Dαu(x, 0) = Ψ(x) into account produce the

following:

An =
2

l

∫ l
0
sin
(nπx

l

)
Φ(x)dx,

nπc

l
Bn =

2

l

∫ l
0
sin
(nπx

l

)
Ψ(x)dx.

Finally the solution becomes

u(x, t) =

∞∑
n=1

[
An cosα

(cnπ
l
tα
)

+Bn sinα
(cnπ

l
tα
)]
sin
(nπx

l

)
.

4 Illustrative example

In this section some illustrative examples are presented to prove the effectiveness and accuracy of the method , used in this study.

Example 1. Consider following initial-boundary value problem involving time fractional wave equation:
D2α
t u(x, t) = c2uxx(x, t) , 0 < x < 1, t > 0, 0 < α < 1,

u(x, 0) = sin (5πx) + 2 sin (7πx) , Dαt u(x, 0) = 0,

u(0, t) = u(1, t) = 0.

u(x, t) =

∞∑
n=1

[
An cosα

(
cnπtα

)
+Bn sinα

(
cnπtα

)]
sin (nπx) .

This time it is not necessary to use the integral formula to evaluate An and Bn. It is easier to observe directly, just by matching the
coefficients, that

sin (5πx) + 2 sin (7πx) = u(x, 0) =

∞∑
n=1

An sin (nπx)⇒ An =


1 if n = 5,

2 if n = 7,

0 if n 6= 5, 7.

0 = Dαt u(x, 0) =

∞∑
n=1

cnπBnsin(nπx) ⇒ Bn = 0 for n ∈ N

As a result we have the following solution

u(x, t) = sin (5πx)
Eq,1 (iµtq) + Eq,1 (−iµtq)

2
+ 2 sin (7πx)

Eq,1 (iµtq)− Eq,1 (−iµtq)
2i

where µ = 5cπ.
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Example 2. Consider following initial-boundary value problem involving time fractional wave equation:
D2α
t u(x, t) = c2uxx(x, t) , 0 < x < 1, t > 0, 0 < α < 1,

u(x, 0) = x(1− x), Dαt u(x, 0) = 0,

u(0, t) = u(1, t) = 0.

u(x, t) =

∞∑
n=1

[
An cosα

(
cnπtα

)
+Bn sinα

(
cnπtα

)]
sin (nπx) .

where the coefficients An and Bn are computed as

An = 2

∫1
0
x(1− x) sin (nπx) dx,

Bn = 2

∫1
0

0 sin (nπx) dx = 0.

We have

An =

{
8

n3π3 for n odd,

0 for n even.

and

u (x, t) =
∞∑

n=1, n odd

8

n3π3
sin (nπx) cosα

(
cnπtα

)

5 Conclusion

In this research, analytical solutions of the boundary time fractional wave equation using the Dirichlet boundary conditions are established. By
means of Mittag-Leffler, the solution is constructed in terms Mittag-Leffler function and fractional trigonometric functions in the series form.
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Abstract: In this study, we first defined the concept of rough I∗-convergence and investigated the relations between rough I-
convergence and rough I∗-convergence. Then, we introduced the notion of rough I-Cauchy sequence and examined the relations
between rough I-convergence and rough I-Cauchy sequence. Finally, we introduced the notion of rough I∗-Cauchy sequence
and investigated the relations between rough I-Cauchy sequence and rough I∗-Cauchy sequence.
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1 Introduction and Background

The concept of convergence of a sequence of real numbers has been extended to statistical convergence independently by Fast [11] and
Schoenberg [19]. The idea of I-convergence was introduced by Kostyrko et al. [14] as a generalization of statistical convergence which is
based on the structure of the ideal I of subset of the set of natural numbers. Kostyrko et al. [13] studied the idea of I-convergence and extremal
I-limit points. Nabiev, Pehlivan and Gürdal [15] introduced the notions of I-Cauchy sequence and I∗-Cauchy sequence and then studied their
certain properties.

The idea of rough convergence was first introduced by Phu [16] in finite-dimensional normed spaces. In [16], he showed that the set LIMrx
is bounded, closed, and convex; and he introduced the notion of rough Cauchy sequence. He also investigated the relations between rough
convergence and other convergence types and the dependence of LIMrx on the roughness degree r. In another paper [17] related to this
subject, he defined the rough continuity of linear operators and showed that every linear operator f : X → Y is r -continuous at every point
x ∈ X under the assumption dimY <∞ and r > 0 where X and Y are normed spaces. In [18], he extended the results given in [16] to
infinite-dimensional normed spaces. In [5] Aytar studied rough statistical convergence and defined the set of rough statistical limit points of
a sequence and obtained two statistical convergence criteria associated with this set and prove that this set is closed and convex. Also, in [6]
Aytar studied that the r-limit set of the sequence is equal to the intersection of these sets and that r-core of the sequence is equal to the union of
these sets. Recently, Dündar and Çakan [8, 9] and Dündar [7] introduced the notion of rough I-convergence and the set of rough I-limit points
of a sequence and studied the notions of rough convergence, I2-convergence and the sets of rough limit points and rough I2-limit points of a
double sequence. Also, Arslan and Dündar [3, 4] introduced rough convergence and investigated some properties in 2-normed spaces.

In this paper, we first defined the concept of rough I∗-convergence and investigated the relations between rough I-convergence and rough
I∗-convergence. Then, we introduced the notion of rough I-Cauchy sequence and examined the relations between rough I-convergence and
rough I-Cauchy sequence. Finally, we introduced the notion of rough I∗-Cauchy sequence and investigated the relations between rough I-
Cauchy sequence and rough I∗-Cauchy sequence. We note that our results and proof techniques presented in this paper are I analogues of
those in Phu’s [16] paper, Aytar’ s [5] paper and Dündar and Çakan’s [8] paper. Their papers include the actual origin of most of these results
and proof techniques. Our following theorems and results are the I-extension of theorems and results in [5, 16].

Now, we recall certain fundamental definitions and notations (See [1]-[4], [7]-[10], [12], [14]-[18], [20]-[21]).

Let X 6= ∅. A class I of subsets of X is said to be an ideal in X provided:
i) ∅ ∈ I,
ii) A,B ∈ I implies A ∪B ∈ I,
iii) A ∈ I, B ⊂ A implies B ∈ I.
I is called a nontrivial ideal if X 6∈ I.

Let X 6= ∅. A non empty class F of subsets of X is said to be a filter in X provided:
i) ∅ 6∈ F ,
ii) A,B ∈ F implies A ∩B ∈ F ,
iii) A ∈ F , A ⊂ B implies B ∈ F .
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Lemma 1. [14] If I is a nontrivial ideal in X , X 6= ∅, then the class

F(I) = {M ⊂ X : (∃A ∈ I)(M = X\A)}

is a filter on X , called the filter associated with I.

A nontrivial ideal I in X is called admissible if {x} ∈ I for each x ∈ X .
Throughout the paper, let Rn be a real n-dimensional space with the norm ‖.‖, I ⊂ 2N be an admissible ideal and r be a nonnegative real

number. Consider a sequence x = (xk) such that xk ∈ Rn.

A sequence x = (xk) is said to be r-convergent to L, denoted by xk
r→ L provided that

∀ε > 0 ∃kε ∈ N : k ≥ kε ⇒ ‖xk − L‖ < r + ε.

The set
LIMrx := {L ∈ Rn : xk →r L}

is called the r-limit set of the sequence x = (xk). A sequence x = (xk) is said to be r-convergent if

LIMrx 6= ∅.

In this case, r is called the convergence degree of the sequence x = (xk).
For r = 0, we get the ordinary convergence. There are several reasons for this interest (see [16]).
The sequence (xk) is said to be a rough Cauchy sequence satisfying

∀ε > 0,∃nε : k, n ≥ nε ⇒ ‖xk − xn‖ < ρ+ ε

for ρ > 0. x = (xk) is said to be a rough Cauchy sequence with roughness degree ρ, or ρ-Cauchy sequence for short. ρ is also called a Cauchy
degree of (xk).

A sequence x = (xk) is said to be I-convergent to L ∈ Rn, written as I-limx = L, provided that the set

{k ∈ N : ‖xk − L‖ ≥ ε}

belongs to I for every ε > 0. In this case, L is called the I-limit of the sequence x.
Note that if I is an admissible ideal, then usual convergence implies I-convergence.
A sequence x = (xk) is said to be rough I-convergent to L, denoted by xk

r−I−→ L provided that

{k ∈ N : ‖xk − L‖ ≥ r + ε}

belongs to I for every ε > 0; or equivalently, if the condition

I − lim sup ‖xk − L‖ ≤ r (1)

is satisfied. In addition, we can write xk
r−I−→ L iff the inequality

‖xk − L‖ < r + ε

holds for every ε > 0 and almost all k.
Here r is called the roughness degree. If we take r = 0, then we obtain the ordinary ideal convergence. In a similar fashion to the idea of

classic rough convergence, the idea of rough I-convergence of a sequence can be interpreted as follows.
In general, the rough I-limit of a sequence may not be unique for the roughness degree r > 0. So we have to consider the so-called rough

I-limit set of a sequence x = (xk), which is defined by

I − LIMrx = {L ∈ Rn : xk
r−I−→ L}.

A sequence x = (xk) is said to be rough I-convergent if
I − LIMrx 6= ∅.

It is clear that if
I − LIMrx 6= ∅

for a sequence x = (xk) of real numbers, then we have

I − LIMrx = [I − lim supx− r, I − lim inf x+ r]. (2)

We know that LIMrx = ∅ for an unbounded sequence x = (xk). But such a sequence might be rough I-convergent.
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1.1 Main Results

In this section, we first defined the concept of rough I∗-convergence and investigated the relations between rough I-convergence and rough
I∗-convergence.

Definition 1. A sequence (xk) is said to be rough I∗-convergent to L ∈ Rn if and only if there exists a set M = {m1 < m2 < · · · < mk <
. . . }, M ∈ F(I) (that is N\M ∈ I) such that

r − lim
k→∞

‖xmk − L‖ = 0,

that is,

∀ε > 0 ∃k0 = k0(ε) ∈ N : k ≥ k0 ⇒ ‖xmk − L‖ < r + ε.

In this case, we write

xk
r−I∗−→ L.

Theorem 1. For a sequence (xk), if xk
r−I∗−→ L, then xk

r−I−→ L.

Proof: Let (xk) be a rough I∗-convergent to L ∈ Rn. Then, there exists a set H ∈ I such that for

M = N\H = {m1 < m2 < · · · < mk < . . . }

we have

r − lim
k→∞

‖xmk − L‖ = 0. (3)

Let ε > 0. By virtue of 3, there exists k0 = k0(ε) ∈ N such that

‖xmk − L‖ < r + ε

for all k > k0. Then, it is clearly that

A(ε) : {n ∈ N : ‖xk − L‖ ≥ r + ε} ⊂ H ∪ {m1 < m2 < · · · < mk0
}. (4)

Since I is admissible, by 4

H ∪ {m1 < m2 < · · · < mk0
} ∈ I

and so by the definition of ideal

A(ε) ∈ I.

Hence, we have

xk
r−I−→ L.

�

Now, we give definition of rough I-Cauchy sequence and examined the relations between rough I-convergence and rough I-Cauchy
sequence.

Definition 2. A sequence (xk) is called rough I-Cauchy sequence in Rn, if for ε > 0 there exists n = n(ε) ∈ N such that

A(ε) = {k ∈ N : ‖xk − xn‖ ≥ r + ε} ∈ I

for r > 0. x = (xk) is said to be a rough I-Cauchy sequence with roughness degree r, or r-I-Cauchy sequence for short. r is also called an
I-Cauchy degree of (xk).

Theorem 2. If a sequence (xk) is rough I-convergent, then it is rough I-Cauchy sequence.
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Proof: Suppose that (xk) is rough I-convergent to L ∈ Rn. Then for ε > 0

A
( ε
2

)
=
{
k ∈ N : ‖xk − L‖ ≥ r +

ε

2

}
∈ I.

This implies that

Ac
( ε
2

)
=
{
k ∈ N : ‖xk − L‖ < r +

ε

2

}
∈ F(I)

and therefore Ac( ε2 ) is non-empty. So, we can choose a positive integer n such that n 6∈ A( ε2 ), we have

‖xn − L‖ < r +
ε

2
.

Now, we define the set

B(ε) = {k ∈ N : ‖xk − xn‖ ≥ 2r + ε} ∈ I

such that we show that
B(ε) ⊂ A( ε

2
).

Let k ∈ B(ε), then we have

2r + ε ≤ ‖xk − xn‖ ≤ ‖xk − L‖+ ‖xn − L‖

< ‖xk − L‖+ r +
ε

2
.

This implies

r +
ε

2
< ‖xk − L‖

and so k ∈ A( ε2 ). Hence, we have

B(ε) ⊂ A( ε
2
)

and (xk) is a rough I-Cauchy sequence. �

Finally, we introduced the notion of rough I∗-Cauchy sequence and investigated the relations between rough I-Cauchy sequence and rough
I∗-Cauchy sequence.

Definition 3. A sequence (xk) is called rough I∗-Cauchy sequence in Rn, if there exists a set M = {m1 < m2 < · · · < mk < . . . } ⊂ N,
M ∈ F(I) (that is, N\M ∈ I), such that the subsequence xK = (xmk ) is an ordinary Cauchy sequence in Rn, that is,

r − lim
k,j→∞

‖xmk − xmj‖ = 0.

Theorem 3. If a sequence (xk) is a rough I∗-Cauchy sequence then (xk) is rough I-Cauchy sequence in Rn.

Proof: Let (xk) be a rough I∗-Cauchy sequence in Rn. Then, by definition, for every ε > 0 there exist k0 = k0(ε) ∈ N and a setM = {m1 <
m2 < · · · < mk < . . . } ⊂ N, M ∈ F(I) such that for all k, j > k0

‖xmk − xmj‖ < r + ε.

Let K = K(ε) = mk0+1. Then, for every ε > 0 and all k > k0, we have

‖xmk − xK‖ < r + ε.

Now, let H = N\M . Then obviously, H ∈ I and

A(ε) = {k ∈ N : ‖xmk − xK‖ > r + ε} ⊂ H ∪ {m1 < m2 < · · · < mk0
}. (5)

Since I is admissible, by 5, we have
H ∪ {m1 < m2 < · · · < mk0

} ∈ I

and so by the definition of ideal
A(ε) ∈ I.

Hence, (xk) is rough I-Cauchy sequence in Rn. �
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Conclusion

We gave definitions of rough I∗-convergence, rough I-Cauchy sequence and rough I∗-Cauchy sequence. Our results include that for a
sequence x = (xn), relations between these new concepts.
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Abstract: Pythagorean fuzzy set characterized by a membership degree and a non-membership degree, which satisfies the con-
dition that the square sum of its membership degree and non-membership degree is less than or equal to 1. As a generalized
set, Pythagorean fuzzy sets have a close relationship with intuitionistic fuzzy sets. The intuitionistic fuzzy set played an important
role in decision-making problems in a very short period of time and was successfully used in many decision-making problems.
However, in some real-life problems, the sum of membership degree and nonmembership degree may be greater than 1. The sum
of the squares of these degrees is less than 1. In this case, the Pythagorean fuzzy set is a very useful tool and enables more
effective results in multiple attribute decision-making problems. In the present study, for the medical decision-making problem, the
new method is proposed related to the Pythagorean fuzzy soft set. The real dataset which is called the Cleveland heart disease
dataset is applied to this problem.

Keywords: Cleveland heart dataset, Comparison table, Decision-making, Pythagorean fuzzy soft set.

1 Introduction

Uncertainty is a crucial concept for decision-making problems. It is not easy to make precise decisions in life since each information contains
vagueness, uncertainty, imprecision. Therefore, for such situations, different approaches were improved like fuzzy sets [1], intuitionistic fuzzy
sets(IFS) [2], soft sets(SS) [3], Pythagorean fuzzy sets(PFS) [4].

Yager [5] offered a new FS called Pythagorean fuzzy set(PFS). PFS attracted the attention of many researchers in a short time. The formu-
lation of the negation for IFSs and PFSs is examined by Yager [4]. In [6],PF subsets and its relationship with IF subsets were debated and
some set operations on PF subsets were defined. In [7], the properties such as boundedness, idempotency, and monotonicity related to the
Pythagorean fuzzy aggregation operators are investigated. Further, to solve uncertainty, multiple attribute group, DM problems Pythagorean
fuzzy superiority and inferiority ranking method was developed in [7]. Pythagorean fuzzy soft set(PFSS) is a combination of PFS and SS and
was defined by Peng et.al [8]. A PFSS is a parametrized family of PFSs and a generalization of IFSSs. Kirisci extended PFSS to Pythagorean
fuzzy parametrized pythagorean fuzzy soft set [9].

In this presentation, we propose a new decision-making method for Pythagorean fuzzy soft sets(PFSSs). The characteristic of this method is
that it has object recognition from a number of multi-observer data, which is imprecise with PFSS theoretic approach. The real dataset which
is called Cleveland heart disease dataset applied in this method.

2 Preliminaries

Some knowledge that will be used throughout the article will be given. Let E,N be an initial universe and parameter sets, respectively.

For a ∈ E, the set B = {(a, dB(a), yB(a)) : a ∈ E} in E is called Pythagorean fuzzy set(PFS), where dB : E → [0, 1] and yB : I →
[0, 1] together the situation that 0 ≤ [dB(a)]

2 + [yB(a)]
2 ≤ 1 in [4, 5, 10]. The degree of indeterminacy bB =

√
1− [dB(a)]2 − [yB(a)]2.

ForB ⊆ N , choose F̃ : B → υ(E), where the set of all PFSs overE is indicated by υ(E). Then, a pair T̃B = (Ĩ , B) is called Pythagorean
Fuzzy Soft Set(PFSS) on E [8].
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Take k = {(r, s) : r2 + s2 < 1, r, s ∈ [0, 1], }. Let (K,≤K) be a complete lattice. The corresponding partial order ≤K is defined by

(r, s) ≤K (t, u) ⇔ r ≤ t and s ≥ u

for all (r, s), (t, u) ∈ K. The Pythagorean fuzzy value(PFV) is denoted by an ordered pair (r, s) ∈ K [11].

Choose two PFVS P = (dP , yP ), R = (dR, yR) ∈ K.

i. P ⊕R =
(√

d2
P + d2

R − d
2
P d

2
R, y

2
P y

2
R

)
,

ii. P ⊗R =
(
d2
P d

2
R,
√
y2
P + y2

R − y
2
P y

2
R

)
,

ii. αP =
(√

1− (1− d2
P )
α, (yP )

α
)

for α > 0,

iv. Pα =
(
(dP )

α,
√

1− (1− y2
P )
α,
)

for α > 0 [12].

Therefore, Yager [5] proposed PFS characterized by a MD and a ND, which satisfies the condition that the square sum of its MD and ND is

less than or equal to 1. Yager [10] gave an example to state this situation: a DMKR gives his support for membership of an alternative is
√
3

2
and his against membership is 1

2 . Owing to the sum of two values is bigger than 1, they are not available for IFS, but they are available for

PFS since (
√
3

2
)2 + ( 1

2 )
2 ≤ 1. Obviously, PFS is more capable than IFS to model the vagueness in the practical multicriteria decision-making

problems.

The main difference between PFNs and IFNs is their corresponding constraint conditions, which can be easily shown in Figure 1. Here, we
observe that intuitionistic membership grades are all points under the line m+ n ≤ 1 and the Pythagorean membership grades are all points
with m2 + n2 ≤ 1.

Fig. 1: The PFNs and the IFNs

3 Method

Input variables are taken from Cleveland dataset [13]. This data set contains 303 patients, 11 attributes and 5 outcomes.

3.1 PFSS method

Choose a set of k objects as E = {ε1, ε2, · · · , εk}, and a set of parameters {N(1), N(2), · · · , N(i)}. Each parameter set N(i) represent the
ith class of parameters and the elements of N(i) indicates a certain property set. Assumed that the property sets can be shown as FSs.

Let T̃A, T̃B be the PFSSs on E [8].

i. The operation T̃A ∧ T̃B is called "AND" operator on T̃A, T̃B such that T̃A ∧ T̃B = T̃B(A×B) = {min (dA, dB),max (yA, yB)}.

ii. The operation T̃A ∨ T̃B is called "OR" operator on T̃A, T̃B such that T̃A ∨ T̃B = {max (dA, dB),min (yA, yB)}.

A square table with equal row numbers and column numbers is called a Comparison Table. This table contains ε1, ε2, . . . εn object names
in both rows and columns. The entries in Comparison Table are denoted by cij , (i, j = 1, 2, . . . , n). These entries are defined as is the number
of parameters for which the membership value of εi greater than or equal to the membership value of εj and non-membership values of εi less
than or equal to the non-membership value of εj . If we take the number of parameters in PFSS as k, then it is clear that 0 ≤ cij ≤ k, for all
i, j. Further cii = k. From here it is understood that cij is an integer number as a numerical measure. The formula ri =

∑n
j=1 cij calculates

the row sum for an object εi. In this calculations, ri indicates the total number of parameters in which εi dominates all the members of E. In
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the same way, the formula tj =
∑n
i=1 cij yields the column sum for an object εj . In this summation, the integer tj indicates the total number

of parameters in which εj is dominated by all the members of E. The formula Si = r2
i − t

2
j give the score of an object εi.

Algorithm:

i. Input the PFSSs T̃A, T̃B and T̃C ,
ii. Input the parameter set N obtained as a result of observations„
iii. Compute the corresponding PFSSs T̃A ∧ T̃B = T̃D from the FSSs T̃A, T̃B ,
iv. Compute the corresponding resultant PFSS T̃D ∧ T̃C = T̃H
v. Set up the Comparison-table of PFSS T̃G and compute ri and ti for εi, for all i,
vi. Compute the score of εi, for all i,
vii. If the obtain value of Sk is maximum(Sk = maxi Si), then signify that decision is Sk,
viii. If k has more than one value then any one of εk may be chosen.

4 Application

In this section, we give an application of PFSS theory for medical decision making.

The PFSS FG is defined with patients and attributes. The PFSS FH is obtained from the measurements of Cleveland dataset. In the PFSS
FK, there are predicted values of patients and disease degrees.

Take the PFSSs FG , FH in Tables 1, 2, respectively and carry out "(F , R) AND (G, S)" in form eij , where eij = ai ∧ bj . Then, we will
have 11× 5 = 55 parameters of the form eij , (i = 1, 2, · · · , 11; j = 1, 2, 3, 4, 5). For example, let the PFSS for the parameters

D = {e11, e15, e23, e34, e42, e53, e72, e95, e(10,1), e(11,3)}.

Then, the resultant PFSS for the PFSSs FG , FH will be FR (Table 4).

Take the PFSSs FG , FH, FK in Tables 1, 2, 3, respectively. Consider that

E = {e11 ∧ c1, e15 ∧ c5, e23 ∧ c2, e34 ∧ c4, e42 ∧ c3, e53 ∧ c2, e72 ∧ c5, e95 ∧ c1, e(10,1) ∧ c3, e(11,3) ∧ c2}.

The tabular representation of resultant PFSS FR is depicted Table 5.

The Comparison Table of the above resultant PFSS is as Table 6. Later on compute the row-sum(ri), column-sum(ti), and the score(Si) for
each pi, as Table 7.

Now, we construct the tables for medical decision making by algorithm in previous section:

Table 1 The FSS FG

n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11

ε1 (0.9, 0.0) (0.2, 0.5) (0.5, 0.4) (0.3, 0.7) (0.1, 0.9) (0.1, 0.8) (0.6, 0.3) (0.3, 0.5) (0.7, 0.2) (0.1, 0.6) (0.5, 0.4)
ε2 (0.9, 0.1) (0.8, 0.0) (0.6, 0.2) (0.4, 0.5) (0.1, 0.7) (0.8, 0.1) (0.4, 0.3) (0.2, 0.5) (0.5, 0.5) (0.8, 0.1) (0.1, 0.6)
ε24 (0.7, 0.2) (0.2, 0.6) (0.4, 0.4) (0.5, 0.3) (0.1, 0.6) (0.0, 0.9) (0.2, 0.7) (0.3, 0.6) (0.7, 0.1) (0.6, 0.5) (0.9, 0.1)
ε25 (0.1, 0.8) (0.8, 0.0) (0.5, 0.4) (0.6, 0.3) (0.1, 0.7) (0.9, 0.1) (0.3, 0.5) (0.5, 0.4) (0.5, 0.5) (0.6, 0.3) (0.9, 0.1)
ε75 (0.5, 0.5) (0.1, 0.8) (0.2, 0.5) (0.4,0.3) (0.1, 0.5) (0.5, 0.5) (0.8, 0.2) (0.0, 0.7) (0.1, 0.7) (0.5, 0.2) (0.6, 0.1)
ε303 (0.5, 0.4) (0.6, 0.3) (0.5, 0.4) (0.3, 0.6) (0.1, 0.8) (0.1, 0.5) (0.7, 0.2) (0.0, 0.8) (0.1, 0.5) (0.4, 0.4) (0.2, 0.6)

Table 2 The FSS FH

1 2 3 4 0
ε1 (0.3, 0.6) (0.2, 0.7) (0.1, 0.7) (0.0, 0.9) (0.9, 0.0)
ε2 (0.8, 0.0) (0.9, 0.1) (0.8, 0.1) (0.5, 0.4) (0.0, 0.9)
ε24 (0.7, 0.1) (0.8, 0.1) (0.9, 0.2) (0.8, 0.1) (0.0, 0.8)
ε25 (0.3, 0.6) (0.5, 0.5) (0.8, 0.1) (0.9, 0.1) (0.0, 0.8)
ε75 (0.9, 0.3) (0.8, 0.3) (0.4, 0.6) (0.2, 0.7) (0.5, 0.5)
ε303 (0.2, 0.6) (0.1, 0.7) (0.1, 0.6) (0.0, 0.8) (0.9, 0.1)
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Table 3 The FSS FK

1 2 3 4 0
ε1 (0.5, 0.6) (0.3, 0.6) (0.2, 0.7) (0.1, 0.8) (0.2, 0.9)
ε2 (0.6, 0.2) (0.3, 0.6) (0.1, 0.7) (0.0, 0.6) (0.8, 0.1)
ε24 (0.5, 0.3) (0.6, 0.2) (0.8, 0.4) (0.9, 0.2) (0.0, 0.9)
ε25 (0.4, 0.5) (0.5, 0.6) (0.6, 0.3) (0.7, 0.4) (0.0, 0.9)
ε75 (0.8, 0.3) (0.8, 0.2) (0.5, 0.4) (0.3, 0.8) (0.5, 0.4)
ε303 (0.3, 0.6) (0.2, 0.7) (0.2, 0.5) (0.1, 0.9) (0.8, 0.1)

Table 4 The resultant FSS FM

e11 e15 e23 e34 e42 e53 e72 e95 e(10,1) e(11,3)

ε1 (0.3, 0.6) (0.9, 0.0) (0.1, 0.7) (0.0, 0.9) (0.2, 0.7) (0.1, 0.9) (0.2, 0.7) (0.7, 0.2) (0.1, 0.6) (0.1, 0.6)
ε2 (0.8, 0.1) (0.0, 0.9) (0.8, 0.1) (0.5, 0.4) (0.4, 0.5) (0.1, 0.7) (0.4, 0.3) (0.0, 0.9) (0.8, 0.1) (0.1, 0.6)
ε24 (0.7, 0.2) (0.0, 0.8) (0.2, 0.6) (0.4, 0.4) (0.5, 0.3) (0.1, 0.6) (0.2, 0.7) (0.0, 0.8) (0.6, 0.5) (0.9, 0.2)
ε25 (0.1, 0.8) (0.0, 0.8) (0.8, 0.1) (0.5, 0.4) (0.5, 0.5) (0.1, 0.7) (0.3, 0.5) (0.0, 0.8) (0.3, 0.6) (0.8, 0.1)
ε75 (0.5, 0.5) (0.5, 0.5) (0.1, 0.8) (0.2, 0.7) (0.4, 0.3) (0.1, 0.6) (0.8, 0.3) (0.1, 0.7) (0.5, 0.3) (0.4, 0.6)
ε303 (0.2, 0.6) (0.5, 0.4) (0.1, 0.6) (0.0, 0.8) (0.1, 0.7) (0.1, 0.8) (0.1, 0.7) (0.1, 0.5) (0.2, 0.6) (0.1, 0.6)

Table 5 The resultant FSS FR

e11 ∧ c1 e15 ∧ c3 e23 ∧ c4 e34 ∧ c2 e42 ∧ c5 e53 ∧ c1 e72 ∧ c3 e95 ∧ c2 e(10,1) ∧ c4 e(11,3) ∧ c1
ε1 (0.3, 0.6) (0.2, 0.7) (0.1, 0.8) (0.0, 0.9) (0.2, 0.9) (0.1, 0.9) (0.2, 0.7) (0.3, 0.6) (0.1, 0.8) (0.1, 0.7)
ε2 (0.6, 0.2) (0.0, 0.9) (0.0, 0.6) (0.3, 0.6) (0.4, 0.5) (0.1, 0.7) (0.1, 0.7) (0.0, 0.9) (0.0, 0.6) (0.1, 0.6)
ε24 (0.5, 0.3) (0.0, 0.8) (0.2, 0.6) (0.4, 0.5) (0.0, 0.9) (0.1, 0.6) (0.2, 0.7) (0.0, 0.8) (0.6, 0.5) (0.5, 0.3)
ε25 (0.1, 0.8) (0.0, 0.8) (0.7, 0.4) (0.5, 0.6) (0.0, 0.9) (0.1, 0.7) (0.3, 0.5) (0.0, 0.8) (0.3, 0.6) (0.4, 0.5)
ε75 (0.5, 0.5) (0.5, 0.5) (0.1, 0.8) (0.2, 0.7) (0.4, 0.4) (0.1, 0.6) (0.5, 0.4) (0.1, 0.7) (0.3, 0.8) (0.4, 0.6)
ε303 (0.2, 0.6) (0.2, 0.5) (0.1, 0.9) (0.0, 0.8) (0.1, 0.7) (0.1, 0.8) (0.1, 0.7) (0.1, 0.7) (0.1, 0.9) (0.1, 0.6)

Table 6 Comparison Table

p1 p2 p24 p25 p75 p303

ε1 10 3 4 3 2 5
ε2 5 10 2 3 2 6
ε24 7 8 10 7 6 7
ε25 5 8 6 10 4 6
ε75 9 6 5 6 10 10
ε303 4 4 3 4 1 10

Table 7 ri, ti, Si

ri ti Si
ε1 28 40 -816
ε2 28 39 -737
ε24 45 30 1125
ε25 39 34 365
ε75 46 25 1491
ε303 26 44 -1260

From the Table 7, it is clear that the maximum score is 1491 and p75 has the maximum score. Therefore, we can decide the accuracy of
selection of p75.

5 Conclusion

Since the emergence of IFS [2], it has received a lot of attention in field of science and technology. Unlike FS, IFS does not only have a mem-
bership function but also has a non-membership function. The sum of these functions is less than or equal to 1. Having two functions and having
totals less than or equal to 1 makes IFS stronger and more decisive than FS. However, in some real-life situations, the total of membership and
non-membership functions may be greater than 1 and this creates difficulties in solving problem. That is, IFS fails to cope with such a situa-
tion. For this reason, PFS, initiated by Yager to deal with uncertainty, has entered the literature as a very effective tool. Problems that cannot
be solved in IFS are more easily solved with PFS and the necessary modelling can be made easier. Therefore, it is claimed that PFS, which
is frequently used in the literature about decision-making problems, is a superior model. IFS is PFS, but the opposite does not have to be true (1).
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The PFS was extended to the Pythagorean Fuzzy Soft Set(PFSS) [8] by the SS Theory presented by Molodtsov [3]. In this paper, a new
decision-making method is given using the PFSS. The proposed algorithm for decision-making process has been successfully implemented
with the help of a numerical example.
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Abstract: Background: There are many genetic and environmental factors that affect cognitive development. Music education
can also be considered as one of the environmental factors. Some researchers emphasize that Music is an action that requires
meta-cognitive functions such as mathematics and chess, and supports spatial intelligence. The effect of music on cognitive devel-
opment in early childhood was examined with the proposed decision-making method. Alternative methods and techniques can
be used to support cognitive development. The Pythagorean Fuzzy Sets(PFS) method defined by Yager was used in this study.
This method is used to manage uncertainty in real-world decision-making problems. In this study, PFS was created from experts’
opinions on the subject. An algorithm was given according to PFS. This algorithm has been implemented. The effect of music on
cognitive development in early childhood education was examined according to the opinions of the experts with the algorithm. The
results of the algorithm supported the data of the experts on the development of spatial-temporal skills of music education given in
early childhood. In algorithm, ranking is done with Expectation Score Function. Expert opinions were ranked according to real-life.
The rankings obtained from the algorithm overlap with the experts’ rankings.

Keywords: Cognitive development, Decision-making, Early childhood, Music education, Pythagorean fuzzy set.

1 Introduction

Uncertainty describes epistemic states including unknown and defective information. There is no uncertainty in the data, but our inferences
about the data are uncertain. Uncertainty has always been an important problem for decision-makers. Creating solutions for uncertainties has
become one of the most important problems in the world today. Various methods are used to understand the uncertainties in the inferences made
based on the data. Many theories about uncertainty have emerged recently such as fuzzy set(FS) theory, intuitionistic fuzzy set(IFS) theory,
soft set(SS) theory, probability theory etc. One of the theories that emerged as a solution to uncertainty problems is FS theory [1]. The idea
of a membership function in FS theory is a good solution for uncertainties compared to previous methods. However, the membership function
was not sufficient for some solutions in practice. Atanassov[2] developed IFS as a solution to the insufficiency in FS. IFS is a generalization
of Fuzzy Set(FS). IFS includes non-membership function (n) along with membership function (m). In the IFS, each a IF number satisfies the
condition m+n< 1. Yager [3] offered a new FS called Pythagorean fuzzy set(PFS). PFS fascinated the interest of many researchers in a little
while. The formulation of the negation for IFSs and PFSs is examined by Yager [4].

The period in which the development of the individual is the fastest as holistic is the early childhood period. In this period, the child is in
the process of development in terms of social, emotional, language, psycho-motor, self-care, and cognitive aspects. In this process, the child
is affected by various environmental conditions with formal or informal experiences. In this context, Vygotsky [5] emphasizes that cognitive
development is significantly affected by the child’s environment in terms of socio-culture. However, it has been determined by many studies
that cognitive development has made great progress in early childhood. There are many factors that affect this progress. It can be said that one
of these factors is music. Cooper [6] stated that studies on the cognitive benefits of music education are arousing a global scale. Cooper [6]
stated that the studies on the cognitive benefits of music education are arousing curiosity on a global scale.

Cognitive development can be defined as the process of learning, practising and controlling cognitive skills that an individual can do using his
mind. Oakley [7] cited cognitive skills as all processes related to learning, organizing, using and developing knowledge. Solso [8] described the
cognitive field as a science in which brain functions such as perception, attention, memory, thinking, language, problem-solving and reasoning
are examined. In addition to those in these definitions, it can be stated that self-regulation skills that include reasoning, problem-solving and
decision making related to one’s emotions, impulses and thoughts are within the scope of cognitive development. Among the cognitive skills
mentioned in the definitions, attention, memory, thinking and self-regulation skills were evaluated within the scope of this study.
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It is known that it can benefit from different disciplines in order to support cognitive development. Katarzyna and Brenda [9] stated that
the relationship between music and cognitive development has been studied by various researchers, including neuroscientists, psychologists,
educational experts, and musicians. In addition, alternative methods and techniques are also used to support cognitive development outside
of different disciplines. It can be said that some of these methods and techniques are methods such as play, drama, and music. In addition,
different techniques such as finger game, rond, creative dance, and musicals have been created by combining these methods [11]. Perhaps the
most important factor that supports cognitive development in music education is teacher qualifications. In addition to the knowledge of the
needs of music education and the child’s cognitive development, teachers should be well educated especially in the use of musical instruments
and materials [10].

2 Preliminaries

Throughout the paper, the initial universe, parameters sets will denote U , P , respectively.
As an original idea, PFSs were created by Yager [3]. PFS is a very useful tool for uncertainty. PFS offers good results especially in solu-

tions where IFS is insufficient. The differences between PFSs and IFSs can be mentioned as follows: For IFS, m+ n ≤ 1, 0 ≤ m+ n ≤ 1,
h = 1− (m+ n) and h+m+ n = 1.

For PFS, m+ n ≤ 1orm+ n ≥ 1, 0 ≤ m2 + n2 ≤ 1, h =
√

1− (m2 + n2) and h2 +m2 + n2 = 1.

The function mA(x) : U → [0, 1] is called FS on U . The FS can be indicated by

A = {(xi,mA(xi)) : mA(xi) ∈ [0, 1];∀xi ∈ U} .

The set

B = {(x,mB(x), nB(x)) : x ∈ U}

is called an IFS B on U , where, mB : U → [0, 1] and nB : U → [0, 1] such that 0 ≤ mB(x) + nB(x) ≤ 1 for any x ∈ U [2]. The degree of
indeterminacy hB = 1−mB(x)− nB(x).

For mC : U → [0, 1] and nC : U → [0, 1], an PFS C in U is defined by

C = {(x,mC(x), nC(x)) : x ∈ U},

with the condition that 0 ≤ [mC(x)]2 + [nC(x)]2 ≤ 1 [3, 4, 12]. The degree of indeterminacy hC =
√

1− [mC(x)]2 − [nC(x)]2.

Let E be a PFS over P . In this definition, FE can be represented as

FE =

{(
x,mF (x), nF (x),

)
: x ∈ P,mF (x) ∈ [0, 1], nF (x) ∈ [0, 1]

}
.

Here, the values mF (x) and nF (x) are the degree of importance and unimportance of the parameter x. The set of all PFS on U will be
denoted by Ω(U).

Example 1. Let’s choose four experts who work in Early School Education. The experts are studying research on the effect of music on the
cognitive development of the early childhood period. Let’s take the set P = {p1, p2, p3, p4} as the set of experts. In this research, they examine
the following situations:

(s1) Music education improves children’s attention capacity.

(s2) Music education improves children’s vocabulary knowledge.

(s3) Music education improves children’s reasoning and logical thinking skills.

(s4) Music education improves children’s self-regulation skills.

for the set S = {s1, s2, s3, s4}. Then,

F (s1) = {(p1, 0.7, 0.7), (p2, 0.5, 0.6), (p3, 0.9, 0.4), (p4, 0.7, 0.5)}
F (s2) = {(p1, 0.6, 0.6), (p2, 0.4, 0.9), (p3, 0.8, 0.4), (p4, 0.6, 0.5)}
F (s3) = {(p1, 0.8, 0.2), (p2, 0.8, 0.6), (p3, 0.6, 0.7), (p4, 0.5, 0.8)}
F (s4) = {(p1, 0.4, 0.7), (p2, 0.5, 0.6), (p3, 0.7, 0.4), (p4, 0.8, 0.3)}.

All this information can be represented in terms of the FP as table in Table 1. The values given in the table are arranged according to the
opinions of the experts given in the literature.
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Table 1 FP

P / S s1 s2 s3 s4
p1 (0.7, 0.7) (0.6, 0.6) (0.8, 0.2) (0.4, 0.7)
p2 (0.5, 0.6) (0.4, 0.9) (0.8, 0.6) (0.5, 0.6)
p3 (0.9, 0.4) (0.8, 0.4) (0.6, 0.7) (0.7, 0.4)
p4 (0.7, 0.5) (0.6, 0.5) (0.5, 0.8) (0.8, 0.3)

Let (L,≤L) be a complete lattice, where L = {(u, v) : u, v ∈ [0, 1], u2 + v2 < 1} and the corresponding partial order ≤L is defined by
(u, v) ≤L (i, j) ⇔ u ≤ i and v ≥ j, for all (u, v), (i, j) ∈ L. Any ordered pair (u, v) ∈ L is called Pythagorean fuzzy value(PFV)
or Pythagorean fuzzy number(PFN) [13].

Let Pythagorean fuzzy numbers (PFNs) are denoted by R = (mR, nR) [14]. Choose three PFNs θ = (m,n), θ1 = 〈m1, n1〉, θ2 =
〈m2, n2〉. We can give some basic operations as follows [3], [12]: For α > 0,

• θ̄ = 〈n,m〉;
• θ1 ⊕ θ2 = 〈

√
m2

1 +m2
2 −m2

1m
2
2, n1n2〉;

• θ1 ⊗ θ2 = 〈m1m2,
√
n2

1 + n22− n2
1n

2
2〉;

• θ1 ∧ θ2 = 〈min{m1,m2},max{n1, n2}〉;
• θ1 ∨ θ2 = 〈max{m1,m2},min{n1, n2}〉;
• α.θ = 〈

√
1− (1−m2)α, nα〉;

• θα = 〈mα,
√

1− (1− n2)α, 〉.

3 Method

3.1 PFS method

For PFNs, the mapping SF : L → [−1, 1] is called score function, if

SFR = m2
R − n

2
R (1)

for all R = (mR, nR) ∈ L [14], [15].

The mapping AF : L → [0, 1] is called accuracy function, if

AFR = m2
R + n2

R (2)

for all R = (mR, nR) ∈ L [16].

The mapping ES : L → [0, 1] is called expectation score function [17] such that for all R = (mR, nR) ∈ L

ESR =
m2
R − n

2
R + 1

2
. (3)

For two PFNs R, T ∈ L and the relation ≤(m,ES) on L, we have

R ≤(m,ES) T ⇔ (mR < mT ) ∨ (mR = mT ∧ ESR ≤ EST ).

Let R = (mR, nR), T = (mT , nT ) ∈ L be two PFVs. Then, for α > 0, we have the following operations [14]:

i. R⊕ T =
(√

m2
R +m2

T −m
2
Mm2

T , nRnT

)
,

ii. R⊗ T =
(
mRmT ,

√
n2
R + n2

T − n
2
Rn

2
T

)
,

ii. αR =
(√

1− (1−m2
R)α, (nR)α

)
,

iv. Rα =
(

(mR)α,
√

1− (1− n2
R)α,

)
.

3.2 Algorithm

Let FP ∈ Ω(U). Then,

APFP =
⊕
p∈P

ES(si)∑
p∈P ES(si)

FP
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is called the aggregated Pythagorean fuzzy decision value(APFDV) [17], where

ES(si) =

∑
pi∈P m(si)

2 −
∑
pi∈P n(si)

2 + 1

2
.

Algorithm:

• Step 1: The set of experts P and the set S are recorded in PFS table.
• Step 2: The expectation values ES(si) are calculated.
• Step 3: The weights are found by

ω =
ES(si)∑
ES(si)

• Step 4: For k = 1, 2, · · · , i, the APFDVs are computed by

APFP (pk) =

j⊕
`=1

ES(si)(x`)∑j
`=1 ES(si)(x`)

FP(x`)(pk)

• Step 5: Rank APF (pk), (k = 1, 2, · · · , i) descending under the order ≤(m,ES).
• Step 6: Rank pj , (j = 1, 2, · · · , k) correspondingly and output pk as the optimal decision, if APF (pi) is the largest PFV under the order
≤(m,ES).

4 Application: The effect of music on cognitive development

Now, we will investigate the effect of music on cognitive development of early childhood education. In Example 1, four experts related to early
childhood education were chosen and four opinions about the cognitive development of children were given. The experts are studying research
on the effect of music on the cognitive development of the early childhood period.

The ranking method proposed with the given algorithm will be used for the effects of music on children’s cognitive development. An assess-
ment will be made with the opinions of the four experts. As decision-makers, these experts will make this assessment according to the criteria
in Example 1. Experts’ opinions regarding these criteria will be listed by the solving procedure. This ranking will show the importance given
by experts to these criteria.

We consider the values of Table 1. We compute the expectation values ES, that reveal the weight vector (Table 2)

ω = {0.32246377, 0.17028986, 0.24637681, 0.26086956}T

to be used for calculating the APFDVs. The APFP (pk) is found as

APFP (pi) = PFω(πi)

(
FP(s1)(pi), FP(s2)(pi), FP(s3)(pi), FP(s5)(pi), FP(s6)(pi)

)
.

For example, APFP (p1) = (0.668, 0.501).

From Table 3, we have,

APF (p3) ≤(m,ES) APF (p1) ≤(m,ES) APF (p4) ≤(m,ES) APF (p2).

According to these results, the experts’ opinion will be sorted as : p3 > p1 > p4 > p2.

Table 2
s1 s2 s3 s4

ES(si) 0.89 0.47 0.68 0.72
ω 0.32246377 0.17028986 0.24637681 0.26086956

Table 3 Measures
APFDV s ES(APFP (pk)) SF(APFP (pk)) AF(APFP (pk))

p1 (0.668, 0.501) 0.598 0.195 0.7
p2 (0.602, 0.641) 0.476 -0.048 0.77
p3 (0.8, 0.46) 0.7142 0.43 0.8516
p4 (0.66, 0.494) 0.595 0.2 0.68
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5 Discussion and conclusion

Schellenberg and Weiss [18] stated that there is a strong relationship between music tendency and general cognitive abilities, especially in
childhood. He also emphasized that cognitive performance may increase as a result of the improvement of the general mood with the effect
of music. Schellenberg, Nakata, Hunter, and Tamoto, [19] showed that the cognitive performance of 5-year-old children with different music
genres can be increased. In the longitudinal study by Costa-Giomi [20], it was revealed that children who started music education before the
age of 5 got significantly higher scores in spatial skills than children who started later or did not receive an education. Ho, Cheung, and Chan
[21] found that verbal memory significantly differs according to the control group in boys aged 6-15 who receive music education. Ho, Cheung,
and Chan [21] concluded that music training systematically influenced memory processing according to possible neuroanatomical changes in
the left temporal lobe in their study of brain waves. We applied, the entries in the PFS table, which is arranged according to the opinions of
the experts, in the algorithm we obtained. Depending on the PFNs, the new method we proposed provides solutions to the decision analysis
problems by the ranking of the PFNs. The results of the algorithm supported the data of the experts on the development of spatial-temporal
skills of music education given in early childhood.

In this study, a new decision-making algorithm and method were given. We used PFS in the given method. PFS was preferred because it
is known that PFS gives clearer results than IFS. The effect of music on cognitive development in early childhood was examined with this
decision-making method. In practice, the opinions of the experts about cognitive development and the results of the method we proposed were
compared. In this study, the expectation score function was used. Weights and thus APFDV are calculated with the values obtained from this
function. The ranking is done with APFDV. Here, the values obtained from expert opinions are determined as follows: Whichever expert has
given more opinion about the criteria, he has been in the ranking before. Again, whichever specialist has given fewer opinions remains behind
the rankings. This is very suitable for real-life events. The rankings obtained from the algorithm of the study were the same as the rankings of
the opinions of the experts.
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Abstract: A linear mixed model (LMM)M : y = Xβ + Zu + ε, and its two sub-sample LMMsMi : yi = Xiβ + Ziu + εi, i =
1, 2 are considered. This study concerns the problem of the equalities of linear predictors inM andMi under general assump-
tions. We investigate the equality relations between the best linear unbiased predictors (BLUPs) of unknown vectors by using
various rank formulas of block matrices and elementary matrix operations.
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1 Introduction

Consider a linear mixed model (LMM) with the following divisions on its vectors and matrices:

M : y = Xβ + Zu + ε

with y =

[
y1
y2

]
, X =

[
X1
X2

]
, Z =

[
Z1
Z2

]
, and ε =

[
ε1
ε2

]
,

(1)

where X ∈ Rn×k with Xi ∈ Rni×k and Z ∈ Rn×p with Zi ∈ Rni×p are known matrices of arbitrary ranks, β ∈ Rk×1 is a vector of fixed
but unknown parameters, u ∈ Rp×1 is a vector of unobservable random effects, and ε ∈ Rn×1 with εi ∈ Rni×1 is an unobservable vector of
random errors, i = 1, 2, n1 + n2 = n, where the symbol Rm×n stands for the collection of all m× n real matrices. Two sub-sample LMMs
ofM are obtained as follows from pre-multiplyingM by the matrices

[
In1 , 0

]
and

[
0, In2

]
, respectively,

M1 : y1 = X1β + Z1u + ε1,

M2 : y2 = X2β + Z2u + ε2.
(2)

In order to establish some general results on simultaneous predictions of all unknown vectors underM andMi, we can consider the following
vector

φi = Kβ + Gu + HiTiε (3)

for given matrices K ∈ Rs×k, G ∈ Rs×p and Hi ∈ Rs×ni , i = 1, 2, where T1 =
[
In1 , 0

]
and T2 =

[
0, In2

]
.

We will assume some assumptions for the models M and Mi. The assumptions on the expectations and covariance matrices of random
vectors in these models are given as follows

E

u
ε1
ε2

 = 0 and cov


u
ε1
ε2

 ,

u
ε1
ε2

 = D

u
ε1
ε2

 =

Σ11 Σ12 Σ13
Σ21 Σ22 Σ23
Σ31 Σ32 Σ33

 := Σ, (4)

where Σ ∈ R(n+p)×(n+p) is a nonnegative definite matrix and all the entries of Σ are known. Under (4), we obtain

E(y) = Xβ, E(yi) = Xiβ, E(φi) = Kβ, (5)

D(y) = BΣB′, D(yi) = BiΣB′i, cov(yi,y) = BiΣB′, (6)

D(φi) = JiΣJ′i, cov(φi,y) = JiΣB′, cov(φi,yi) = JiΣB′i, (7)

where B =
[
Z, In

]
, Bi =

[
Zi, Ti

]
, Ji =

[
G, HiTi

]
, i = 1, 2. Another assumption on the models M and Mi is consistency of

these models. The consistency condition ofM is holding y ∈ C
[
X, BΣB′

]
with probability 1; see [13]. IfM is consistent, thenMi is

consistent, i.e., yi ∈ C
[
Xi, BiΣB′i

]
holds with probability 1; see [17]. Here, C (.) refers to the column space of a matrix.
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The vector φi in (3) is said to be predictable underM if there exists Ly with L ∈ Rs×n such that

E(Ly − φi) = 0, i.e., C (K′) ⊆ C (X′) (8)

holds. If there exists Ly such that
D(Ly − φi) = min s.t. E (Ly − φi) = 0, i = 1, 2, (9)

holds in the Löwner partial ordering, the linear statistic Ly is defined to be the best linear unbiased predictor (BLUP) of φi underM and is
denoted by Ly = BLUPM (φi). This is a well-known definition of the BLUP of φi which is originated from [4]. If G = 0 and Hi = 0 in
φi, BLUP of φi reduces the best linear unbiased estimator (BLUE) of Kβ underM and denoted by BLUEM(Kβ).

We can face the LMMsM andMi in some cases where adding or deleting observations exist in a given LMMs. Further, these models may
occur in two periods of observation. Although observed random vectors, X and Z matrices, and error vectors inM andMi are different, the
vectors β and u are the same. Therefore, it is natural to take these models separately or simultaneously for establishing results on β and u.
Making comparisons between predictors and analyzing relations between them are the main issues in linear regression analysis since predictors
underM andMi have different properties and performances. Studies on relations between predictors under different LMMs, we may refer
[2], [5]-[10], and [18], among others. In this study, we investigate the equality relations between the BLUPs of unknown vectors under the
LMMsM andMi. For doing this, we use the following expression on equality of random vectors.

F1u = F2u holds definitely if F1 = F2, (10)

where u is a random vector. (10) is one of the equality criteria for random vectors in statistical point of view, for detail see, e.g., [3]. If coefficient
matrices F1 and F2 in (10) are not unique, then the equality F1 = F2 can be divided into following four possible situations

(i) {F1} ∩ {F2} 6= ∅, (ii) {F1} ⊂ {F2}, (iii) {F1} ⊃ {F2}, (iv) {F1} = {F2}, (11)

where {F1} and {F2} stand for the collections of all solutions of the equations. We use the following lemma, related to the characterizations
in (11) based on (10); see, [15], for establishing the results on relations between BLUPs under the modelsM andMi.

Lemma 1. Let A ∈ Rm×n1 , B ∈ Rp×n1 , C ∈ Rm×n2 , and D ∈ Rp×n2 be given. Then,

(a) The pair of matrix equations XA = B and XC = D has a common solution if and only if C

[
B′

D′

]
⊆ C

[
A′

C′

]
, or equivalently,

r

[
A C
B D

]
= r

[
A, C

]
.

(b) Any solution of the matrix equation XC = D is a solution of XA = B if and only if r
[
A C
B D

]
= r(C).

We also use some known rank formulas of block matrices, collected in the following lemma; see [11], and use elementary matrix operations to
give the results on BLUPs under the considered models.

Lemma 2. Let A ∈ Rm×n, B ∈ Rm×k, and C ∈ Rl×n. Then,

r
[
A, B

]
= r(A) + r(EAB) = r(B) + r(EBA), (12)

r

[
A
C

]
= r(A) + r(CEA′) = r(C) + r(AEC′). (13)

Here EA = A⊥ = In −AA+ represents the orthogonal projector and A+ denote the Moore–Penrose generalized inverse of A.

2 Preliminary results on BLUPs

In this section, we briefly review the fundamental equations on BLUPs ofφi and related properties under modelsM andMi. For the following
lemmas see, e.g., [12] and [16].

Lemma 3. LetM be as given in (1). Assume that φi in (3) is predictable underM, i.e., (8) holds. Then

E(Ly − φi) = 0 and D(Ly − φi) = min ⇔ L
[
X, BΣB′X⊥

]
=
[
K, JiΣB′X⊥

]
. (14)

This equation is always consistent. The general solution of (14) and BLUPM(φi) are written as

L =
[
K, JiΣB′X⊥

] [
X, BΣB′X⊥

]+
+ U

[
X, BΣB′X⊥

]⊥
, (15)

BLUPM(φi) = Ly =
([

K, JiΣB′X⊥
] [

X, BΣB′X⊥
]+

+ U
[
X, BΣB′X⊥

]⊥)
y, (16)

respectively, where U ∈ Rs×n is an arbitrary matrix. Further, L in (15) is unique ⇔ r
[
X, BΣB′X⊥

]
= n. BLUPM(φi) in (16) is

unique with probability 1⇔M is consistent.
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Let consider sub-sample LMMMi, i = 1, 2. The predictability requirement of φi underMi is expressed as

C (K′) ⊆ C (X′i). (17)

It is obvious that the predictability of φi underMi shows predictability of φi underM.

Lemma 4. LetMi be as given in (2). Assume that φi in (3) is predictable underMi, i.e., (17) holds. Then

E(Liyi − φi) = 0 and D(Liyi − φi) = min ⇔ Li

[
Xi, BiΣB′iX

⊥
i

]
=
[
K, JiΣB′iX

⊥
i

]
. (18)

This equation is always consistent. The general solution of (18) and BLUPMi
(φi) are written as

Li =
[
K, JiΣB′iX

⊥
i

] [
Xi, BiΣB′iX

⊥
i

]+
+ Ui

[
Xi, BiΣB′iX

⊥
i

]⊥
, (19)

BLUPMi
(φi) = Liyi =

([
K, JiΣB′iX

⊥
i

] [
Xi, BiΣB′iX

⊥
i

]+
+ Ui

[
Xi, BiΣB′iX

⊥
i

]⊥)
yi

= LiTiy =
([

K, JiΣB′iX
⊥
i

] [
Xi, BiΣB′iX

⊥
i

]+
Ti + Ui

[
Xi, BiΣB′iX

⊥
i

]⊥
Ti

)
y,

(20)

respectively, where Ui ∈ Rs×ni is an arbitrary matrix. Further, Li in (19) is unique⇔ r
[
Xi, BiΣB′iX

⊥
i

]
= ni. BLUPMi

(φi) in (20)
is unique with probability 1⇔Mi is consistent.

The requirements in (8) and (17) correspond to the estimability of vector Kβ underM andMi, respectively; see, e.g., [1]. We also note
that Xiβ is always estimable underMi and also is estimable underM. Let Kβ be estimable underMi (also estimable underM). Then,
from Lemmas 3 and 4, we obtain

LKβ =
[
K, 0

] [
X, BΣB′X⊥

]+
+ U

[
X, BΣB′X⊥

]⊥
, U ∈ Rs×n, (21)

BLUEM(Kβ) = LKβy =
([

K, 0
] [

X, BΣB′X⊥
]+

+ U
[
X, BΣB′X⊥

]⊥)
y, (22)

LXiβ =
[
Xi, 0

] [
X, BΣB′X⊥

]+
+ U

[
X, BΣB′X⊥

]⊥
, U ∈ Rni×n, (23)

BLUEM(Xiβ) = LXiβy =
([

Xi, 0
] [

X, BΣB′X⊥
]+

+ U
[
X, BΣB′X⊥

]⊥)
y, (24)

LiKβ =
[
K, 0

] [
Xi, BiΣB′iX

⊥
i

]+
+ Ui

[
Xi, BiΣB′iX

⊥
i

]⊥
, Ui ∈ Rs×ni , (25)

BLUEMi
(Kβ) = LiKβyi =

([
K, 0

] [
Xi, BiΣB′iX

⊥
i

]+
+ Ui

[
Xi, BiΣB′iX

⊥
i

]⊥)
yi, (26)

LiXiβ =
[
Xi, 0

] [
Xi, BiΣB′iX

⊥
i

]+
+ Ui

[
Xi, BiΣB′iX

⊥
i

]⊥
, Ui ∈ Rni×ni , (27)

BLUEMi
(Xiβ) = LiXiβyi =

([
Xi, 0

] [
Xi, BiΣB′iX

⊥
i

]+
+ Ui

[
Xi, BiΣB′iX

⊥
i

]⊥)
yi. (28)

3 Characterization of equalities of BLUPs under M and Mi

In this section, we give the results on the equalities between BLUPs under modelsM andMi related to the characterizations in (11).

Theorem 1. Let consider the modelsM in (1) andMi in (2). Assume that the φi in (3) is predictable underMi (also predictable underM).
Let the coefficient matrices L and LiTi be as given in (15) and (20), respectively. Then

{L} ∩ {LiTi} 6= ∅ ⇔ r


BΣB′ 0 0 In

0 BiΣB′i Xi Ti

X′ 0 0 0
0 X′i 0 0

−JiΣB′ JiΣB′i K 0

 = r


BΣB′ 0 0 In

0 BiΣB′i Xi Ti

X′ 0 0 0
0 X′i 0 0

 . (29)

In this case, {BLUPM(φi)} ∩ {BLUPMi
(φi)} 6= ∅ holds definitely.
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Proof: From (15) and (20),

L− LiTi =
[
K, JiΣB′X⊥

]
W+ −

[
K, JiΣB′iX

⊥
i

]
W+

i Ti + UW⊥ −UiW
⊥
i Ti, (30)

where W =
[
X, BΣB′X⊥

]
and Wi =

[
Xi, BiΣB′iX

⊥
i

]
. Then applying the formula min

U
r(C + UD) = r

[
C
D

]
− r(D), given in

[14], to (30) and using Lemma 2, we obtain

= min
U,Ui

r

([
K, JiΣB′X⊥

]
W+ −

[
K, JiΣB′iX

⊥
i

]
W+

i Ti +
[
U, −Ui

] [ W⊥

W⊥
i Ti

])

= r


[
K, JiΣB′X⊥

]
W+ −

[
K, JiΣB′iX

⊥
i

]
W+

i Ti

W⊥

W⊥
i Ti

− r [ W⊥

W⊥
i Ti

]

= r

[K, JiΣB′X⊥
]
W+ −

[
K, JiΣB′iX

⊥
i

]
W+

i Ti 0 0
In W 0
Ti 0 Wi

− r [In W 0
Ti 0 Wi

]

= r

 0 −
[
K, JiΣB′X⊥

] [
K, JiΣB′iX

⊥
i

]
In W 0
Ti 0 Wi

− r [In W 0
Ti 0 Wi

]

= r


0 −K −JiΣB′ K JiΣB′i
In X BΣB′ 0 0
Ti 0 0 Xi BiΣB′i
0 0 X′ 0 0
0 0 0 0 X′i

− r


In X BΣB′ 0 0
Ti 0 0 Xi BiΣB′i
0 0 X′ 0 0
0 0 0 0 X′i



= r


BΣB′ 0 0 In

0 BiΣB′i Xi Ti

X′ 0 0 0
0 X′i 0 0

−JiΣB′ JiΣB′i K 0

− r


BΣB′ 0 0 In
0 BiΣB′i Xi Ti

X′ 0 0 0
0 X′i 0 0

 . (31)

The required result is seen from (31). �

Corollary 1. Let consider the modelsM in (1) andMi in (2).

(a) Let Kβ be estimable underMi (also estimable underM). Let the coefficients LKβ and LiKβ be as given in (21) and (25), respectively.
Then

{LKβ} ∩ {LiKβTi} 6= ∅ ⇔ r


BΣB′ 0 0 In

0 BiΣB′i Xi Ti

X′ 0 0 0
0 X′i 0 0
0 0 K 0

 = r


BΣB′ 0 0 In

0 BiΣB′i Xi Ti

X′ 0 0 0
0 X′i 0 0

 . (32)

In this case, {BLUEM(Kβ)} ∩ {BLUPMi
(Kβ)} 6= ∅ holds definitely.

(b) Let the coefficients LXiβ and LiXiβ be as given in (23) and (27), respectively. Then

{LXiβ} ∩ {LiXiβTi} 6= ∅ ⇔ r


BΣB′ 0 In

0 BiΣB′i Ti

X′ 0 0
0 X′i 0

+ r(Xi) = r


BΣB′ 0 0 In

0 BiΣB′i Xi Ti

X′ 0 0 0
0 X′i 0 0

 . (33)

In this case, {BLUEM(Xiβ)} ∩ {BLUEMi
(Xiβ)} 6= ∅.

Theorem 2. Let consider the modelsM in (1) andMi in (2). Assume that the φi in (3) is predictable underMi (also predictable underM).
Let the coefficients L and LiTi be as given in (15) and (20), respectively. Then

{LiTi} ⊂ {L} ⇔ r


BΣB′ BΣB′i X

X′ 0 0
0 X′i 0

JiΣB′ JiΣB′i K

 = r

[
BΣB′i X

X′i 0

]
+ r(X). (34)

In this case, {BLUPM(φi)} ⊂ {BLUPMi
(φi)} holds.
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Proof: The equation in (18) can be written as

Li

[
TiX, TiBΣB′iX

⊥
i

]
=
[
K, JiΣB′iX

⊥
i

]
. (35)

Then from Lemma 1 (b), all solutions of the equation given in (20) are the solutions of the equation in (16) if and only if

r

[
X BΣB′X⊥ X BΣB′iX

⊥
i

K JiΣB′X⊥ K JiΣB′iX
⊥
i

]
= r

[
X, BΣB′iX

⊥
i

]
. (36)

(36) equivalently written as

r


X BΣB′ X BΣB′i
K JiΣB′ K JiΣB′i
0 X′ 0 0
0 0 0 X′i

− r(X)− r(Xi) = r

[
X BΣB′i
0 X′i

]
− r(Xi), (37)

which is equivalent to (34). �

Corollary 2. Let consider the modelsM in (1) andMi in (2). Let Kβ be estimable underMi (also estimable underM). Let the coefficients
LKβ and LiKβ be as given in (21) and (25), respectively. Then the following holds.

{LiKβTi} ⊂ {LKβ} ⇔ r


BΣB′ BΣB′i X

X′ 0 0
0 X′i 0
0 0 K

 = r

[
BΣB′i X

X′i 0

]
+ r(X). (38)

In this case, {BLUEM(Kβ)} ⊂ {BLUEMi
(Kβ)} holds.

Theorem 3. Let consider the modelsM in (1) andMi in (2). Assume that the φi in (3) is predictable underMi (also predictable underM).
Let the coefficients L and LiTi be as given in (15) and (20), respectively. Then

LiTi ∈ {L} ⇔ r


BΣB′ BΣB′i X

X′ 0 0
0 X′i 0

JiΣB′ JiΣB′i K

 = r

BΣB′ BΣB′i X
X′ 0 0
0 X′i 0

 . (39)

Then, BLUPM(φi) ∈ {BLUPMi
(φi)} holds.

Proof: According to (35) and from Lemma 1 (a), the pair of the equations given in (16) and (20) have a common solution if and only if

r

[
X BΣB′X⊥ X BΣB′iX

⊥
i

K JiΣB′X⊥ K JiΣB′iX
⊥
i

]
= r

[
X BΣB′X⊥ X BΣB′iX

⊥
i

]
. (40)

(40) equivalently written as

r


X BΣB′ X BΣB′i
K JiΣB′ K JiΣB′i
0 X′ 0 0
0 0 0 X′i

− r(X)− r(Xi) = r

X BΣB′ X BΣB′i
0 X′ 0 0
0 0 0 X′i

− r(X)− r(Xi), (41)

which is equivalent to (39). �

Corollary 3. Let consider the modelsM in (1) andMi in (2). Let Kβ be estimable underMi (also estimable underM). Let the coefficients
LKβ and LiKβ be as given in (21) and (25), respectively. Then the following holds.

LiKβTi ∈ {LKβ} ⇔ r


BΣB′ BiΣB′i X

X′ 0 0
0 X′i 0
0 0 K

 = r

BΣB′ BiΣB′i X
X′ 0 0
0 X′i 0

 . (42)

In this case, BLUEM(Kβ) ∈ {BLUEMi
(Kβ)} holds.

114 © CPOST 2021



4 References
1 I. S. Alalouf, G. P. H. Styan, Characterizations of estimability in the general linear model, Ann. Stat., 7 (1979), 194–200.
2 B. Arendacká, S. Puntanen, Further remarks on the connection between fixed linear model and mixed linear model, Stat. Pap., 56 (4) (2015), 1235–1247.
3 B. Dong, W. Guo, Y. Tian, On relations between BLUEs under two transformed linear models, J. Multivar. Anal., 131 (2014), 279–292.
4 A. S. Goldberger, Best linear unbiased prediction in the generalized linear regression model, J. Am. Stat. Assoc., 57 (1962), 369–375.
5 N. Güler, On relations between BLUPs under two transformed linear random-effects models, Comm. Statist. Simulation Comput., (2020), DOI: 10.1080/03610918.2020.1757709
6 N. Güler, M. E. Büyükkaya, Notes on comparison of covariance matrices of BLUPs under linear random-effects model with its two subsample models, Iran. J. Sci. Technol. Trans.

A: Sci., 43 (6) (2019), 2993–3002.
7 D. Harville, Extension of the Gauss-Markov theorem to include the estimation of random effects, Ann. Stat., 4 (1976), 384-395.
8 S. J. Haslett, S. Puntanen, Equality of BLUEs or BLUPs under two linear models using stochastic restrictions, Stat. Pap., 51 (2) (2010), 465–475.
9 S. J. Haslett, S. Puntanen, On the equality of the BLUPs under two linear mixed models, Metrika, 74 (2011), 381–395.

10 X. Liu, Q. W. Wang, Equality of the BLUPs under the mixed linear model when random components and errors are correlated, J. Multivar. Anal., 116 (2013), 297–309.
11 G. Marsaglia, G. P. H. Styan, Equalities and inequalities for ranks of matrices, Linear Multilinear Algebra, 2 (1974), 269–292.
12 S. Puntanen, G. P. H. Styan, J. Isotalo, Matrix Tricks for Linear Statistical Models: Our Personal Top Twenty, Springer, Heidelberg, 2011.
13 C. R. Rao, Representations of best linear unbiased estimators in the Gauss-Markoff model with a singular dispersion matrix, J. Multivar. Anal., 3 (1973), 276–292.
14 Y. Tian, The maximal and minimal ranks of some expressions of generalized inverses of matrices, Southeast Asian Bull. Math., 25 (2002), 745–755.
15 Y. Tian, On equalities for BLUEs under misspecified Gauss-Markov models, Acta Math. Sin. Engl. Ser., 25 (11) (2009), 1907–1920.
16 Y. Tian, A new derivation of BLUPs under random-effects model, Metrika, 78 (2015), 905–918.
17 Y. Tian, Transformation approaches of linear random-effects models, Stat. Methods Appl., 26 (4) (2017), 583–608.
18 Y. Tian, B. Jiang, An algebraic study of BLUPs under two linear random-effects models with correlated covariance matrices, Linear Multilinear Algebra, 64 (12) (2016),

2351–2367.

© CPOST 2021 115



Conference Proceeding Science and Technology, 4(1), 2021, 116–121

Conference Proceeding of 4th International E-Conference on Mathematical Advances and
Applications (ICOMAA-2021).

Qualitative Analysis for the p-Laplacian
Equation with Logarithmic Source Term

ISSN: 2651-544X
http://dergipark.gov.tr/cpost

Nazlı Irkıl1,∗ Erhan Pişkin2
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1 Introduction

In this work, we investigate the following p-Laplacian hyperbolic type equation with logarithmic nonlinearity


utt −∇

(
|∇u|p−2∇u

)
−∆ut = |u|p−2 u ln |u| , x ∈ Ω, t > 0,

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,
u (x, t) = 0, x ∈ ∂Ω, t ≥ 0,

(1)

where u ∈W 1,p
0 (Ω) \ {0} and u1 ∈H1

0 (Ω) are given initial data and Ω ⊂ Rn (n ≥ 1) is a bounded domain with smooth boundary ∂Ω. The
exponent p, satisfy 2 < p.

The logarithmic nonlineraity is encountered naturally in quantum mechanics, inflation cosmolog, supersymmetric field theories, and a lot
of different areas of physics such as, optics, geophysics and nuclear physics [2, 4, 5]. These special applications in physics allow many
mathematicians to work with logarithmic nonlinear equations. In recent years, many authors considered the mathematical behavior for nonlinear
hyperbolic equation with logartihmic nonlinearity and obtained some remarkable achievements (see[7, 9, 18])

Without the logartihmic source term the problem (1) becomes

utt −∇
(
|∇u|p−2∇u

)
+ f (ut) = g (u) . (2)

In mathematics, the study of this class of equations originated from the work of MacCamy and Mizel [10]. Many authors have studied the
properties of the problem (1) see([1, 3, 11, 12, 15]).

In recent years, existence and asymptotic behavior of solutions for a class of p-Laplacian parabolic type equations with logarithmic nonlin-
earity have been intensively studied in the litarature ([6, 8, 17]). Fewer results are, at the present time, known for the logarithmic p-Laplacian
hyperbolic type equations with logarithmic nonlinearity (see [13, 14, 16]). For this reason, we study the decay rate of solution of the problem
(1) in this paper.

2 Preliminaries

In order to state the main results to problem (1) more clearly, we start to our work by introducing some notations, lemmas and definitions which
will be used in this paper. Throughout this paper, we denote

‖u‖m = ‖u‖Lm(Ω) , ‖u‖1,m = ‖u‖
W 1,m

0 (Ω)
=
(
‖u‖mm + ‖∇u‖mm

) 1
m

for 1 < m <∞. We consider W−1,m′

0 (Ω) to denote the dual space of W 1,m′

0 (Ω) where m′ is Hölder conjugate exponent for m > 1.
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We define energy function as follows

E(t) =
1

2
‖ut‖2 +

1

p
‖∇u‖pp −

1

p

∫
Ω

|u|p ln |u| dx+
1

p2
‖u‖pp . (3)

Let us define some useful funcionals as follows

J (u) =
1

p
‖∇u‖pp −

1

p

∫
Ω

|u|p ln |u| dx+
1

p2
‖u‖pp , (4)

and

I (u) = ‖∇u‖pp −
∫
Ω

|u|p ln |u| dx. (5)

By the Gagliardo-Nirenberg multiplicative embedding inequality that J (u) and I (u) are continuous. Then, by (4) and (5), it tells us that

J (u) =
1

p
I (u) +

1

p2
‖u‖pp (6)

and

E (t) =
1

2
‖ut‖2 + J (u) . (7)

We can define the mountain-pass level
d = inf

u∈ℵ
J (t) , (8)

where ℵ is the Nehari manifold, which is defined by

ℵ =
{
u ∈W 1,p

0 (Ω) \ {0} : I (u) = 0
}
.

We define the potential well depth

0 < d = inf
u

{
sup
λ≥0

J (λu) : u ∈W 1,p
0 (Ω) , ‖u‖pp 6= 0

}
. (9)

Now, we introduce the potential well W and its corresponding set V

W =
{
u ∈W 1,p

0 (Ω) : I (u) > 0, J (u) < d
}
∪ {0} ,

V =
{
u ∈W 1,p

0 (Ω) : I (u) < 0, J (u) < d
}
.

Lemma 1. [16] (Logarithmic Sobolev Inequality). Let u be any function u ∈W 1,p
0 (Ω) and a > 0 be any number. Then,

∫
Ω

ln |u|updx < ‖u‖pp ln ‖u‖p +
(p− 2) a2

4π
‖u‖pp +

a2

2π
‖∇u‖pp −

n

p
(1 + ln a) ‖u‖pp .

Lemma 2. E(t) is a nonincreasing function, for t ≥ 0

E (0) = E (t) +

t∫
0

‖∇ut‖2 dt. (10)

Proof: Multiplying the equation (1) by ut and integrating on Ω, we have

E′ (t) = −‖∇ut‖2 .

�

Lemma 3. For any u ∈W 1,p
0 (Ω) , ‖u‖pp 6= 0 and let g (σ) = J (σu). Then, there exists a unique σ∗ > 0 such that

I (σu) = σg′ (σ)

 > 0, 0 ≤ σ < σ∗,
= 0, σ = σ∗,
< 0, σ < σ∗ <∞.
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Proof: By the definition of J (u) , we obtain

g (σ) = J (σu)

=
1

p
‖σ∇u‖pp −

1

q

∫
Ω

|σu|q ln |σu| dx+
1

q2
‖σu‖qq

=
σp

p
‖∇u‖pp −

σq

q

∫
Ω

|u|q ln |u| dx− ln |σ| σ
q

q
‖u‖qq +

σq

q2
‖u‖qq .

Since 2 < p and ‖u‖pp 6= 0, lim
σ→0

g (σ) = 0, lim
σ→∞

g (σ) = −∞ hold. Now, differentiating g (σ) with respect to σ, we have

g′ (σ) = σp−1

‖∇u‖pp − ∫
Ω

|u|p ln |u| dx− ln |σ| ‖u‖pp

 .

Let g′ (σ) = 0. So that we denote that

σ∗ = exp

‖∇u‖pp −
∫
Ω

|u|p ln |u| dx

‖u‖pp
.

It follows from definition of that I (u)

I (u) = σp

‖∇u‖pp − ∫
Ω

|u|p ln |u| dx− lnσ ‖u‖pp


�

Thus, we have

I (σu) = σg′ (σ)

 > 0, 0 ≤ σ < σ∗,
= 0, σ = σ∗,
< 0, σ < σ∗ <∞.

So the proof is completed.

Lemma 4. Let u ∈W 1,p
0 (Ω) and l = (2π)

n
2 e

2(n+p)−p2

2 ,

i) if 0 < ‖u‖pp < l, then I (u) > 0;

ii) if I (u) = 0 and ‖u‖pp 6= 0, then ‖u‖pp > l;
iii) The constant d in (9) satisfies

d ≥ 1

p2
(2π)

n
2 e

2(n+p)−p2

2 .

Proof: Thanks to Logarithmic Sobolev Inequality to the last term of the I (u) function, we have

I (u) = ‖∇u‖pp −
∫
Ω

|u|p ln |u| dx.

≥ ‖∇u‖pp −
(
‖u‖pp ln ‖u‖p +

(p− 2) a2

4π
‖u‖pp .

+
a2

2π
‖∇u‖pp −

n

p
(1 + ln a) ‖u‖pp

)
,

≥
(

1− a2

2π

)
‖∇u‖pp +

(
n

p
(1 + ln a)− ln ‖u‖p −

(p− 2) a2

4π

)
‖u‖pp (11)

Taking any a =
√

2π satisfying in (11), we have

I (u) ≥
(
n

p
(1 + ln a)− ln ‖u‖p −

(p− 2) a2

4π

)
‖u‖pp . (12)

i) If 0 < ‖u‖pp < l, then I (u) > 0 from the above inequality.
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ii) if I (u) = 0 and ‖u‖pp 6= 0, then

‖u‖pp ≥ (2π)
n
2 e

2
k +2n+2p−p2 = l.

iii) Because of (9), we write

sup
λ≥0

J (λu) = J
(
λ∗u

)
=

1

p
I
(
λ∗u

)
+

1

p2

(
λ∗
)p ‖u‖pp (13)

By the Lemma 3 and (12), we obtain

0 = I
(
λ∗u

)
≥
(
n

p
(1 + ln

√
2π)− ln

∥∥λ∗u∥∥
p
− (p− 2)

2π

)∥∥λ∗u∥∥p
p
.

Therefore; we have

0 ≥ n

p
(1 + ln

√
2π)− ln

∥∥λ∗u∥∥
p
− (p− 2)

2π
,

∥∥λ∗u∥∥p ≥ (2π)
n
2 e

2(n+p)−p2

2 = l. (14)

Thus by combination of the (9), (13) and (14), we obtain

d ≥ sup
λ≥0

J (λu) ≥ 1

p2
(2π)

n
2 e

2(n+p)−p2

2 .

�

3 Local existence

In this section we state and prove the local existence result for the problem (1). The proof is based Faedo-Galerkin method.

Definition 5. A function u defined on [0, T ] is called a weak solution of (1) if

u ∈ C
(

[0, T ) ;
(
W 1,p

0 (Ω)
)
∩ Lp (Ω)

)
, ut ∈ C

(
[0, T ) ;H1

0 (Ω)
)

and u satisfies 
∫
Ω

utt (x, t)w (x) dx +
∫
Ω

|∇u (x, t)|p−2∇u (x, t)∇wdx

+
∫
Ω

∇ut (x, t)∇w (x) dx =
∫
Ω

up−2 (x, t)u (x, t) ln |u (x, t)|w (x) dx,

for w ∈W 1,p
0 (Ω).

Theorem 6. Let (u0, u1) ∈W 1,p
0 (Ω)×H1

0 (Ω) , then the problem (1) has a weak solution on [0, T ] .

Proof: The proof method of this lemma can refer to [16]. Here, we omit it. �

4 Decay of solution

In this section, we will prove decay of solutions to problem (1).
For this purpose, we define the functional

L (t) = E (t) + ε

∫
Ω

uutdx+
ε

2

∫
Ω

|∇u|2 dx (15)

where ε is a positive constant. We will show that the L (t) and E (t) are equivalent:

Lemma 7. For ε > 0 small enough, the relation

β1L (t) ≤ E (t) ≤ β2L (t) (16)

holds for two positive constants β1 and β2.

We can choose ε small enough such that L ∼ E.
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Theorem 8. Let u0 ∈W, u1 ∈ H1
0 (Ω) . Assume further 0 < E (0) < αl < d , where

l = (2π)
n
2 e

2
k +2n+2p−p2 and 0 < α < a

n
p p−2 (2π)

−n
2 e−

pn+p2−p3−n
p

then there exist two positive constants r1 and r2 such that

0 < E (t) ≤ r1e−r2 t, t ≥ 0.

Proof: By derivativing of the (15) and using equation (1), we have

L′ (t) = E′ (t) + ε

∫
Ω

(
uttu+ u2

t

)
dx+ ε

∫
Ω

∇u∇utdx

= −‖∇ut‖2 + ε

∫
Ω

(
∇
(
|∇u|p−2∇u

)
+ ∆ut + |u|p−2 u ln |u|

)
udx

+ε

∫
Ω

∇u∇utdx+ ε ‖ut‖2 ,

= −‖∇ut‖2 + ε ‖ut‖2 − ε ‖∇u‖pp + ε

∫
Ω

|u|p ln |u| dx (17)

Adding and subtracting εδE (t) into (17) where δ is a positive constant and using the following equality

δE(t) =
δp2

2
‖ut‖2 + pδ ‖∇u‖pp − pδ

∫
Ω

|u|p ln |u| dx+ δ ‖u‖pp ,

we get

L′ (t) = −‖∇ut‖2 + ε

(
p2δ

2
+ 1

)
‖ut‖2 + ε (pδ − 1) ‖∇u‖pp

+ε (1− pδ)
∫
Ω

|u|p ln |u| dx+ δ ‖u‖pp − εδp
2E (t) . (18)

By using the embedding theorem and the Logarithmic Sobolev inequality where Cp is the positive constant, it becomes

L′ (t) ≤ −‖∇ut‖2 + ε

(
p2δ

2
+ 1

)
‖ut‖2 + ε (pδ − 1) ‖∇u‖pp + δ ‖u‖pp − εδp

2E (t)

+ε (1− pδ)
[
‖u‖pp ln ‖u‖p +

(p− 2) a2

4π
‖u‖pp +

a2

2π
‖∇u‖pp −

n

p
(1 + ln a) ‖u‖pp

]
≤

(
εCpδ

2
+ εCp − 1

)
‖∇ut‖2 − εδp2E (t)

−ε (1− pδ) .
(

1− a2

2π

)
‖∇u‖pp

+ε

[
δ + (1− pδ) (p− 2) a2

4π
+ (1− pδ)

(
ln ‖u‖p −

n

p
(1 + ln a)

)]
‖u‖pp . (19)

By using (3), (10), assumption in the Theorem 8 and definition of l, we get

ln ‖u‖pp ≤ ln
(
p2E (t)

)
≤ ln

(
p2E (0)

)
≤ ln

(
p2αl

)
= ln

(
p2α (2π)

n
2 e

2(n+p)−p2

2

)
. (20)

Using (20) and taking α satisfying

120 © CPOST 2021



((
p2α

) 1
n √

2π

)p
e

pn+p2−p3

n −1 < a ≤
√

2π

we guarantee (
ln ‖u‖p −

n

p
(1 + ln a)

)
≤ 0.

Finally, Noting (1− pδ) since by picking 0 < δ < min
{

(p−2)

(p−1)2+3
, 1
p

}
small enough such that

(1− pδ) .
(

1− a2

2π

)
> 0,

and

δ + (1− pδ) (p− 2) a2

4π
+ (1− pδ)

(
ln ‖u‖p −

n

p
(1 + ln a)

)
< 0,

then we obtain

L′ (t) ≤
(
εCpδ

2
+ εCp − 1

)
‖∇ut‖2 − εδp2E (t) .

Now, we choose ε > 0 small enough such that
εCpδ

2
+ εCp − 1 < 0.

Consequently, inequlatiy (19) becomes

L′ (t) ≤ −εδp2E (t) . (21)

By using (16), (21) can be replaced
L′ (t) ≤ −εδβ2L (t) . (22)

Setting c2 = εββ2 > 0 and integrating (22) between (0, t) gives the following estimate

L (t) ≤ r1e−r2t.

�
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1 Introduction and preliminaries

Recently, the notion of an S-metric space was introduced as a generalization of a metric space [12] as follows:

Definition 1. [12] LetX be a nonempty set and S : X ×X ×X → [0,∞) be a function satisfying the following conditions for all x, y, z, a ∈
X :

(S1) S(x, y, z) = 0 if and only if x = y = z,
(S2) S(x, y, z) ≤ S(x, x, a) + S(y, y, a) + S(z, z, a).
Then S is called an S-metric on X and the pair (X,S) is called an S-metric space.

Note that there is no symmetry condition in the S-metric definition. But the following lemma can be considered as a symmetry property for
S-metric spaces.

Lemma 1. [12] Let (X,S) be an S-metric space and x, y ∈ X . Then we have

S(x, x, y) = S(y, y, x).

After then, many researchers have studied some fixed-point theorems on this space (for example, see [3], [5], [6], [7], [13], [15] and the
references therein).

“Fixed-Circle Problem” was presented as a geometric generalization of the fixed-point theory in [8]. Also, some solutions to the this problem
have been investigated on S-metric spaces using the following basic notions:

In [10] and [12], a circle and a disc are defined on an S-metric space as follows, respectively:

CSx0,µ = {x ∈ X : S (x, x, x0) = µ}

and

DSx0,µ = {x ∈ X : S (x, x, x0) ≤ µ} .

Let (X,S) be an S-metric space, CSx0,µ be a circle and f : X → X be a self-mapping. If fx = x for every x ∈ CSx0,µ (resp. x ∈ DSx0,µ)
then the circle CSx0,µ (the disc DSx0,µ) is called as the fixed circle (the fixed disc) of f (see [2] and [10] for more details).

The fixed-circle problem has been studied on S-metric spaces with various aspects (for example, see [2], [9], [10], [15], [16] and the
references therein).

In this paper, we define the notions of Moradi type x0-S-contraction, Geraghty x0-S-contraction and Skof type x0-S-contraction on S-
metric spaces modifying some known contractions (see [1], [4], [11] and [14]). Also, we give an illustrative example to show the validity of the
obtained results.

2 Main results

In this section, we prove new fixed-circle results using different contractive conditions.
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Definition 2. Let (X,S) be an S-metric space and f : X → X a self-mapping. If there exists x0 ∈ X such that

S(x, x, fx) > 0 =⇒ ϕ (S(x, x, fx)) ≤ α (ϕ (S(x, x, x0))) ,

for all x ∈ X , where the function ϕ : [0,∞)→ [0,∞) is such that ϕ is nondecreasing with ϕ(0) = 0 and 0 < ϕ(t) < t for all t > 0 and
the function α : [0,∞)→ [0,∞) is such that α is a function with α(0) = 0 and 0 < α(t) < t for all t > 0, then f is called Moradi type
x0-S-contraction.

Proposition 1. Let (X,S) be an S-metric space and f : X → X Moradi type x0-S-contraction with x0 ∈ X . Then we have fx0 = x0.

Proof: Let us assume that fx0 6= x0, that is, S(x0, x0, fx0) > 0. Using the hypothesis, we get

ϕ (S(x0, x0, fx0)) ≤ α (ϕ (S(x0, x0, x0))) = α (ϕ (0))α(0) = 0,

a contradiction. It should be fx0 = x0. �

Theorem 1. Let (X,S) be an S-metric space, f : X → X Moradi type x0-S-contraction with x0 ∈ X and the number µ defined as

µ = inf {S(x, x, fx) : x 6= fx, x ∈ X} . (1)

Then CSx0,µ is a fixed circle of f .

Proof: At first, assume that µ = 0. Then CSx0,µ = {x0}. Using Proposition 1, we have fx0 = x0, that is, CSx0,µ is a fixed circle of f .
Let µ > 0 and x ∈ CSx0,µ be any point such that S(x, x, fx) > 0. Using the Moradi type x0-S-contraction property, we obtain

ϕ (S(x, x, fx)) ≤ α (ϕ (S(x, x, x0))) = α (ϕ (µ)) < ϕ (µ) ≤ ϕ (S(x, x, fx)) ,

a contradiction. So it should be x = fx. Consequently, CSx0,µ is a fixed circle of f . �

As a consequence of Theorem 1, we get the following result:
Let (X,S) be an S-metric space, f : X → X Moradi type x0-S-contraction with x0 ∈ X and the number µ defined as in (1). Then DSx0,µ

is a fixed disc of f .

Definition 3. Let (X,S) be an S-metric space and f : X → X a self-mapping. If there exists x0 ∈ X such that

S(x, x, fx) > 0 =⇒ ϕ (S(x, x, fx)) ≤ β (S(x, x, x0))ϕ (S(x, x, x0)) ,

for all x ∈ X , where the function ϕ : (0,∞)→ (0,∞) is such that ϕ is nondecreasing and β : (0,∞)→ (0, 1) is a function, then f is called
Geraghty type x0-S-contraction.

Proposition 2. Let (X,S) be an S-metric space and f : X → X Geraghty type x0-S-contraction with x0 ∈ X . Then we have fx0 = x0.

Proof: Let S(x0, x0, fx0) > 0. Then using the hypothesis, we get

ϕ (S(x0, x0, fx0)) ≤ β (S(x0, x0, x0))ϕ (S(x0, x0, x0)) = β(0)ϕ(0),

a contradiction. So it should be fx0 = x0. �

Theorem 2. Let (X,S) be an S-metric space, f : X → X Geraghty type x0-S-contraction with x0 ∈ X and the number µ defined as in (1).
Then CSx0,µ is a fixed circle of f .

Proof: Let µ = 0. Then we have CSx0,µ = {x0}. Using Proposition 2, we get fx0 = x0.
Let µ > 0 and x ∈ CSx0,µ be an arbitrary point such that x 6= fx. Using the Geraghty type x0-S-contraction property, we find

ϕ (S(x, x, fx)) ≤ β (S(x, x, x0))ϕ (S(x, x, x0)) = β (µ)ϕ (µ)

< ϕ (µ) ≤ ϕ (S(x, x, fx)) ,

a contradiction. Hence it should be x = fx. Consequently, CSx0,µ is a fixed circle of f . �

We obtain the following result as a consequence of Theorem 2:
Let (X,S) be an S-metric space, f : X → X Geraghty type x0-S-contraction with x0 ∈ X and the number µ defined as in (1). Then

DSx0,µ is a fixed disc of f .
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Definition 4. Let (X,S) be an S-metric space and f : X → X a self-mapping. If there exists x0 ∈ X such that

S(x, x, fx) > 0 =⇒ ϕ (S(x, x, fx)) ≤ aϕ (S(x, x, x0))

+bϕ (S(x, x, fx)) + cϕ (S(x0, x0, fx0)) ,

for all x ∈ X , where a, b, c ∈ [0, 1) with 0 ≤ a+ b+ c < 1 and the function ϕ : [0,∞)→ [0,∞) is such that ϕ is nondecreasing with

ϕ(t) = 0⇐⇒ t = 0,

then f is called Skof type x0-S-contraction.

Proposition 3. Let (X,S) be an S-metric space and f : X → X Skof type x0-S-contraction with x0 ∈ X . Then we have fx0 = x0.

Proof: Let S(x0, x0, fx0) > 0. Then using the hypothesis, we get

ϕ (S(x0, x0, fx0)) ≤ aϕ (S(x0, x0, x0)) + bϕ (S(x0, x0, fx0)) + cϕ (S(x0, x0, fx0))

= (b+ c)ϕ (S(x0, x0, fx0)) ,

a contradiction with b+ c < 1. Thereby, it should be fx0 = x0. �

Theorem 3. Let (X,S) be an S-metric space, f : X → X Skof type x0-S-contraction with x0 ∈ X and the number µ defined as in (1). Then
CSx0,µ is a fixed circle of f .

Proof: Let µ = 0. Then we have CSx0,µ = {x0} and using Proposition 3, we obtain fx0 = x0.
Suppose that µ > 0 and x ∈ CSx0,µ is any point with x 6= fx. Using the Skof type x0-S-contraction property and Proposition 3, we get

ϕ (S(x, x, fx)) ≤ aϕ (S(x, x, x0)) + bϕ (S(x, x, fx)) + cϕ (S(x0, x0, fx0))

= aϕ (µ) + bϕ (S(x, x, fx))

≤ aϕ (S(x, x, fx)) + bϕ (S(x, x, fx))

= (a+ b)ϕ (S(x, x, fx)) ,

a contradiction with a+ b < 1. So it should be x = fx. Consequently, CSx0,µ is a fixed circle of f . �

Now we get the following result as a consequence of Theorem 3:
Let (X,S) be an S-metric space, f : X → X Skof type x0-S-contraction with x0 ∈ X and the number µ defined as in (1). Then DSx0,µ is

a fixed disc of f .
Finally, we give the following example.

Example 1. Let X = R and the S-metric defined as

S(x, y, z) = |x− z|+ |x+ z − 2y| ,

for all x, y, z ∈ R [7]. Let us define the function f : R→ R as

f(x) =

{
x , x ∈ [−4, 4]

x+ 2 , x ∈ (−∞,−4) ∪ (4,∞)
,

for all x ∈ R. Then the function f is Moradi type x0-S-contraction with x0 = 0, the function ϕ : [0,∞)→ [0,∞) is defined by

ϕ(t) =

{
0 , t = 0
t
24 , t > 0

and the function α : [0,∞)→ [0,∞) is defined by

α(t) =

{
0 , t = 0
t
2 , t > 0

.

The function f is also Geraghty type x0-S-contraction with x0 = 0, the function ϕ : (0,∞)→ (0,∞) defined by ϕ(t) = 3t and the func-
tion β : (0,∞)→ (0, 1) defined by β(t) = 1

2 . Finally, the function f is Skof type x0-S-contraction with x0 = 0, a = 1
2 , b = 1

4 and c ∈ R.
Consequently, we have µ = 4 and so f fixes the circle CS0,4 = {−2, 2} and the disc DS0,4 = [−2, 2].
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3 N. Mlaiki, N. Y. Özgür, N. Taş, New fixed-point theorems on an S-metric space via simulation functions, Mathematics, 7 (2019) 583.
4 S. Moradi, Fixed point of single-valued cyclic weak ϕF -contraction mappings, Filomat, 28 (2014), 1747-1752.
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9 N. Y. Özgür, N. Taş, U. Çelik, New fixed-circle results on S-metric spaces, Bull. Math. Anal. Appl., 9(2) (2017), 10-23.
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Abstract: The main idea of this paper is to investigate the hyperbolic Padovan and Perrin numbers as indicated HPPN from now
on. Then, by taking into account the properties of the hyperbolic numbers, we try to show some properties of HPPN. Moreover,
we present interesting relationships between HPPN.
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1 Introduction

There are so many articles in the literature that concern about the special numbers like Fibonacci, Lucas, Pell, Jacobsthal, Padovan and
Perrin (see, for example [1, 3, 8], [10]-[12]).

In Fibonacci numbers, there clearly exists the term Golden ratio which is defined as the ratio of two consecutive of Fibonacci numbers that
converges to 1+

√
5

2 . It is also clear that this ratio is used in so many applications such as Physics, Engineering, Architecture, etc. In a similar
manner, the ratio of two consecutive Padovan and Perrin numbers converges to

α =
3

√
1

2
+

1

6

√
23

3
+

3

√
1

2
− 1

6

√
23

3

that is named as Plastic constant and was firstly defined in 1924 by Gérard Cordonnier. He presented applications to architecture; in 1958 he
gave a lecture tour that pictured the use of the Plastic constant in many buildings and monuments. The smallest Pisot number is the positive
root of the characteristic equation X3 −X − 1 = 0 known as the Plastic constant. This is also the characteristic equation of the recurrence
equations (1) and (2) in below, and the Plastic constant is one of its roots which is the unique real root.

Although the study of Perrin numbers started in the beginning of 19. century under different names, the master study was published in 2006
by Shannon et al. in [8]. In this reference, the authors defined the Perrin {Rn}n∈N and Padovan {Pn}n∈N sequences as in the forms

Rn+3 = Rn+1 +Rn, where R0 = 3, R1 = 0, R2 = 2 (1)

and

Pn+3 = Pn+1 + Pn, where P0 = P1 = P2 = 1 , (2)

respectively. Also, the Padovan and Perrin numbers with negative subscripts are defined by

P−n = P−n+3 − P−n+1 and R−n = R−n+3 −R−n+1. (3)

Therefore, recurrences (1) and (2) hold for all integer n. The general form of these numbers are

Pn = aαn + bβn + cγn and Rn = αn + βn + γn, (4)

where α =
3

√
1

2
+

1

6

√
23

3
+

3

√
1

2
− 1

6

√
23

3
,

β = − 3

√
1

16
+

1

48

√
23

3
− 3

√
1

16
− 1

48

√
23

3
+ i

√
3

2

 3

√
1

2
+

1

6

√
23

3
− 3

√
1

2
− 1

6

√
23

3

 , γ = β

and a =
(β − 1)(γ − 1)

(α− β) (α− γ) , b =
(α− 1)(γ − 1)

(β − α) (β − γ) , c =
(α− 1)(β − 1)

(γ − α) (γ − β) .
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In [13], the most well-known the relationships between {Rn} and {Pn} given by

Rn = 3Pn−5 + 2Pn−4 and Pn =
1

23
(10Rn + 8Rn−1 +Rn−2) . (5)

On the other hand, hyperbolic numbers have applications in different areas of mathematics and theoretical physics. A hyperbolic number (or
split complex number, also perplex number, double number) has two real number components a and b, and the set of hyperbolic numbers is

H =
{
x = a+ hb : h2 = 1, a, b ∈ R

}
.

The hyperbolic ring H is a bidimensional Clifford algebra, look at [6] for details. Also, hyperbolic numbers are helpful for measuring distances
in the Lorentz space-time plane (you can examine [9]). The addition and multiplication of any two hyperbolic numbers x = a+ hb, y = c+ hd
are defined by

x+ y = a+ c+ h(b+ d) and xy = ac+ bd+ h(ad+ bc) .

It is clear that this algebra of hyperbolic number is commutative. The conjugate and norm of x are enounced by

x = a− hb, xx = a2 − b2 . (6)

For more information on hyperbolic numbers, see for example, [2],[4]-[7] and [9].
In recent years so many researchs activities can be seen on hyperbolic Fibonacci, Lucas, Jacobsthal and Tribonacci numbers (see [1], [3],

[10], [12]). For example, in [1], it was investigated some properties of the hyperbolic Fibonacci numbers as defined F̃n = Fn + hFn+1 .
It is natural to marvel whether there exits a connection between the parameters hyperbolic numbers and Padovan, Perrin numbers. Motivated

by [1], the goal of this paper is to define hyperbolic Padovan and Perrin numbers(HPPN) with a different viewpoint. Then, we acquire the
Binet formulas, the generating functions, the summations of the HPPN. We also actually research the relations between the hyperbolic Padovan
and hyperbolic Perrin numbers.

2 The hyperbolic Padovan and Perrin numbers

In this section, we introduce the HPPN. Also, we present some properties of these numbers such as the Binet formulas, the generating
functions and the relationships between the hyperbolic Padovan and Perrin numbers.

Definition 1. The hyperbolic Padovan (P̃n) and Perrin (R̃n) numbers are defined by

P̃n = Pn + hPn+1, (7)

and
R̃n = Rn + hRn+1, (8)

where n ∈ N,h2 = 1 and Pn, Rn are the Padovan and Perrin numbers, respectively.

It can be easily shown that
P̃n = P̃n−2 + P̃n−3 (9)

and
R̃n = R̃n−2 + R̃n−3. (10)

From the Equations (3), the HPPN with negative subscripts are defined by

P̃−n = −P̃−n+1 + P̃−n+3, (11)

and
R̃−n = −R̃−n+1 + R̃−n+3, (12)

where n ∈ N.

After all, we give the following Table 1. This table show that the first few HPPN with positive and negative subscripts.

n . . . -4 -3 -2 -1 0 1 2 3 4 . . .
P̃n . . . 0 h 1 h 1+h 1+h 1+2h 2+2h 2+3h . . .
R̃n . . . -3+2h 2+h 1-h -1+3h 3 2h 2+3h 3+2h 2+5h . . .

Table 1 The HPPN with positive and negative subscripts

Now, we give the Binet formulas for the HPPN and so find some well-known mathematical properties.
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Theorem 1. For any integer n, the Binet formulas for the HPPN are

P̃n = aãαn + bb̃βn + cc̃γn (13)

and
R̃n = ãαn + b̃βn + c̃γn, (14)

where α, β, γ, a, b, c are as the Equations (4) and ã = 1 + hα, b̃ = 1 + hβ, c̃ = 1 + hγ.

Proof: It can easily established by using the Definition 1 and the Equations (4). �

The generating functions of the HPPN are given in the following theorem.

Theorem 2. For the HPPN, we have the generating functions

i)
∞∑
i=0

P̃ix
i =

1 + h+ (1 + h)x+ hx2

1− x2 − x3
,

ii)
∞∑
i=0

R̃ix
i =

3 + 2hx+ (3h− 1)x2

1− x2 − x3
.

Proof:

i) Let f(x) =
∞∑
i=0

P̃ix
i. Then we have

f(x) = P̃0 + P̃1x+ P̃2x
2 + · · ·+ P̃nx

n + · · · . (15)

Multiplying both sides of the Equation (15) by −x2 and −x3, then we get

−x2f(x) = −P̃0x
2 − P̃1x

3 − P̃2x
4 − · · · − P̃nx

n+2 − · · · , (16)

−x3f(x) = −P̃0x
3 − P̃1x

4 − P̃2x
5 − · · · − P̃nx

n+3 − · · · . (17)

By considering the Equations (15), (16), (17) and Definition 1, it is obtained the equation

(1− x2 − x3)f(x) = P̃0 + xP̃1 + x2(P̃2 − P̃0),

as needed.
ii) Similarly, we obtain equation in ii).

�

Next, we present the formulas which give the summation of the HPPN.

Theorem 3. For n ≥ 0, the following formulas are true:

i)
∑n

r=0 P̃r = P̃n+5 − 2− 3h ,
∑n

r=0 P̃2r = P̃2n+3 − 1− h ,
∑n

r=0 P̃2r+1 = P̃2n+4 − 1− 2h ,
ii)

∑n
r=0 R̃r = R̃n+5 − 2− 5h ,

∑n
r=0 R̃2r = R̃2n+3 − 2h ,

∑n
r=0 R̃2r+1 = R̃2n+4 − 2− 3h .

Proof: We will establish the first part of i), since the proof of the others can be done similarly with it. The proof will be contacted just the result
of Theorem 1. Thus, we consider:

n∑
r=0

P̃r =

n∑
r=0

(aãαr + bb̃βr + cc̃γr)

= aã
αn+1 − 1

α− 1
+ bb̃

βn+1 − 1

β − 1
+ cc̃

γn+1 − 1

γ − 1
.

At this point, by simplifying the last equality, we give first part of the equality in i) as required. �

Theorem 4. The relations of between the HPPN are

i) 3P̃n−5 + 2P̃n−4 = R̃n,
ii) 10R̃n + 8R̃n−1 + R̃n−2 = 23P̃n,
iii) P̃n+r = Pr−3(Pn−2 + hPn−1) + Pr−2(Pn + hPn+1) + Pr−1(Pn−1 + hPn),
iv) R̃n+r = Pr−3(Rn−2 + hRn−1) + Pr−2(Rn + hRn+1) + Pr−1(Rn−1 + hRn),
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where n, r ∈ Z+.

Proof:

i) The result is obtained by using Definition 1 and Equation (5). That is, we have

3P̃n−5 + 2P̃n−4 = 3(Pn−5 + hPn−4) + 2(Pn−4 + hPn−3)

= Rn + hRn+1 ,

as required.
ii) The proof can be done quite similarly as the part i) by using Definition 1 and Equations (5).
iii) Using the Equation (2), Definition 1 and Table 1, it was obtained
P̃n+1 = Pn+1 + hPn + hPn−1,
P̃n+2 = hPn+1 + (1 + h)Pn + Pn−1,
P̃n+3 = (1 + h)Pn+1 + (1 + h)Pn + hPn−1,
...
P̃n+r = Pr−3(Pn−2 + hPn−1) + Pr−2(Pn + hPn+1) + Pr−1(Pn−1 + hPn).
iv) Using the Equation (1), Definition 1 and Table 1, it was obtained
R̃n+1 = Rn+1 + hRn + hRn−1,
R̃n+2 = hRn+1 + (1 + h)Rn +Rn−1,
R̃n+3 = (1 + h)Rn+1 + (1 + h)Rn + hRn−1,
...
R̃n+r = Pr−3(Rn−2 + hRn−1) + Pr−2(Rn + hRn+1) + Pr−1(Rn−1 + hRn).

�

Theorem 5. For n ∈ N, we obtain the identities relation with the HPPN:

i) P̃n + P̃n = 2Pn and R̃n + R̃n = 2Rn,
ii) P̃nP̃n = −Pn+3Pn−4 and R̃nR̃n = −Rn+3Rn−4,
iii) P̃ 2

n + P̃nP̃n = 2PnP̃n and R̃2
n + R̃nR̃n = 2RnR̃n.

Proof:

i) By using Definition 1, we acquire

P̃n + P̃n = Pn + hPn+1 + Pn − hPn+1 = 2Pn

and

R̃n + R̃n = Rn + hRn+1 +Rn − hRn+1 = 2Rn .

ii) It is easily showed by using the Equations (1), (2) and (6).
iii) By considering i), we get

P̃ 2
n = P̃n(2Pn − P̃n)

and

R̃2
n = R̃n(2Rn − R̃n) .

�

3 Conclusion

In this paper, we defined the hyperbolic Padovan and Perrin numbers. In addition, Binet’s formulas for the hyperbolic Padovan and Perrin
numbers are given. Furthermore, the relationships, the generating functions and the summations of these numbers are presented.
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1 Introduction

Wijsman [10] introduced the famous concept of “Wijsman convergence” by using the pointwise convergence of distance functions. Many
authors have worked on this concept and its generalizations. The notion of Wijsman statistical convergence was first given by Nuray and
Rhoades [4]. Kişi and Nuray [3] gave the definitions of Wijsman I-convergence and Wijsman I∗-convergence by using the concept of ideal.
Hazarika and Esi [2] defined the idea of asymptotically equivalent sequences of sets in the sense of ideal Wijsman convergence.

As for the concept of rough convergence, it was first introduced by Phu [7] in finite dimensional normed spaces. Defining the rough limit
set, he gave some essential results related to this set. Aytar [1] examined the relation between core and rough limit set of a sequence.

The ideas of rough convergence and Wijsman convergence has been combined by many authors. In this sense, Ölmez and Aytar [5] first
defined the notion of rough Wijsman convergence. Ölmez et al. [6] gave the equivalent definition of rough Wijsman convergence. Subramanian
and Esi [8, 9] defined the concepts of rough Wijsman convergence and rough Wijsman statistical convergence for a triple sequence of sets,
respectively.

Wijsman [11] gave two necessary conditions for the Wijsman convergence of a sequence of sets, depending on the elements of the limit
set of this sequence. In this paper, we generalized these necessary conditions for rough Wijsman convergence. In this context, we gave first
necessary condition as Theorem 2 in case the point belongs to the limit set. Then we proved another necessary condition as Theorem 3 in case
the point does not belong to the r expansion of the limit set. As the last necessary condition, we have given Theorem 4 whenever the point is
between the r expansion of the limit set and the limit set.

2 Rough Wijsman convergence

Throughout this paper, we assume that X is a nonempty set and ρX is a metric on X and A, An are nonempty closed subsets of X for each
n ∈ N.

Let r be a nonnegative real number. The sequence {xn} is said to be rough convergent to xwith the roughness degree r, denoted by xn
r→ x,

if for each ε > 0 there exists an n (ε) ∈ N such that ρX(xn, x) < r + ε for each n ≥ n (ε) [7].
The r-limit set of the sequence {xn} is denoted by

LIMrxn = {x ∈ X : xn
r→ x} [7].

The distance function d(·, A) : X → [0,∞) is defined by the formula

d(x,A) = inf{ρX(x, y) : y ∈ A} [10].

The closed ball with centre a ∈ X and radius r > 0 is the set

B(a, r) = {x ∈ X : ρX(a, x) ≤ r}.

It is clear that B(A, r) = {x ∈ X : d(x,A) ≤ r}.
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We say that the sequence {An} is Wijsman convergent to the set A if

lim
n→∞

d(x,An) = d(x,A) for all x ∈ X.

In this case, we write An
W→ A, as n→∞ [10].

The set A is called Wijsman cluster point of the sequence {An} provided that there is a subsequence that Wijsman converges to A. In this
case L{An} denotes the set of all cluster points of the sequence {An}.

A sequence {An} is said to be r−Wijsman convergent to the set A if for every ε > 0 and each x ∈ X there is an N(x, ε) ∈ N such that

|d(x,An)− d(x,A)| < r + ε for all n ≥ N(x, ε)

and we write d(x,An)
r→ d(x,A) or An

r−W→ A as n→∞ [5].
Now define

1− LIMrAn = {A ⊂ X : d(x,An)
r→ d(x,A)} (1)

and
2− LIMrAn =

⋂
c∈L{An}

B(c, r) = {A ∈ X : L{An} ⊆ B(A, r)} [6]. (2)

Then, for the usual rough convergence of a sequence of elements in any metric space, the sets defined by the equalities (1) and (2) coincide
with each other. But these sets are not equal for an arbitrary sequence of sets. The following example compares the sets 1− LIMrAn and
2− LIMrAn.

Example 1. Let X = R2 and define a sequence {An} as follows:

An :=

{ [
−4,−1− 1

n

]
× [−1, 1] , if n is an odd integer[

1 + 1
n , 4

]
× [−1, 1] , if n is an even integer

.

This sequence is not Wijsman convergent to the set A = [−1, 1]× [−1, 1] . But, this sequence is r−Wijsman convergent to the set A for r ≥ 3.
Moreover, we have A ∈ 1− LIMrAn and

2− LIMrAn = B ([1, 4]× [−1, 1], 3) ∩B ([−4,−1]× [−1, 1], 3)
= [−2, 2]× [−4, 4]

for r = 3. Hence, the definition of 1− LIMrAn does not coincide with that of 2− LIMrAn.

Ölmez et al. [6] gave the following equivalent definition of rough Wijsman convergence.

Proposition 1 ([6]). A sequence {An} is r−Wijsman convergent to the set A if and only if

lim sup
n→∞

|d(x,An)− d(x,A)| ≤ r

for each x ∈ X.

If a sequence of sets is Wijsman convergent, then this sequence r-Wijsman converges to the same set for each r. However, there are some
sequences of sets which are r-Wijsman convergent, but not Wijsman convergent as can be seen in the following Example 2.

Example 2. Define

An :=
{
(x, y) ∈ R2 : |y| − n ≤ x ≤ − |y|

}
and A =

{
(x, y) ∈ R2 : |y| ≥ x

}
∪ {(3, 0)}. Firstly we show that the sequence {An} is not Wijsman convergent to the set A.

Let ε > 0 and (x∗, y∗) = (5, 0) ∈ R2. Since we have

d((x∗, y∗), An) = 5 and d((x∗, y∗), A) = 2,

there exists an n1 = n1 ((x
∗, y∗) , ε) such that ∣∣d((x∗, y∗), An)− d((x∗, y∗), A)

∣∣ = 3 ≮ ε

for each n ≥ n1. Then we obtain An
W9 A. But, this sequence is rough Wijsman convergent to the same set for r ≥ 3.

We will end this section recalling the Wijsman’s theorem for classical convergence.

Theorem 1 ([11]). If the sequence {An} of sets is Wijsman convergent to the setA then d(x,An)→ 0 as n→∞ for every x ∈ A and lim inf
n→∞

d(x,An) > 0 for every x /∈ A.
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3 Necessary conditions for Rough Wijsman convergence

In this section, we will generalize the Theorem 1 given by Wijsman [11] for classical convergence to the rough convergence theory. First, we
will give a necessary condition for the points that are elements of the limit set.

Theorem 2. If the sequence {An} is rough Wijsman convergent to the set A with the roughness degree r then the sequence {d(x,An)} rough
Wijsman converges to the function 0 with the same roughness degree r for each x ∈ A.

Proof: Assume that An
r−W→ A. Then we have d(x,An)

r→ d(x,A) for all x ∈ X . Since A ⊂ X and d(x,A) = 0 for each x ∈ A, we have
d(x,An)

r→ d(x,A) = 0. �

The second condition of the Theorem 1 for rough Wijsman convergence does not in general. In other words, as can be seen from Example
3 below, there exists a sequence {An} that are rough Wijsman convergent and that does’t satisfy the condition lim inf

n→∞
d(x,An) > r for all

x /∈ A.

Example 3. Define An := [0, 1]×
{

1
n

}
and A = [−1, 1]× {(0, 0)} in the space R2 equipped with the Euclid metric.

First we show that the sequence {An} is not Wijsman convergent to the set A.
Let ε > 0 and (x∗, y∗) ∈ R2. Then we calculate

d
((
x∗, y∗

)
, A
)
=


|y∗| , if − 1 ≤ x∗ ≤ 1 and y∗ ∈ R√

(x∗ − 1)2 + (y∗ − 0)2 , if x∗ > 1 and y∗ ∈ R√
(x∗ + 1)2 + (y∗ − 0)2 , if x∗ < −1 and y∗ ∈ R

.

Similarly, d ((x∗, y∗) , An) can be easily calculated. Then there exists an n1 = n1 ((x
∗, y∗) , ε) such that it can be easily obtained

∣∣d ((x∗, y∗) , An
)
− d

((
x∗, y∗

)
, A
)∣∣ ≤ 1 + ε

for each n ≥ n1 using the inequality
√

(x∗ − x)2 + (y∗ − y)2 ≤ |x∗ − x|+ |y∗ − y| . Hence, it is proved that An
r−W−→ A for every r ≥ 1.

Now if we take
(
3
2 , 0
)
/∈ A, then we have

d

((
3

2
, 0

)
, An

)
=

√(
3

2
− 1

)2

+

(
0− 1

n

)2

.

Since lim inf
n→∞

d
((

3
2 , 0
)
, An

)
= 1

2 ≯ r = 1, it follows that the condition is not hold.

At this point, the readers may have the following question: Is it possible to add an additional condition to the hypothesis of Theorem 1 or to
modify its hypothesis so that the Theorem 1 is valid for the rough Wijsman convergence? We answered this question in the following Theorems
2 and 3.

Theorem 3. If the sequence {An} is rough Wijsman convergent to the set A with the roughness degree r then we have lim inf
n→∞

d(x,An) > 0

for each x /∈ B(A, r).

Proof: SupposeAn
r−W→ A. Then, for every ε > 0 and each x ∈ X there exists anN(x, ε) ∈ N such that |d(x,An)− d(x,A)| < r + ε for all

n ≥ N(x, ε). If x /∈ B(A, r), then we have d(x,A) > r, that is d(x,A)− r > 0. Take ε̃ := d(x,A)−r
3 .We also have |d(x,An)− d(x,A)| <

r + ε̃ for this ε̃. Then we get

−r − ε̃ < d(x,An)− d(x,A) < r + ε̃.

Hence we have

0 < d(x,A)− r − ε̃ < d(x,An).

It is clear that

0 < lim inf
n→∞

(d(x,A)− r − ε̃) < lim inf
n→∞

d(x,An).

Since x is an arbitrary point, we have lim inf
n→∞

d(x,An) > 0 for each x /∈ B(A, r). �

Finally, we will end our work by giving the following necessary condition for rough Wijsman convergence.

Theorem 4. If the sequence {An} is rough Wijsman convergent to the set A with the roughness degree r then we have d(x,An)
2r→ 0, as

n→∞ for each x ∈ B(A, r)−A.
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Proof: If x ∈ B(A, r)−A, then we have x ∈ B(A, r) and x /∈ A. Thus we get d(x,A) ≤ r. Assume that An
r−W→ A. Let ε > 0. Then, for

every x ∈ X there exists an N(x, ε) ∈ N such that |d(x,An)− d(x,A)| < r + ε for all n ≥ N(x, ε). Then we have

−r − ε < d(x,An)− d(x,A) < r + ε.

Thus we get

d(x,An) < d(x,A) + r + ε

≤ r + r + ε

= 2r + ε.

If we apply limit superior both sides of the inequality, then we have

lim sup
n→∞

d(x,An) ≤ lim sup
n→∞

(2r + ε)

≤ 2r + ε.

Since ε is arbitrarily, we have lim sup
n→∞

d(x,An) ≤ 2r. By Proposition 1, we conclude d(x,An)
2r→ 0. �
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1 Introduction

The objective of this paper is to investigate the existence of nontrivial solutions of the nonlinear elliptic problem{
−∆pu−∆qu = λP (x)

(
u+)p−1 − µQ (x)

(
u−
)q−1

in Ω

u = 0 on ∂Ω
(1)

where ∆r represents the r-Laplace operator defined by ∆ru := div(|∇u|r−2∇u) with r ∈ {p, q} and 1 < q ≤ p <∞. The weights P,Q ∈
L∞(Ω) and u = u+ − u− is the solution of the problem (1) where u± = max {0,±u}.
Hereinafter, the sign W 1,p

0 (Ω) denotes the standard Sobolev space equipped with the norm ||.||1,r and ||.||r will denote the norm in Lr(Ω).
The Fučik spectrum of the (p, q)-Laplacian operator with the Dirichlet boundary condition is defined as the set Σp,q of those (λ, µ) ∈ R2 such
that the problem (1) has a non-trivial solution in the Sobolev space W 1,p

0 (Ω).
The notion of Fučik spectrum was introduced for p = 2 in the 1970’s by Fučik [5] and Dancer [2] in connection with the study of the jumping
nonlinearities. The set Σ2 itself has attracted an enormous interest among mathematicians. For the linear case, we refer to [2] where it is proved
that the two lines λ1 × R and R× λ1 are isolated in Σ2. We also refer to [4] where the authors characterized and constructed variationnally
the first curve in Σ2 through (λ2, λ2).
In the quasilinear case, only the ODE situation (N = 1) seems to have been investigated in [3].

The Fučik spectrum as a notion, can be extended to nonlinear differential operators. We refer to [1] for the p-Laplacian operator where the
authors have constructed the curve in Σp and have shown that this is the first nonlinear curve.

This paper is devoted to study equation (1) as a constrained problem to which an appropriate min-max approach is applied to establish the
existence of non trivial solutions.
We have organized this work in two sections. The next section contains some necessary preliminaries which will be often used throughout the
paper. The last section contains the main result and its proof.

2 Preliminaries

We start this section by introducing the constrained case of the Palais-Smale condition. Let X a Banach space, we consider the manifold

S = {v ∈ X : F (v) = α}, α 6= 0

where F ∈ C1(X,R) such that for all v ∈ S, F ′(v) 6= 0.
Let now J ∈ C1(X,R) and c ∈ R. We say that J |S satisfies the Palais-Smale condition (in the level c) if any sequence (un, bn) ∈ S × R
such that

J(un)→ c in R and J ′(un)− bnF ′(un)→ 0 in X ′

contains a sub-sequence (unk , bnk )k that converges strongly in S × R.

Now we have the Ljusternick-Schnirelmann Theorem [6].
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Theorem 1. Suppose that F and J are even, that J is not constant, and satisfy the Palais-Smale condition on S and that 0 does not belong to
S. For any integer k ≥ 1 we put:

ck = inf
A∈Bk

sup
u∈A

J(v)

where
Bk = {A ∈ S(X);A ⊂ S, γ(A) ≥ k}

.
The S(X) designs the set of all closed symmetric subsets A of X such that 0 6∈ A. Then we have.

(i) For k ≥ 1 such that Bk 6= ∅ and ck ∈ R, ck is the critical value of j on S. Moreover ck ≤ ck+1, and for all integer j ≥ 1 we have
Bk+j 6= ∅ and ck ≤ ck+j ∈ R, then

γ(k(ck)) ≥ j + 1

where
k(ck) = {u ∈ S; J(u) = ck, there exist λ ∈ R such that E′(u) = λF ′(u)}.

(ii) If for any k ≥ 1 we have Bk 6= ∅ and ck ∈ R then
lim

k→+∞
ck = +∞.

The following theorem is called the Mountain-Pass Theorem.

Theorem 2. Let g, f ∈ C1(E,R),M = {u ∈ E : g(u) = 1} and u0, u1 ∈M. Assume that 1 is a regular value of g and that ‖ u1 − u0 ‖X>
ε for some ε > 0.
Also assume that f satisfies the Mountain-Pass geometry, that is

inf {f (u) : u ∈Met ‖ u− u0 ‖X= ε} > max {f (u0) , f (u1)}

and We also assume that f satisfies the Palais-Smale condition on M .
Then, the quantity

c = inf
γ∈Γ

max
u∈γ[−1,1]

f (u)

where
Γ = {γ ∈ C ([−1, 1] ,M) : γ (−1) = u0, γ (1) = u1}

is a critical value of f |M .

3 Main results

Let α > 0, β > 0 be fixed. We define the following manifold

Mα,β =

{
u ∈W 1,p

0 (Ω) :
α

p

∫
Ω
P (x)|u|pdx+

β

q

∫
Ω
Q (x)|u|qdx = 1

}
.

The variational approach of problem (1) is relying on the following functionals

Is,s0,t,t0 , Gα,β : W 1,p
0 (Ω) 7→ R

Is,s0,t,t0 =
1

p

∫
Ω
|∇u|pdx+

1

q

∫
Ω
|∇u|qdx− s

p

∫
Ω
P (x) |u+|pdx+

s0
p

∫
Ω
P (x) |u−|pdx

− t
q

∫
Ω
Q (x) |u−|qdx+

t0
q

∫
Ω
Q (x) |u+|qdx

and

Gα,β (u) =
α

p

∫
Ω
P (x) |u|pdx+

β

q

∫
Ω
Q (x) |u|qdx.

Thus, Is,s0,t,t0 , Gα,β ∈ C1
(
W 1,p

0 (Ω) ,R
)

. Let us define

I = Is,s0,t,t0 |Mα,β
.

The set Mα,β is a smooth sub-manifold of W 1,p
0 (Ω) and thus I is C1. By Lagrange multipliers rule, u ∈Mα,β is a critical point of I if and

only if there exists λ ∈ R such that

I
′
(u)v = λG′α,β(u)v,∀v ∈W 1,p

0 (Ω) .

Let us describe the relationship between the critical points of I and the Fučik spectrum of problem (1). Given s > 0 and t > 0, one has that
(αc+ s, βc+ t) belongs to the spectrum Σp,q if and only if there exits a critical point u ∈Mα,β of I such that c = I(u).
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In order to construct a critical point of I , let us first check the Palais-Smale condition.

Lemma 3. I satisfies the Palais-Smale condition on the sub-manifold Mα,β .

Proof: Let {un}n∈N ⊂Mα,β and {cn}n∈N ⊂ R be sequences such that for some constant K > 0 we have

|Is,s0,t,t0 (un) | ≤ K (2)

and

|
∫
Ω
|∇un|p−2∇un∇vdx+

∫
Ω
|∇un|q−2∇un∇vdx− (αcn + s)

∫
Ω
P (x)

(
u+
n

)p−1
vdx

− (βcn + t)

∫
Ω
Q (x)

(
u−n
)q−1

vdx− (αcn − s0)

∫
Ω
P (x)

(
u−n
)p−1

vdx

− (βcn − t0)

∫
Ω
Q (x)

(
u+
n

)q−1
vdx| ≤ ξn ‖ v ‖W 1,p

0 (Ω)
(3)

for all v ∈W 1,p
0 (Ω), where εn −→ 0.

From (2) it follows that the sequence un remains bounded in W 1,p
0 (Ω). Consequently, for a subsequence, un converges strongly in Lp (Ω)

and weakly in W 1,p
0 (Ω). Note this limit by u.

In order to show that un → u in W 1,p
0 (Ω) we remind that

−∆r : W 1,r
0 (Ω) −→W 1,r

0 ((Ω))∗

with r = p or q, owns the (S+) property. It is to say that if un ⇀ u in W 1,r
0 (Ω) and lim sup

n→∞

∫
Ω |∇un|

r−2∇un∇ (un − u) ≤ 0, then

un −→ u in W 1,r
0 (Ω).

Putting v = un − u in (3), we get ∫
Ω
|∇un|p−2∇un∇ (un − u) dx+

∫
Ω
|∇un|q−2∇un∇ (un − u) dx

= (αcn + s)

∫
Ω
P (x)

(
u+
n

)p−1
(un − u) dx+ (βcn + t)

∫
Ω
Q (x)

(
u−n
)q−1

(un − u) dx

+ (αcn − s0)

∫
Ω
P (x)

(
u−n
)p−1

(un − u) dx+ (βcn − t0)

∫
Ω
Q (x)

(
u+
n

)q−1
(un − u) dx.

Since ∫
Ω
|∇un|p−2∇un∇ (un − u) −→

n→+∞
0

and ∫
Ω
|∇un|q−2∇un∇ (un − u) −→

n→+∞
0

and according to the (S+) property we obtain that un −→ u in W 1,p
0 (Ω) . �

In the next step, we will look for local minimizers of the functional

J : W 1,p
0 (Ω) 7→ R

defined by

J (u) =
1

p

∫
Ω
|∇u|pdx+

1

q

∫
Ω
|∇u|qdx

to fulfill the Mountain-Pass geometry of the functional I .

Lemma 4. For any integer k ∈ N, the set

Bk = {A ∈ S(W 1,p
0 (Ω));A ⊂ S, γ(A) ≥ k}

is not empty. In particular if Xk ⊂W
1,p
0 (Ω) is a sub-space of dimension, then γ(Mα,β ∩Xk) = k.

Proof: Let Xk a sub-space of W 1,p
0 (Ω) such that dimXk = k. We can show easily that (Xk ∩Mα,β) is a symmetrical and closed set that

does not contain the origin, so γ(Mα,β ∩Xk) is well defined.
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Let now S be the unit sphere in W 1,p
0 (Ω). Denote by P : u 7→ 1

||u||1,p
u, u 6= 0 the radial projection in W 1,p

0 (Ω). Then P is a bijection

between Mα,β and S. We have
P (Xk ∩Mα,β) = Xk ∩ P (Mα,β) = Xk ∩ S.

So P is a homeomorphism between Xk ∩Mα,β and Xk ∩ S. Since P is odd we get

γ(Xk ∩Mα,β) = γ(Xk ∩ S).

According to the genus properties we have
γ(Xk ∩Mα,β) = k.

�

Similar arguments as those used in Lemma (3) show that J satisfies the Palais-Smale condition onMα,β . Combing this fact and the previous
Lemma, one can get by the Ljusternick-Schnirelmann theorem that for any k ∈ N the quantity

ck := inf
A∈Bk

sup
u∈A

J (u)

is a critical value of the functional J with respect to the manifoldMα,β . Hence, a sequence of critical points that we note by {u1
k}k∈N ⊂Mα,β

also exists.
Next we give the main result of the paper.

Theorem 5. For s > 0, t > 0

1.
cn (s, t) = inf

γ∈Γ
max

u∈γ[−1,1]
Is,s0,t,t0(u)

is a sequence of critical value of Is,s0,t,t0 , where

Γ = {γ ∈ C
(
[−1, 1] ,Mα,β

)
: γ (−1) = −u1

k, γ (1) = u1
k}.

2. The curve (s+ cn (s, t) , t+ cn (s, t)) ∈ Σp,q .

Proof:

1. First we have: u1
k, (−u

1
k) ∈Mα,β , then for any ε > 0 we have

‖ u1
k −

(
−u1

k

)
‖1,p= 2 ‖ u1

k ‖1,p> ε.

Now we show that
inf{Is,s0,t,t0 (u) : u ∈Mα,β , ‖ u−

(
−u1

k

)
‖1,p= ε} > max{Is,s0,t,t0

(
−u1

k

)
, Is,s0,t,t0

(
u1
k

)
}.

Since ck is a critical value of J , there exists a Lagrange multiplier ϑk ∈ R and u ∈Mα,β such that

J ′ (u) = ϑkG
′
α,β(u).

In other words, we have ∫
Ω
|∇u|p−2∇u∇vdx+

∫
Ω
|∇u|q−2∇u∇vdx = αϑk

∫
Ω
P (x)|u|p−2uv

+βϑk

∫
Ω
Q(x)|u|q−2uvdx.

Taking u = v in the last equation, we get

1

p

∫
Ω
|∇u|pdx+

1

q

∫
Ω
|∇u|qdx = ϑk(

α

p

∫
Ω
P (x)|u|pdx+

β

q

∫
Ω
Q (x)|u|qdx.

Since u ∈Mα,β , we obtain

J (u) = ϑk.

So ck = ϑk and

max{I∼s,s0,t,t0
(
−u1

k

)
, I∼s,s0,t,t0

(
u1
k

)
} = ck.

In the other hand, we have
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1

p

∫
Ω
|∇u|pdx+

1

q

∫
Ω
|∇u|qdx < 1

p

∫
Ω
|∇u|pdx+

1

q

∫
Ω
|∇u|qdx− s

p

∫
Ω
P (x) |u+|pdx+

s0
p

∫
Ω
P (x) |u−|pdx− t

q

∫
Ω
Q (x) |u−|qdx+

t0
q

∫
Ω
Q (x) |u+|qdx

for all u ∈Mα,β . Then, it results

inf
A∈Bk

sup
w∈A

I(w) < I(u)

wich apply that

inf
A∈Bk

sup
w∈A

I(w) < inf I(u)

for any u ∈Mα,β . Consequently,

inf
A∈Bk

sup
w∈A

I(w) < inf{I(u);u ∈Mα,β , ‖ u− (−u1
k) ‖1,p= ε}

and this provides the following estimate
inf{I (u) ;u ∈Mα,β , ‖ u−

(
−u1

k

)
‖1,p= ε} > ck.

Since I verifies the Palais-Smale condition and 1 is a regular value of Gα,β , then

cn (s, t) = inf
γ∈Γ

max
u∈γ[−1,1]

Is,s0,t,t0 (u)

is a critical value of Is,s0,t,t0 .
2. (s+ cn (s, t) , t+ cn (s, t)) ∈ Σp,q if and only if there exist a critical point u ∈Mα,β such that cn = Is,s0,t,t0 (u), and since 1 is satisfaite
then the curve

(s+ cn (s, t) , t+ cn (s, t)) ∈ Σp,q.

�

Lemma 6. If cn (s, t) = infγ∈Γ maxu∈γ[−1,1] Is,s0,t,t0 (u) is a critical value of Is,s0,t,t0 then s0 = αcn and t0 = βcn.

Proof: We have cn = cn (s, t) is a critical value of Is,s0,t,t0 then

I ′s,s0,t,t0(un) = cnG
′
α,β(un)

where un is the critical point associated to cn.
For any v ∈W 1,p

0 (Ω), we have

I ′s,s0,t,t0(un)v = G′α,β(un)v

that is ∫
Ω
|∇un|p−2∇un∇vdx+

∫
Ω
|∇un|q−2∇un∇vdx− s

∫
Ω
P (x) |u+

n |p−1vdx+ s0

∫
Ω
P (x) |u−n |p−1vdx

−t
∫
Ω
Q (x) |u−n |q−1vdx+ t0

∫
Ω
Q (x) |u+

n |q−1vdx

= cn

(
α

∫
Ω
P (x) |un|p−2unvdx+ β

∫
Ω
Q (x) |un|q−2unvdx

)
.

Consequently ∫
Ω
|∇un|p−2∇un∇vdx+

∫
Ω
|∇un|q−2∇un∇vdx

= (αcn + s)

∫
Ω
P (x) |u+

n |p−1vdx+ (βcn + t)

∫
Ω
Q (x) |u−n |q−1vdx

+(αcn − s0)

∫
Ω
P (x) |u−n |p−1vdx+ (βcn − t0)

∫
Ω
Q (x) |u+

n |q−1vdx.

Taking

(αcn − s0)

∫
Ω
P (x) |u−n |p−1vdx+ (βcn − t0)

∫
Ω
Q (x) |u+

n |q−1vdx = 0

we get as required

αcn = s0 and βcn = t0.

�
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4 Conclusion

We conclude that the Fučik sepectrum of the (p, q)− Laplacian operator is essentially made up by a groupe of curves Cn given by

Cn = (s+ cn (s, t) , t+ cn (s, t))

where cn is a sequence of critical value.
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1Department of Mathematics, Dicle University, Diyarbakır, Turkey, ORCID:0000-0002-8176-332X
2Department of Mathematics, Dicle University, Diyarbakır, Turkey, ORCID:0000-0001-6587-4479
* Corresponding Author E-mail: tugrulcomertt@gmail.com
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1 Introduction

In this paper, we consider the global existence and decay of weak solutions for the higher-order parabolic equation with logarithmic nonlinearity ut + Pu = ur−2u ln |u| , x ∈ Ω, t > 0,
Dγu(x, t) = 0, |γ| ≤ m− 1, x ∈ ∂Ω, t > 0,
u(x, 0) = u0(x), x ∈ Ω,

(1)

where P = (−∆)m, m ≥ 1 a positive integer, Ω is a bound domain in Rn with smooth boundary ∂Ω, γ = (γ1, γ2, ..., γn) is multi-index, γi
(i = 1, 2, ..., n) are positive integers, |γ| = γ1 + γ2 + ...+ γn, D

γ = ∂|γ|

∂x
γ1
1 ∂x

γ2
2 ...∂xγn

n

are derivative operator, ∆ =
n∑
i=1

∂2

∂x2
i

is the Laplace

operator and {
2 ≤ r ≤ +∞, n = 1, 2,
2 ≤ r ≤ 2n

n−2 , n ≥ 3.

When m = 1, the equation (1) becomes a heat equation as follows

ut −∆u = ur−2u ln |u| ,

where 2 ≤ r, was considered by many authors ([1], [3], [8]). In the case of r = 2, Chen et al. [1] obtained under some suitable conditions for
the existence of global, decay estimate and blow-up at +∞ of weak solutions, by using the logarithmic Sobolev inequality and potential well
method. In the case of 2 < k, Peng and Zhou [8] studied the existence of the unique global weak solutions and blow-up in the finite time of
weak solutions, by using potential well method and energy method.

When m = 2, Li and Liu [5] considered the following equation

ut + ∆2u = ur−2u ln |u| ,

where 2 < r. They studied the existence of global solutions, by using potential well technique. In addition, they also studied result of decay
and blow-up in the finite time for weak solutions.

Recently some authors studied higher-order parabolic and hyperbolic type equation ([2], [4], [9], [11], [12]).
This paper is organized as follows. In Section2, some important Lemmas are given. In Section 3, the main result is proved.

2 Preliminaries

In this section, we material needed for proving the main result is introduced. Let ‖.‖r and ‖.‖ denote the usual Lr(Ω) norm and L2(Ω) norm.
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For u ∈ Hm
0 (Ω)\{0}, we define

J(u) =
1

2

∥∥∥P 1
2 u
∥∥∥2
− 1

r

∫
Ω
|u|r ln |u| dx+

1

r2
‖u‖rr , (2)

I(u) =
∥∥∥P 1

2 u
∥∥∥2
−

∫
Ω
|u|r ln |u| dx, (3)

J(u) =
1

r
I(u) +

(
1

2
− 1

r

)∥∥∥P 1
2 u
∥∥∥2

+
1

r2
‖u‖rr . (4)

Further, we define the potential depth by
d = inf

u∈N
J(u), (5)

N = {u ∈ Hm
0 (Ω)\{0} : I(u) = 0}.

Lemma 1. Let k be a number with 2 ≤ k < +∞, n ≤ 2m and 2 ≤ k ≤ 2n
n−2m , n > 2m. Then there is a constant C depending

‖u‖k ≤ C
∥∥∥P 1

2 u
∥∥∥ , ∀u ∈ Hm

0 (Ω) .

Lemma 2. Let u ∈ Hm
0 (Ω)\{0}. we consider the function j : λ→ J(λu) for λ > 0. Then we get

(i) limλ→0+ j(λ) = 0 and limλ→+∞ j(λ) = −∞;
(ii) there is a unique λ∗ > 0 such that j′(λ∗) = 0;
(iii) j(λ) is increasing on (0, λ∗), decreasing on (λ∗,+∞) and taking the maximum at λ∗;
(iv) I(λu) > 0 for λ ∈ (0, λ∗) , I(λu) < 0 for λ ∈ (λ∗,+∞) and I(λ∗u) = 0.

Proof: For u ∈ H1
0 (Ω)\{0}, by the definition of j, we get

j(λ) =
λ2

2

∥∥∥P 1
2 u
∥∥∥2
− λr

r

∫
Ω
|u|r ln |u| dx− λr

r
lnλ ‖u‖rr +

λr

r2
‖u‖rr . (6)

We see that (i) holds due to
∫

Ω |u|
r dx 6= 0. We have

d

dλ
j(λ) = λ

(∥∥∥P 1
2 u
∥∥∥2
− λr−2

∫
Ω
|u|r ln |u| dx− λr−2 lnλ ‖u‖rr

)
.

Let φ(λ) = λ−1j′(λ), thus we obtain

φ(λ) =
∥∥∥P 1

2 u
∥∥∥2
− λr−2

∫
Ω
|u|r ln |u| dx− λr−2 lnλ ‖u‖rr .

Then

φ′(λ) = −(r − 2)λr−3
∫
Ω
|u|r ln |u| dx− (r − 2)λr−3 lnλ ‖u‖rr − λ

r−3 ‖u‖rr ,

which yields that there exists a λ∗ > 0 such that φ′(λ) > 0 on (0, λ∗), ϕ′(λ) < 0 on (λ∗,+∞) and ϕ′(λ) = 0. So, φ(λ) is increasing on

(0, λ∗), decreasing on (λ∗,+∞). Since limλ→0+ φ(λ) =
∥∥∥P 1

2 u
∥∥∥2

> 0, limλ→+∞ φ(λ) = −∞, there exists a unique λ∗ > 0 such that

ϕ(λ∗) = 0, i.e., j′(λ∗) = 0. So, (ii) holds. Then, j′(λ) = λφ(λ) is positive on (0, λ∗), negative on (λ∗,+∞). Thus, j(λ) is increasing on
(0, λ∗), decreasing on (λ∗,+∞) and taking the maximum at λ∗. So, (iii) holds. By (3), we get

I(λu) = λ2
∥∥∥P 1

2 u
∥∥∥2
− λr

∫
Ω
|u|r ln |u| dx− λr lnλ ‖u‖rr

= λj′(λ).

Thus, I(λu) > 0 for λ ∈ (0, λ∗) , I(λu) < 0 for λ ∈ (λ∗,+∞) and I(λ∗u) = 0. So, (iv) holds. Therefore, the proof is completed. �

Lemma 3. ([6]) Let g : R+ → R+ be a nonincreasing function and σ is a nonnegative constant such that∫+∞

t
g1+σ(s)ds ≤ 1

ω
gσ(0)g(t), for all t ≥ 0.

Hence
(a) g(t) ≤ g(0)e1−ωt, ∀t ≥ 0, whenever σ = 0,

(b) g(t) ≤ g(0)
(

1+σ
1+ωσt

) 1
σ
, ∀t ≥ 0, whenever σ > 0.
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3 Main results

Now as in ([7]), we consider the following notations:

W1 = {u ∈ Hm
0 (Ω)\{0} : J(u) < d}, W2 = {u ∈ Hm

0 (Ω)\{0} : J(u) = d}, W =W1 ∪W2,

W+
1 = {u ∈ W1 : I(u) > 0}, W+

2 = {u ∈ W2 : I(u) > 0}, W+ =W+
1 ∪W

+
2 ,

W−1 = {u ∈ W1 : I(u) < 0}, W−2 = {u ∈ W2 : I(u) < 0}, W− =W−1 ∪W
−
2 .

We call the setW the potential well and d the depth ofW.

Definition 1. (Maximal Existence Time). Suppose that u(t) be weak solutions of problem (1). We define the maximal existence time Tmax as
follows

Tmax = sup{T > 0 : u(t) exists on [0, T ]}.

Then
(i) If Tmax <∞, we say that u(t) blows up in finite time and Tmax is the blow-up time;
(ii) If Tmax =∞, we say that u(t) is global.

Theorem 1. (Global Existence). Let u0 ∈W+
1 . Then the problem of (1) admits a unique global weak solution such that

u(t) ∈ W+
1 , 0 ≤ t < +∞,

and the energy estimate ∫ t
0
‖us(s)‖2 ds+ J(u(t)) ≤ J(u0), 0 ≤ t < +∞.

Also, the solution decay exponential provided u0 ∈ W+
1 .

Proof: The Faedo-Galerkin’s methods is used. In the space Hm
0 (Ω), we take a bases {wj}∞j=1 and define the finite orthogonal space

Vs = span{w1, w2, ..., ws}.

Let u0s be an element of Vs such that

u0s =

s∑
j=1

asjwj → u0, in Hm
0 (Ω), (7)

as s→∞. We find the approximate solution us(x, t) of the problem (1) in the form

us(x, t) =

s∑
j=1

asj(t)wj(x), (8)

where the coefficients asj (1 ≤ j ≤ s) satisfy the ordinary differential equations∫
Ω
ustwidx+

∫
Ω
Puswidx =

∫
Ω
|us|r−2 us ln |us|widx, (9)

for i ∈ {1, 2, ..., s}, with the initial condition
asj(0) = asj , j ∈ {1, 2, ..., s}. (10)

We multiply both sides of (9) by a′si, summing over i from 1 to s and integrating with respect to time variable on [0, t], we get∫ t
0
‖usτ (τ)‖2 ds+ J(us(t)) ≤ J(u0s), 0 ≤ t ≤ Tmax. (11)

where Tmax is the maximal existence time of solution us(t). We shall prove that Tmax = +∞. By (7), (11) and the continuity of J , we obtain

J(us(0))→ J(u0s), as s→∞. (12)

Thanks to J(u0) < d and the continuity of functional J, it follows from (12) that

J(u0s) < d, for sufficiently large m.

And therefore, from (11), we get ∫ t
0
‖usτ (τ)‖2 ds+ J(us(t)) < d, 0 ≤ t ≤ Tmax, (13)
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for sufficiently large s. Next, we will study

us(t) ∈ W+
1 , t ∈ [0, Tmax), (14)

for sufficiently large s. We suppose that (14) does not hold and think that there exists a smallest time t0 such that us(t0) /∈ W+
1 . Then, by

continuity of us(t0) ∈ ∂W+
1 . So, we get

J(us(t0)) = d and I(us(t0)) = 0. (15)

Nevertheless, we see that (15) could not occur by (13) while if (15) holds then, by definition of d, we get

J(us(t0)) ≥ inf
u∈N

J(u) = d,

which also contradicts with (13). Moreover, we have (14), i.e., J(us(t)) < d, and I(us(t)) > 0, for any t ∈ [0, Tmax), for sufficiently large
s. Then, by (4), we obtain

d > J(us(t))

≥
(

1

2
− 1

r

)∥∥∥P 1
2 us(t)

∥∥∥2
+

1

r2
‖us(t)‖rr ,

which gives

‖us(t)‖rr < r2d and
∥∥∥P 1

2 us(t)
∥∥∥2

<
2r

r − 2
d. (16)

Since us(x, t) ∈ W+
1 for s large enough, it follows from (4) that J(us) ≥ 0 for s large enough. So, by (13) it follows for s large enough

∫ t
0
‖usτ (τ)‖2 ds < d. (17)

By (16), we know that Tmax = +∞. It follows from (16) and (17) that there exist a function u ∈ Hm
0 (Ω) and a subsequence of {us}∞j=1 still

denoted by {us}∞j=1 such that

us → u weakly star in L∞(0,∞;Hm
0 (Ω)), (18)

ust → ut weakly in L2(0,∞;L2(Ω)). (19)

By (18), (19) and Aubin-Lions compactness theorem, we obtain

us → u strongly in C([0,+∞];L2(Ω)).

This yields that

|us|r−2 us ln |us| → |u|r−2 u ln |u| a.e. (x, t) ∈ Ω× (0,+∞). (20)

By (16), we have ∫
Ω

(
|us(t)|r−1 ln |us(t)|

) 2r
2r−1

dx ≤ Cd := [e (r − 1)]−
2r

2r−1 |Ω|+ 2
2r

2r−1 r2d. (21)

Hence, it follows from (20) and (21) that

|us|r−2 us ln |us| → |u|r−2 u ln |u| weakly star in L∞(0,+∞;L
2r

2r−1 (Ω)) .

Then integrating (9) respect to t for 0 ≤ t <∞, we obtain

< ut, wi > + < P
1
2 u, P

1
2wi >=< |u|r−2 u ln |u| , wi > .

On the other hand, there exists a global weak solution u0 ∈ W+
1 of the problem (1).

Decay estimates
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Thanks to u0 ∈ W+
1 , we deduce from (4) that

J(u0) > J(u(t))

≥
(

1

2
− 1

r

)∥∥∥P 1
2 u(t)

∥∥∥2
+

1

r2
‖u(t)‖rr . (22)

From Lemma 2, (5) and I(u(t)) > 0, there exists a λ∗ > 1 such that I(λ∗u(t)) = 0. We get

d ≤ J(λ∗u(t))

≤ (λ∗)r
((

1

2
− 1

r

)∥∥∥P 1
2 u(t)

∥∥∥2
+

1

r2
‖u(t)‖rr

)
. (23)

Using (22) and (23), we get

d ≤ (λ∗)rJ(u0),

which yields that

λ∗ ≥
(

d

J(u0)

) 1
r

. (24)

By (3), we get

0 = I(λ∗u(t))

= (λ∗)rI(u(t)) +
[
(λ∗)2 − (λ∗)r

] ∥∥∥P 1
2 u(t)

∥∥∥2
− (λ∗)r ln(λ∗) ‖u(t)‖rr . (25)

Using (24) and (25), we get

(λ∗)rI(u(t)) =
[
(λ∗)r − (λ∗)2

] ∥∥∥P 1
2 u(t)

∥∥∥2
+ (λ∗)r ln(λ∗) ‖u(t)‖rr

≥
[
(λ∗)r − (λ∗)2

] ∥∥∥P 1
2 u(t)

∥∥∥2
. (26)

It follows from (24), (26) and Lemma 1 that

I(u(t)) ≥

[
1−

(
d

J(u0)

) 2−r
r

]∥∥∥P 1
2 u(t)

∥∥∥2

≥ C1 ‖u(t)‖2 , (27)

where C1 is constant. Integrating the I(u(τ)) with respect to τ over (t, T ), we obtain

∫T
t
I(u(τ))dτ = −

∫T
t

∫
Ω
uτ (τ)u(τ)dxdτ

=
1

2
‖u(t)‖2 − 1

2
‖u(T )‖2

≤ C2

2
‖u(t)‖2 , (28)

where C2 is constant. From (27) and (28), we have

∫T
t
C1 ‖u(t)‖2 ds ≤ C2

2
‖u(t)‖2 , for all t ∈ [0, T ]. (29)

Let T → +∞ in (29), we can have ∫∞
t
‖u(t)‖2 ds ≤ C3 ‖u(t)‖2 ,

where C3 = C2
2C1

. By Lemma 3, we have

‖u(t)‖2 ≤ ‖u(0)‖2 e1−
t
C3 , t ∈ [0,∞).

�
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1 Introduction

Long after the notion of convergence for double sequences was introduced by Pringsheim [1], using the notions of invariant mean, statistical
convergence etc., this notion was extended to new convergence notions by some authors [2, 3]. Recently, on the notions of statistical convergence
of order α and strongly p-Cesàro summability of order α for double sequences were studied by Çolak and Altın [4] and Savaş [5].

Over the years, on the various convergence notions for set sequences have been studied by many authors. One of them, discussed in this
study, is the notion of convergence in the Wijsman sense [6]-[8]. Using the notions of invariant mean, statistical convergence etc., this notion
was extended to new convergence notions for double set sequences by some authors [9]-[11]. In [10], Nuray and Ulusu studied on the notions of
invariant summability and invariant statistical convergence in the Wijsman sense for double set sequences. Recently, on the notions of statistical
convergence of order α and strongly p-Cesàro summability of order α for double set sequences were studied by Ulusu and Gülle [12].

In this study, using the notions of invariant mean and order η, we studied on new convergence notions in the Wijsman sense for double set
sequences.

More information on the notions of convergence for real or set sequences can be found in [14]-[17].

2 Definitions and notations

In this section, let us remind the basic notions that need for a better understanding of our study (see, [7], [9]-[12], [17]).
For a metric space (Y, d), µ(y, C) denote the distance from y to C where

µ(y, C) := µy(C) = inf
c∈C

d(y, c)

for any y ∈ Y and any non-empty set C ⊆ Y .
For a non-empty set Y , let a function g : N→ PY (the power set of Y ) is defined by g(m) = Cm ∈ PY for eachm ∈ N. Then, the sequence

{Cm} = {C1, C2, . . .}, which is the codomain elements of g, is called set sequences.
Throughout this study, (Y, d) will be considered as a metric space and C,Cmn will be considered as any non-empty closed subsets of Y .
The double set sequence {Cmn} is called convergent to the set C in the Wijsman sense if each y ∈ Y ,

lim
m,n→∞

µy(Cmn) = µy(C).

The double set sequence {Cmn} is called statistically convergent to the set C in the Wijsman sense if every ε > 0 and each y ∈ Y ,

lim
p,q→∞

1

pq

∣∣∣∣{(m,n) : m ≤ p, n ≤ q, ∣∣µy(Cmn)− µy(C)
∣∣ ≥ ε}∣∣∣∣ = 0.

Let σ be a mapping such that σ : N+ → N+ (the set of positive integers). A continuous linear functional ψ on `∞ is called an invariant
mean (or a σ-mean) if it satisfies the following conditions:
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1. ψ(xs) ≥ 0, when the sequence (xs) has xs ≥ 0 for all s,
2. ψ(e) = 1, where e = (1, 1, 1, . . .) and
3. ψ(xσ(s)) = ψ(xs) for all (xs) ∈ `∞.

The mappings σ are assumed to be one to one and such that σm(s) 6= s for all m, s ∈ N+, where σm(s) denotes the m th iterate of the
mapping σ at s. Thus ψ extends the limit functional on c, in the sense that ψ(xs) = limxs for all (xs) ∈ c.

The double set sequence {Cmn} is called invariant summable to the set C in the Wijsman sense if each y ∈ Y ,

lim
p,q→∞

1

pq

p,q∑
m,n=1,1

µy(Cσm(s)σn(t)) = µy(C)

uniformly in s, t.
The double set sequence {Cmn} is called strongly invariant summable to the set C in the Wijsman sense if each y ∈ Y ,

lim
p,q→∞

1

pq

p,q∑
m,n=1,1

∣∣µy(Cσm(s)σn(t))− µy(C)
∣∣ = 0

uniformly in s, t.

3 Main results

In this section, for double set sequences, we introduce the notions of invariant summability and invariant statistical convergence of order η
(0 < η ≤ 1) in the Wijsman sense. Also, we investigate some properties of these new notions and the relations between them.

Definition 1. The double set sequence {Cmn} is invariant summable of order η to the set C in the Wijsman sense if each y ∈ Y ,

lim
p,q→∞

1

(pq)η

p,q∑
m,n=1,1

µy(Cσm(s)σn(t)) = µy(C)

uniformly in s, t where 0 < η ≤ 1 and we denote this in Cmn
W2(V

η
σ )

−→ C format.

Definition 2. The double set sequence {Cmn} is strongly r-invariant summable of order η to the set C in the Wijsman sense if each y ∈ Y ,

lim
p,q→∞

1

(pq)η

p,q∑
m,n=1,1

∣∣µy(Cσm(s)σn(t))− µy(C)
∣∣r = 0

uniformly in s, t where 0 < η ≤ 1 and 0 < r <∞, and we denote this in Cmn
W2[V

η
σ ]r

−→ C format.
If r = 1, then the double set sequence {Cmn} is simply called strongly invariant summable of order η to the set C in the Wijsman sense and

we denote this in Cmn
W2[V

η
σ ]

−→ C format.

Example 1. Let Y = R2 and a double set sequence {Cmn} be defined as following:

Cmn :=

{ {
(a, b) ∈ R2 : (a−m)2 + (b− n)2 = 1

}
, if m and n are square integers,

{(0, 0)} , otherwise.

In this case, the double set sequence {Cmn} is strongly invariant summable of order η (0 < η ≤ 1) to the set C = {(0, 0)} in the Wijsman
sense.

Remark 1. For η = 1, respectively, the notions of W2(V
η
σ )-summability and W2[V

η
σ ]-summability coincides with the notions of invariant

summability and strongly invariant summability in the Wijsman sense for double set sequences in [10].

Theorem 1. If 0 < η ≤ ϑ ≤ 1, then

Cmn
W2[V

η
σ ]r

−→ C ⇒ Cmn
W2[V

ϑ
σ ]r

−→ C.

Proof: Let 0 < η ≤ ϑ ≤ 1 and suppose that Cmn
W2[V

η
σ ]r

−→ C. For each y ∈ Y , we have

1

(mn)ϑ

p,q∑
m,n=1,1

∣∣µy(Cσm(s)σn(t))− µy(C)
∣∣r ≤ 1

(mn)η

p,q∑
m,n=1,1

∣∣µy(Cσm(s)σn(t))− µy(C)
∣∣r

for all s, t. Hence, by our assumption, we get Cmn
W2[V

ϑ
σ ]r

−→ C. �
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If ϑ = 1 is taken in Theorem 1, then the following corollary is obtained.

Corollary 1. Let η ∈ (0, 1] and 0 < r <∞. If a double set sequence {Cmn} is strongly r-invariant summable of order η to a set C in the
Wijsman sense, then the double set sequence is strongly r-invariant summable to the set C in the Wijsman sense, i.e.,

Cmn
W2[V

η
σ ]r

−→ C ⇒ Cmn
W2[Vσ]

r

−→ C.

Now, we can state a theorem giving the relationship between W2[V
η
σ ]
r-summability and W2[V

η
σ ]
u-summability, where 0 < η ≤ 1 and

0 < r < u <∞.

Theorem 2. Let 0 < η ≤ 1 and 0 < r < u <∞. Then,

Cmn
W2[V

η
σ ]u

−→ C ⇒ Cmn
W2[V

η
σ ]r

−→ C.

Proof: Let 0 < η ≤ 1 and 0 < r < u <∞. Also, we suppose that Cmn
W2[V

η
σ ]u

−→ C. For each y ∈ Y , by Hölder inequality, we have

1

(pq)η

p,q∑
m,n=1,1

∣∣µy(Cσm(s)σn(t))− µy(C)
∣∣r < 1

(pq)η

p,q∑
m,n=1,1

∣∣µy(Cσm(s)σn(t))− µy(C)
∣∣u

for all s, t. Hence, by our assumption, we get Cmn
W2[V

η
σ ]r

−→ C. �

Definition 3. The double set sequence {Cmn} is invariant statistically convergent of order η to the set C in the Wijsman sense if every ε > 0
and each y ∈ Y ,

lim
p,q→∞

1

(pq)η

∣∣∣∣{(m,n) : m ≤ p, n ≤ q, ∣∣µy(Cσm(s)σn(t))− µy(C)
∣∣ ≥ ε}∣∣∣∣ = 0

uniformly in s, t where 0 < η ≤ 1 and we denote this in Cmn
W2(S

η
σ)−→ C format.

Example 2. Let Y = R2 and a double set sequence {Cmn} be defined as following:

Cmn :=


{
(a, b) ∈ R2 : (a)2 + (b− 1)2 =

1

mn

}
, if m and n are square integers,

{(1, 0)} , otherwise.

In this case, the double set sequence {Cmn} is invariant statistically convergent of order η (0 < η ≤ 1) to the set C = {(1, 0)} in the Wijsman
sense.

Remark 2. For η = 1, the notion of W2(S
η
σ)-convergence coincides with the notion of invariant statistical convergence in the Wijsman sense

for double set sequences in [10].

Theorem 3. If 0 < η ≤ ϑ ≤ 1, then

Cmn
W2(S

η
σ)−→ C ⇒ Cmn

W2(S
ϑ
σ )−→ C.

Proof: Let 0 < η ≤ ϑ ≤ 1 and suppose that Cmn
W2(S

η
σ)−→ C. For every ε > 0 and each y ∈ Y , we have

lim
p,q→∞

1

(pq)ϑ

∣∣∣∣{(m,n) : m ≤ p, n ≤ q, ∣∣µy(Cσm(s)σn(t))− µy(C)
∣∣ ≥ ε}∣∣∣∣

≤ lim
p,q→∞

1

(pq)η

∣∣∣∣{(m,n) : m ≤ p, n ≤ q, ∣∣µy(Cσm(s)σn(t))− µy(C)
∣∣ ≥ ε}∣∣∣∣.

for all s, t. Hence, by our assumption, we get Cmn
W2(S

ϑ
σ )−→ C. �

If η = 1 is taken in Theorem 3, then the following corollary is obtained.

Corollary 2. Let η ∈ (0, 1]. If a double set sequence {Cmn} is invariant statistically convergent of order η to a set C in the Wijsman sense,
then the double set sequence is invariant statistically convergent to the set C in the Wijsman sense, i.e.,

Cmn
W2(S

η
σ)−→ C ⇒ Cmn

W2(Sσ)−→ C.
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Theorem 4. If a double set sequence {Cmn} is strongly r-invariant summable of order η to a set C in the Wijsman sense, then the double set
sequence is invariant statistically convergent of order ϑ to the set C in the Wijsman sense, where 0 < η ≤ ϑ ≤ 1 and 0 < r <∞.

Proof: Let 0 < η ≤ ϑ ≤ 1 and 0 < r <∞. Also, we suppose that a double set sequence {Cmn} is strongly r-invariant summable of order η
to a set C in the Wijsman sense. For every ε > 0 and each y ∈ Y , we have

p,q∑
m,n=1,1

∣∣µy(Cσm(s)σn(t))− µy(C)
∣∣r =

p,q∑
m,n=1,1∣∣µy(Cσm(s)σn(t))−µy(C)

∣∣≥ε
∣∣µy(Cσm(s)σn(t))− µy(C)

∣∣r

+

p,q∑
m,n=1,1∣∣µy(Cσm(s)σn(t))−µy(C)

∣∣<ε
∣∣µy(Cσm(s)σn(t))− µy(C)

∣∣r

≥
p,q∑

m,n=1,1∣∣µy(Cσm(s)σn(t))−µy(C)
∣∣≥ε
∣∣µy(Cσm(s)σn(t))− µy(C)

∣∣r

≥ εr
∣∣∣∣{(m,n) : m ≤ p, n ≤ q, ∣∣µy(Cσm(s)σn(t))− µy(C)

∣∣ ≥ ε}∣∣∣∣
and so

1

(pq)η

p,q∑
m,n=1,1

∣∣µy(Cσm(s)σn(t))− µy(C)
∣∣r ≥ εr

(pq)η

∣∣∣∣{(m,n) : m ≤ p, n ≤ q, ∣∣µy(Cσm(s)σn(t))− µy(C)
∣∣ ≥ ε}∣∣∣∣

≥ εr

(pq)ϑ

∣∣∣∣{(m,n) : m ≤ p, n ≤ q, ∣∣µy(Cσm(s)σn(t))− µy(C)
∣∣ ≥ ε}∣∣∣∣.

Hence, by our assumption, we get the double set sequence {Cmn} is invariant statistically convergent of order ϑ to the set C in the Wijsman
sense. �

If ϑ = η is taken in Theorem 4, then the following corollary is obtained.

Corollary 3. Let η ∈ (0, 1] and 0 < r <∞. If a double set sequence {Cmn} is strongly r-invariant summable of order η to a set C, then the
double set sequence is invariant statistically convergent of order η to the set C.
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1 Introduction

Long after the concept of convergence for double sequences was introduced by Pringsheim [1], using the concepts of statistical convergence,
double lacunary sequence, invariant mean etc., this concept was extended to new convergence concepts for double sequences by some authors
[2]-[4]. Recently, for double sequences, on two new convergence concepts called double almost statistical and double almost lacunary statistical
convergence of order α were studied by Savaş [5, 6]. Moreover, for double sequences, the concept of asymptotical equivalence was introduced
by Patterson [7].

Over the years, on the various convergence concepts for set sequences have been studied by many authors. One of them, discussed in this
study, is the concept of convergence in the Wijsman sense [8]-[10]. Using the concepts of statistical convergence, double lacunary sequence,
invariant mean etc., this concept was extended to new convergence concepts for double set sequences by some authors [11]-[14]. In [13], Nuray
and Ulusu studied on the concepts of lacunary invariant summability and lacunary invariant statistical convergence in the Wijsman sense for
double set sequences. Furthermore, for double set sequences, the concepts of asymptotical equivalence in the Wijsman sense were introduced
by Nuray et al. [15] and then these concepts were studied by some authors [16].

In this paper, using the concepts of invariant mean and order β, we studied on new asymptotical equivalence concepts in the Wijsman sense
for double set sequences.

More information on the concepts of convergence or asymptotical equivalence for real or set sequences can be found in [17]-[25].

2 Definitions and notations

In this section, let us recall the basic concepts necessary for a better understanding of our study (see, [3, 9], [11, 12], [14]-[16], [20, 21] ).
For a metric space (Y, ρ), d(y, C) denote the distance from y to C where

d(y, C) := dy(C) = inf
c∈C

ρ(y, c)

for any y ∈ Y and any non-empty set C ⊆ Y .
For a non-empty set Y , let a function g : N→ 2Y (the power set of Y ) is defined by g(i) = Ci ∈ 2Y for each i ∈ N. Then the sequence

{Ci} = {C1, C2, . . .}, which is the codomain elements of g, is called set sequences.
Throughout this study, (Y, ρ) will be considered as a metric space and C,Cij , Dij will be considered as any non empty closed subsets of Y .
The double set sequence {Cij} is called convergent to the set C in the Wijsman sense if each y ∈ Y ,

lim
i,j→∞

dy(Cij) = dy(C).

The double set sequence {Cij} is called statistical convergent to the set C in the Wijsman sense if every ε > 0 and each y ∈ Y ,

lim
m,n→∞

1

mn

∣∣∣∣{(i, j) : i ≤ m, j ≤ n,
∣∣dy(Cij)− dy(C)

∣∣ ≥ ε}∣∣∣∣ = 0.
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A double sequence θ2 = {(ju, kv)} is called a double lacunary sequence if there exist increasing sequences (ju) and (kv) of the integers
such that

j0 = 0, hu = ju − ju−1 →∞ and k0 = 0, h̄v = kv − kv−1 →∞ as u, v →∞.

In general, the following notations are used for any double lacunary sequence:

huv = huh̄v, Iuv =
{

(i, j) : ju−1 < i ≤ ju and kv−1 < j ≤ kv
}
.

Throughout this study, θ2 = {(ju, kv)} will be considered as a double lacunary sequence.
The double set sequence {Cij} is called lacunary statistically convergent to the set C in the Wijsman sense if every ε > 0 and each y ∈ Y ,

lim
u,v→∞

1

huv

∣∣∣∣{(i, j) ∈ Iuv :
∣∣dy(Cij)− dy(C)

∣∣ ≥ ε}∣∣∣∣ = 0.

The term dy
(Cij
Dij

)
is defined as follows:

dy
(Cij
Dij

)
=


d(y, Cij)

d(y,Dij)
, y 6∈ Cij ∪Dij

λ , y ∈ Cij ∪Dij .

The double set sequences {Cij} and {Dij} are called asymptotically equivalent in the Wijsman sense if each y ∈ Y ,

lim
i,j→∞

dy
(Cij
Dij

)
= 1

and denoted by Cij
W∼ Dij .

Let σ be a mapping such that σ : N+ → N+ (the set of positive integers). A continuous linear functional ψ on `∞ is called an invariant
mean (or a σ-mean) if it satisfies the following conditions:

1. ψ(xs) ≥ 0, when the sequence (xs) has xs ≥ 0 for all s,
2. ψ(e) = 1, where e = (1, 1, 1, . . .) and
3. ψ(xσ(s)) = ψ(xs) for all (xs) ∈ `∞.

The mappings σ are assumed to be one to one and such that σi(s) 6= s for all i, s ∈ N+, where σi(s) denotes the i th iterate of the mapping
σ at s. Thus ψ extends the limit functional on c, in the sense that ψ(xs) = limxs for all (xs) ∈ c.

The double set sequences {Cij} and {Dij} are called asymptotically lacunary invariant equivalent to multiple λ in the Wijsman sense if
each y ∈ Y ,

lim
u,v→∞

1

huv

∑
(i,j)∈Iuv

dy
(Cσi(s)σj(t)
Dσi(s)σj(t)

)
= λ.

The double set sequences {Cij} and {Dij} is called asymptotically strong lacunary invariant equivalent to multiple λ in the Wijsman sense
if each y ∈ Y ,

lim
u,v→∞

1

huv

∑
(i,j)∈Iuv

∣∣∣∣dy(Cσi(s)σj(t)Dσi(s)σj(t)

)
− λ

∣∣∣∣ = 0.

3 Main results

In this section, for double set sequences, the concepts of asymptotical lacunary invariant equivalence and asymptotical lacunary invariant
statistical equivalence of order β (0 < β ≤ 1) in the Wijsman sense were introduced. Also, some properties of these new equivalence concepts
and the relations between them were investigated.

Definition 1. The double set sequences {Cij} and {Dij} are asymptotically lacunary invariant equivalent to multiple λ of order β in the
Wijsman sense if each y ∈ Y ,

lim
u,v→∞

1

hβuv

∑
(i,j)∈Iuv

dy
(Cσi(s)σj(t)
Cσi(s)σj(t)

)
= λ

uniformly in s, t where 0 < β ≤ 1 and we denote this in Cij
Wλ

2 (Nβσθ)−→ Dij format, and simply called asymptotically lacunary invariant
equivalent of order β in the Wijsman sense if λ = 1.
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Definition 2. The double set sequences {Cij} and {Dij} are asymptotically strong lacunary q-invariant equivalent to multiple λ of order β
in the Wijsman sense if each y ∈ Y ,

lim
u,v→∞

1

hβuv

∑
(i,j)∈Iuv

∣∣∣∣dy(Cσi(s)σj(t)Dσi(s)σj(t)

)
− λ

∣∣∣∣q = 0

uniformly in s, t where 0 < β ≤ 1 and 0 < q <∞. We denote this in Cij
Wλ

2 [Nβσθ]
q

−→ Dij format and simply called asymptotically strong
lacunary q-invariant equivalent of order β in the Wijsman sense if λ = 1.

If q = 1, then the double set sequences {Cij} and {Dij} are simply called asymptotically strong lacunary invariant equivalent to multiple

λ of order β and we denote this in Cij
Wλ

2 [Nβσθ]−→ Dij format.

Example 1. Let Y = R2 and double set sequences {Cij} and {Dij} be defined as following:

Cij :=


{

(a, b) ∈ R2 : a2 + (b+ 1)2 = 1
ij

}
; if (i, j) ∈ Iuv, i and j are

square integers,
{(2, 0)} ; otherwise.

and

Dij :=


{

(a, b) ∈ R2 : a2 + (b− 1)2 = 1
ij

}
; if (i, j) ∈ Iuv, i and j are

square integers,
{(2, 0)} ; otherwise.

In this case, the double set sequences {Cij} and {Dij} are asymptotically strong lacunary invariant equivalent of order β (0 < β ≤ 1) in the
Wijsman sense.

Remark 1. For β = 1, respectively, the concepts ofWλ
2 (Nβ

σθ)-equivalence andWλ
2 [Nβ

σθ]
q-equivalence coincide with the concepts of asymp-

totically lacunary invariant equivalence and asymptotically strong lacunary q-invariant equivalence in the Wijsman sense for double set
sequences in [16].

Theorem 1. If 0 < β ≤ γ ≤ 1, then

Cij
Wλ

2 [Nβσθ]
q

−→ Dij ⇒ Cij
Wλ

2 [Nγσθ]
q

−→ Dij

for every double lacunary sequence θ2 = {(ju, kv)}.

Proof: Let 0 < β ≤ γ ≤ 1 and suppose that Cij
Wλ

2 [Nβσθ]
q

−→ Dij . For each y ∈ Y , we have

1

hγuv

∑
(i,j)∈Iuv

∣∣∣∣dy(Cσi(s)σj(t)Dσi(s)σj(t)

)
− λ

∣∣∣∣q ≤ 1

hβuv

∑
(i,j)∈Iuv

∣∣∣dy(Cσi(s)σj(t)
Dσi(s)σj(t)

)
− λ

∣∣∣q

for all s, t. Hence, by our assumption, we get Cij
Wλ

2 [Nγσθ]
q

−→ Dij . �

If γ = 1 is taken in Theorem 1, then following corollary is obtained.

Corollary 1. Let β ∈ (0, 1] and 0 < q <∞. If double set sequences {Cij} and {Dij} are asymptotically strong lacunary q-invariant equiv-
alent to multiple λ of order β in the Wijsman sense, then the double set sequences are asymptotically strong lacunary q-invariant equivalent to
multiple λ in the Wijsman sense, i.e.,

Cij
Wλ

2 [Nβσθ]
q

−→ Dij ⇒ Cij
Wλ

2 [Nσθ]
q

−→ Dij .

Now, we can state a theorem giving the relationship between Wλ
2 [Nβ

σθ]
q-equivalence and Wλ

2 [Nβ
σθ]

p-equivalence, where 0 < β ≤ 1 and
0 < q < p <∞.

Theorem 2. Let 0 < β ≤ 1 and 0 < q < p <∞. Then,

Cij
Wλ

2 [Nβσθ]
p

−→ Dij ⇒ Cij
Wλ

2 [Nβσθ]
q

−→ Dij

for every double lacunary sequence θ2 = {(ju, kv)}.
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Proof: Let 0 < β ≤ 1 and 0 < q < p <∞. Also, we suppose that Cij
Wλ

2 [Nβσθ]
p

−→ Dij . For each y ∈ Y , by Hölder inequality, we have

1

hβuv

∑
(i,j)∈Iuv

∣∣∣∣dy(Cσi(s)σj(t)Dσi(s)σj(t)

)
− λ

∣∣∣∣q < 1

hβuv

∑
(i,j)∈Iuv

∣∣∣∣dy(Cσi(s)σj(t)Dσi(s)σj(t)

)
− λ

∣∣∣∣p

for all s, t. Hence, by our assumption, we get Cij
Wλ

2 [Nβσθ]
q

−→ Dij . �

Definition 3. The double set sequences {Cij} and {Dij} are asymptotically lacunary invariant statistical equivalent to multiple λ of order β
in the Wijsman sense if every ε > 0 and each y ∈ Y ,

lim
u,v→∞

1

hβuv

∣∣∣∣∣
{

(i, j) ∈ Iuv :

∣∣∣∣dy(Cσi(s)σj(t)Dσi(s)σj(t)

)
− λ

∣∣∣∣ ≥ ε
}∣∣∣∣∣ = 0

uniformly in s, t where 0 < β ≤ 1 and we denote this in Cij
Wλ

2 (Sβσθ)−→ Dij format, and simply called asymptotically lacunary invariant
statistical equivalent of order β in the Wijsman sense if λ = 1 .

Example 2. Let Y = R2 and double set sequences {Cij} and {Dij} be defined as following:

Cij :=


{

(a, b) ∈ R2 : a2 + b2 = −ij b
}

; if (i, j) ∈ Iuv, i and j are
square integers

{(1,−2)} ; otherwise.

and

Dij :=


{

(a, b) ∈ R2 : a2 + b2 = ij b
}

; if (i, j) ∈ Iuv, i and j are
square integers

{(1,−2)} ; otherwise.

In this case, the double set sequences {Cij} and {Dij} are asymptotically lacunary invariant statistical equivalent of order β (0 < β ≤ 1) in
the Wijsman sense.

Remark 2. For β = 1, the concept of Wλ
2 (Sβσθ)-equivalence coincides with the concept of asymptotically lacunary invariant statistical

equivalence in the Wijsman sense for double set sequences in [16].

Theorem 3. If 0 < β ≤ γ ≤ 1, then

Cij
Wλ

2 (Sβσθ)−→ Dij ⇒ Cij
Wλ

2 (Sγσθ)−→ Dij

for every double lacunary sequence θ2 = {(ju, kv)}.

Proof: Let 0 < β ≤ γ ≤ 1 and suppose that Cij
Wλ

2 (Sβσθ)−→ Dij . For every ε > 0 and each y ∈ Y , we have

1

hγuv

∣∣∣∣∣
{

(i, j) ∈ Iuv :

∣∣∣∣dy(Cσi(s)σj(t)Dσi(s)σj(t)

)
− λ

∣∣∣∣ ≥ ε
}∣∣∣∣∣ ≤ 1

hβuv

∣∣∣∣∣
{

(i, j) ∈ Iuv :

∣∣∣∣dy(Cσi(s)σj(t)Dσi(s)σj(t)

)
− λ

∣∣∣∣ ≥ ε
}∣∣∣∣∣ .

for all s, t. Hence, by our assumption, we get Cij
Wλ

2 (Sϑσθ)−→ Dij . �

If γ = 1 is taken in Theorem 3, then the following corollary is obtained.

Corollary 2. Let β ∈ (0, 1]. If double set sequences {Cij} and {Dij} are asymptotically lacunary invariant statistical equivalent to multiple
λ of order β in the Wijsman sense, then the double set sequences are asymptotically lacunary invariant statistical equivalent to multiple λ in
the Wijsman sense, i.e.,

Cij
Wλ

2 (Sβσθ)−→ Dij ⇒ Cij
Wλ

2 (Sσθ)−→ Dij .

Theorem 4. If double set sequences {Cij} and {Dij} are asymptotically strong lacunary q-invariant equivalent to multiple λ of order β in
the Wijsman sense, then the double set sequences are asymptotically lacunary invariant statistical equivalent to multiple λ of order γ in the
Wijsman sense, where 0 < β ≤ γ ≤ 1 and 0 < q <∞.
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Proof: Let 0 < β ≤ γ ≤ 1 and 0 < q <∞. Also, we suppose that the double set sequences {Cij} and {Dij} are asymptotically strong
lacunary q-invariant equivalent to multiple λ of order β in the Wijsman sense. For every ε > 0 and each y ∈ Y , we have

∑
(i,j)∈Iuv

∣∣∣∣dy( Cσi(s)σj(t)

Dσm(s)σn(t)

)
− λ

∣∣∣∣q =
∑

(i,j)∈Iuv∣∣∣∣dy( Cσi(s)σj(t)

Dσm(s)σn(t)

)
−λ

∣∣∣∣≥ε

∣∣∣∣dy( Cσi(s)σj(t)

Dσm(s)σn(t)

)
− λ

∣∣∣∣q

+
∑

(i,j)∈Iuv∣∣∣∣dy( Cσi(s)σj(t)

Dσm(s)σn(t)

)
−λ

∣∣∣∣<ε

∣∣∣∣dy( Cσi(s)σj(t)

Dσm(s)σn(t)

)
− λ

∣∣∣∣q

≥
∑

(i,j)∈Iuv∣∣∣∣dy( Cσi(s)σj(t)

Dσm(s)σn(t)

)
−λ

∣∣∣∣≥ε

∣∣∣∣dy( Cσi(s)σj(t)

Dσm(s)σn(t)

)
− λ

∣∣∣∣q

≥ εq

∣∣∣∣∣
{

(i, j) ∈ Iuv :

∣∣∣∣dy( Cσi(s)σj(t)

Dσm(s)σn(t)

)
− λ

∣∣∣∣ ≥ ε
}∣∣∣∣∣

and so

1

hβuv

∑
(i,j)∈Iuv

∣∣∣∣dy( Cσi(s)σj(t)

Dσm(s)σn(t)

)
− λ

∣∣∣∣q ≥ εq

hβuv

∣∣∣∣∣
{

(i, j) ∈ Iuv :

∣∣∣∣dy( Cσi(s)σj(t)

Dσm(s)σn(t)

)
− λ

∣∣∣∣ ≥ ε
}∣∣∣∣∣

≥ εq

hγuv

∣∣∣∣∣
{

(i, j) ∈ Iuv :

∣∣∣∣dy( Cσi(s)σj(t)

Dσm(s)σn(t)

)
− λ

∣∣∣∣ ≥ ε
}∣∣∣∣∣ .

for all s, t. Hence, by our assumption, we get that the double set sequences {Cij} and {Dij} are asymptotically lacunary invariant statistical
equivalent to multiple λ of order γ in the Wijsman sense. �

If γ = β is taken in Theorem 4, then the following corollary is obtained.

Corollary 3. Let β ∈ (0, 1] and 0 < q <∞. If double set sequences {Cij} and {Dij} are asymptotically strong lacunary q-invariant equiv-
alent to multiple λ of order β in the Wijsman sense, then the double set sequences are asymptotically lacunary invariant statistical equivalent
to multiple λ of order β in the Wijsman sense.
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6 E. Savaş, Double almost lacunary statistical convergence of order α, Adv. Difference Equ., 2013(254) (2013), 10 pages, doi:10.1186/1687-1847-2013-254.
7 R.F. Patterson, Rates of convergence for double sequences, Southeast Asian Bull. Math., 26(3) (2003), 469–478.
8 G. Beer, Wijsman convergence: A survey, Set-Valued Anal., 2(1) (1994), 77–94.
9 U. Ulusu, F. Nuray, Lacunary statistical convergence of sequences of sets, Progress Appl. Math., 4(2) (2012), 99–109.

10 U. Ulusu, F. Nuray, On asymptotically lacunary statistical equivalent set sequences, Journal of Mathematics, 2013 (2013), Article ID 310438, 5 pages, doi:10.1155/2013/310438.
11 F. Nuray, U. Ulusu, E. Dündar, Cesàro summability of double sequences of sets, Gen. Math. Notes, 25(1) (2014), 8–18.
12 F. Nuray, U. Ulusu, E. Dündar, Lacunary statistical convergence of double sequences of sets, Soft Comput., 20(7) (2016), 2883–2888.
13 F. Nuray, U. Ulusu, Lacunary invariant statistical convergence of double sequences of sets, 28(2) (2019), 143–150.
14 F. Nuray, E. Dündar, U. Ulusu, Wijsman statistical convergence of double sequences of sets, Iran. J. Math. Sci. Inform., 16(1) (2021), 55–64.
15 F. Nuray, R.F. Patterson, E. Dündar, Asymptotically lacunary statistical equivalence of double sequences of sets, Demonstratio Math., 49(2) (2016), 183–196.
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Abstract: General bornological spaces play a key role in recent research of convergence structures on hyperspaces, in opti-
mization theory and in the study of topologies on function spaces. In order to generalize this structure, in the present study, we
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bornological spaces with the help of the parametrization tool. Moreover, we examine several basic and categorical properties of
the proposed concepts.
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1 Introduction and motivation

In our work two lattices L andM , will play the fundamental role. The first one is a frame, that is a complete lattice L = (L,≤,∧,∨), satisfying
the infinite distributivity law

α ∧ (∨i∈Iβi) = ∨i∈I(α ∧ βi), ∀α ∈ L, {βi}i∈I ⊂ L.

The top and the bottom elements of L are denoted by 1L and 0L, respectively. By M we denote the complete completely distributive lattice
M = (M,≤,∧,∨) whose the bottom and the top elements are denoted by 0M and 1M , respectively. For a complete lattice M and α, β ∈M,
the wedge-below relation � is defined on M as follows: β � α⇔ if K ⊆M and α ≤ ∨K then ∃γ ∈ K,β ≤ γ.

As shown in [8] a lattice M is completely distributive if and only if the wedge-below relation has the following property,
α = ∨{β ∈M | β � α}, for each α ∈M. For more details about the lattices, see [3, 8].

An element α in M is said to be coprime if α ≤ β ∨ γ implies that α ≤ β or α ≤ γ. The set of all nonzero coprime elements of M is
denoted by c(M). We denote Mo = {α ∈M | α � 1M}.

Throughout this work, X refers to a nonempty initial universe and E denotes an arbitrary nonempty set viewed on the sets of parameters.

1.1 L-fuzzy soft sets

In this subsection, we recall some basic notions and notations of the theory of L-fuzzy soft sets defined by Maji et al.[6] . We also remind the
operations on L-fuzzy soft sets.

Definition 1 [6] A pair (f,E) is called an L-fuzzy soft set over X if f is a mapping from E into the set of all L-fuzzy subsets of X; i.e.,
f : E → LX . This means that fe := f(e) : X → L is an L-fuzzy set on X for each e ∈ E. In what follows an L-fuzzy soft set (f,E) over
X is denoted by a triple (f,E,X). Sometimes the mapping f : E → LX is referred to an L-fuzzy soft structure over the pair (E,X).

If one considers L = I = [0, 1] and A ⊆ E, then (f,A,X) is a said to be a fuzzy soft set on X . As it is seen from the former definition, a
fuzzy soft set is a parameterized collection of fuzzy sets.

Definition 2 [7] Let (f1, E,X) and (f2, E,X) be two L-fuzzy soft structures such that for any e ∈ E, f1(e) ≤ f2(e). Then f1 is said to
be coarser than f2 and denoted by f1 ≤ f2.

Definition 3 [6] Let (f,E,X) and (g,E,X) be two L-fuzzy soft sets, then
(1) (f,E,X) is said to be a subset of (g,E,X) denoted by (f,E,X) v (g,E,X) if f(e) ≤ g(e), for each e ∈ E. In this case (f,E,X) =

(g,E,X) if and only if f (f,E,X) is subset of (g,E,X) and vice-versa.
(2) The union (k,E,X) = (f,E,X) t (g,E,X) is defined by k(e) = f(e) ∨ g(e) for all e ∈ E.
(3) The intersection (h,E,X) = (f,E,X) u (g,E,X) is defined by h(e) = f(e) ∧ g(e) for all e ∈ E.
(4) The complement of the L-fuzzy soft set (f,E,X) is denoted by (f,E,X)c = (fc, E,X), where fc : E → LX is a mapping given by

fc(e) = (f(e))′ for all e ∈ E.
(5) (f,E,X) is said to be the null L-fuzzy soft set and denoted by Φ iff f(e) = 0X for each e ∈ E.
(6) (f,E,X) is said to be the universal L-fuzzy soft set and denoted by X iff f(e) = 1X for each e ∈ E.

Theorem 1. [7] Let FS(X,E) denotes the family of all L-fuzzy soft structures over (E,X) which equipped with the partial order ≤ . Then
(FS(X,E),≤) is a complete lattice.
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Definition 4 [5] Let (f,E1, X) and (g,E2, Y ) be two L-fuzzy soft sets and (ϕ,ψ) : (f,E1, X)→ (g,E2, Y ) be a soft mapping. Then
(1) the image of (f,E1, X) under (ϕ,ψ) is denoted by (ϕ,ψ)(f,E1, X) = (ϕ(f), ψ(E1), Y ) and defined by

ϕ(f)k(y) = ∨ϕ(x)=y ∨ψ(a)=k fe(x) for all k ∈ E2, y ∈ Y
(2) the pre-image of (g,E2, Y ) under (ϕ,ψ) is denoted by (ϕ,ψ)−1(g,E2, Y ) = (ϕ←(g), ψ−1(E2), X) and it is defined by follows:
ϕ←(g)e1(x) = gψ(e1)(ϕ(x)), for all e1 ∈ E1 and for all x ∈ X.

1.2 Bornological structures in the context of fuzzy sets

The concept of bornology (or so called abstract boundedness) was introduced by S.T.Hu [4] to make "being bounded for a set" meaningful in
general spaces. This definition opened a way of modeling macroscopic phenomena in general topological spaces. In addition, it was improved
in several directions. Later Abel and Sostak [1] and Sostak and Uljane [10, 11] presented and studied the concept of bornology in the context
of fuzzy sets as follows.

Definition 5 [1] An L-bornology on a set X is a family B ⊆ LX which satisfies the following axioms:
(1LB) ∨{B | B ∈ B} = 1X .
(2LB) If B ∈ B and A ≤ B, then A ∈ B.
(3LB) If B1, B2 ∈ B, then B1 ∨B2 ∈ B.
The pair (X,B) is called an L-bornological space and L-sets which belongs to B are called bounded in this space. An L-bornology B is

called strict if it satisfies the following stronger version of the first axiom:
(1LB*) χ{x} ∈ B for all x ∈ X.
Given two L-bornological spaces (X1,B1) and (X2,B2), a function ϕ : X1 → X2 is called bounded if ϕ→(B) ∈ B2, for every B ∈ B1.

By considering the fuzzy analogue of a classical bornological structure when both the structure itself is fuzzy, and it acts on families of
L-sets, Sostak and Uljane [11] defined the concept of an LM -valued bornology. This fuzzy-fuzzy approach of bornology was described in a
somewhat different way. In this approach, Sostak and Uljane [11] deal with a many-valued set, that is a set endowed with some many-valued
equality instead of an ordinary set. Since this definition depends on the L-valued equality, we consider the following modified version of the
original definition. In case when the relation R is the ordinary relation =; i.e., R(x, y) = 1 if and only if x = y, then the original definition
coincides with the following specific version.

Definition 6 Given a set X , a mapping B : LX →M is said to be an LM -valued bornology on X if it satisfies the following axioms:
(1LMB) ∀α ∈Mo, ∃U ⊆ LX s.t. ∨U = 1LX and B(U) ≥ α,∀U ∈ U .
(2LMB) If A ≤ B, then B(A) ≥ B(B), for all A,B ∈ LX .
(3LMB) B(A ∨B) ≥ B(A) ∧ B(B), for all A,B ∈ LX .
The pair (X,B) is called an LM -valued bornological space and the value B(A) is interpreted as the degree of boundedness of an L-fuzzy

set A in this space.
One can prefer to consider the following stronger version of the first axiom:
(1∗LMB) ∨{A ∈ LX | B(A) = 1M} = 1LX .
The mapping B : LX →M which satisfies the axioms (1∗LMB), (2LMB) and (3LMB) is said to be a strong LM -valued bornology on X.
Given two LM -valued bornological spaces (X1,B1) and (X2,B2), a function ϕ : X1 → X2 is called bounded if B1(A) ≤ B2(ϕ(A))

whenever A ∈ LX .

Remark 1. In case when L = M = 2, then we return to the original definition of a bornology given by Hu [4].

We refer to the paper of Sostak and Uljane [11] for the generalized (in fact, original) version of the LM -valued bornology which is defined
on an L-valued set (X,R).

2 Boundedness in the fuzzy soft universe

Çetkin [2] defined the notion of "boundedness" for the soft sets in a different direction from Reddy and Jalil [9], without using soft metric
structure. In this section, we present the notion of bornology in the context of lattice valued fuzzy soft sets as the extensions of the fuzzy
bornologies. Hence, we describe the notion of "boundedness" for the L-fuzzy soft sets by using the similar way of pictured in [2].

2.1 Soft L-bornological spaces

In this subsection, we present the parameterized extension of an L-bornological space, which we call as soft L-bornological space. As a result,
we identify being bounded for an L-fuzzy soft set in such spaces. Besides we demonstrate some structural properties.

Definition 7 A mapping B : E → 2L
X

(where, B(e) := Be ∈ 2L
X

, for all e ∈ E) is said to be a soft L-bornology on a set X with respect
to the parameter set E, if the mappings B(e) : LX → 2 is an L-bornology on X, for each e ∈ E. In this case, a soft L-bornology stands for a
parameterized family of L-bornologies.

Then in this case a soft L-bornology on X with respect to the parameter set E, is denoted by B(X,E) and the triple (X,B, E) denotes the
soft L-bornological space.

Example 1 (1) Let E = {∗} and let (B, {∗}) be a soft set on LX ; i.e., B : {∗} → 2L
X

. If in this case, B(∗) is an L-bornology on X, then
B is a soft L-bornology on X w.r.t {∗}.

(2) Let E = {0, 1} and let (B, {0, 1}) be a soft set on LX ; i.e., B : {0, 1} → 2L
X

. If B(0) and B(1) are L-bornologies on X, then B is a
soft L-bornology on X w.r.t {0, 1}.

(3) Let E = [0, 1] = I and let (B, I) be a soft set on LX ; i.e., B : I → 2L
X

. If B(α) is an L-bornology on X for all α ∈ I , then B is a soft
L-bornology on X w.r.t I.

Remark 2. It is clear that a soft L-bornology on a set X is just a parameterized family of ideals in the lattice LX .
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Definition 8 Let (X,B, E) be a soft L-bornological space and (f,E,X) be an L-fuzzy soft set. Then (f,E,X) is said to be a bounded
L-fuzzy soft set if f(e) ∈ B(e), for all e ∈ E.

It is obviously seen that boundedness for fuzzy soft sets is hereditary and closed under finite unions.
Definition 9 Let (X,B, E) be a soft L-bornological space and D : E → 2L

X

be a mapping such that D(e) ⊆ B(e), for each e ∈ E. Then
D(X,E) is said to be a soft L-bornology base of B(X,E), if D(e) is a L-bornology base for B(e); i.e., each elements of B(e) is a subset of
an element of D(e).

Definition 10 Let (X,B1, E1) and (Y,B2, E2) be two soft L-bornological spaces. Then the soft mapping (ϕ,ψ) : (X,B1, E1)→
(Y,B2, E2) is called soft L-bounded if the mappings ϕe : (X,B1(e))→ (Y,B2(ψ(e))) are L-bounded for all e ∈ E1. In other words,

(ϕ,ψ) : (X,B1, E1)→ (Y,B2, E2) is a soft L-bounded map iff ϕ⇒(B1(e)) ≤ B2(ψ(e)), for each e ∈ E1. That is, (ϕ,ψ) :
(X,B1, E1)→ (Y,B2, E2) is a soft L-bounded map if and only if ϕ→(B) ∈ B2

ψ(e), whenever B ∈ B1
e , for all e ∈ E1.

Theorem 2. If the soft mappings (ϕ1, ψ1) : (X,B1, E1)→ (Y,B2, E2) and (ϕ2, ψ2) : (Y,B2, E2)→ (Z,B3, E3) are softL-bounded, then
their composition (ϕ2, ψ2) ◦ (ϕ1, ψ1) : (X,B1, E1)→ (Z,B3, E3) is a soft L-bounded map, too.

Proof: The proof is easily obtained by using the former definition. �

In addition, since the identity function idX : (X,B(e))→ (X,B(e)) is L-bounded between L-bornological spaces for each e ∈ E, then
the identity soft mapping (idX , idE) : (X,B, E)→ (X,B, E) is soft L-bounded. Hence soft L-bornological spaces and the soft L-bounded
mappings between them form a category which will be denoted SL−BOR and called the category of soft L-bornological spaces.

In case L = 2 is a two-point lattice, the concept of a soft 2-bornological space is equivalent to the category of soft bornological spces
SBOR. Hence S2−BOR is actually a category whose objects are soft bornological spaces and the morphisms are soft bounded mappings.

Let B(X,E,L) be the family of all soft L-bornologies on X with respect to the parameter set E. Let us define an order ≤ on B(X,E,L)
by setting;
B1 ≤ B2 :⇔ B2(e) ⊆ B1(e), for all e ∈ E and B1,B2 ∈ B(X,E,L).
In this case, B2 is said to be coarser (or stronger) than B1.

Theorem 3. The pair (B(X,E,L),≤) is a partially ordered set. Additionally, (B(X,E,L),≤) is a complete infinitely distributive lattice.

Proof: By the soft L-bornology axioms, it is easily seen that the bottom element B0 of B(X,E,L) is identified by B0(e) = LX for each
e ∈ E. Now let us describe its top element B1. Given a soft set (F,E,X) and a fixed parameter e ∈ E, define a mapping λ : F (e)→ c(L).

Let JF := {∨x∈F (e)x
λ(x) | λ ∈ (c(L))F (e)}. Then B1(e) = {JF | F ∈ S(X,E), |F (e)| < ℵ0} is the strongest L-bornology on X for

each e ∈ E. Hence the mapping B1 is the strongest soft L-bornology on X with respect to E. Besides the meets and the joins are described
similarly, by taking into consideration the parametrization tool in the L-bornological case. �

Theorem 4. Let X be a set and (Y,B2, E2) be a soft L-bornological space. Then the weakest soft L-bornology B : E → 2L
X

on (X,E),
which makes the soft mapping (ϕ,ψ) : (X,B, E)→ (Y,B2, E2) bounded, is identified by follows:
Be = {A ∈ LX | ∃B ∈ B2

ψ(e) such that A ≤ ϕ−1(B)} for any e ∈ E.

Proof: Since being bounded for a soft mapping (ϕ,ψ) : (X,B, E)→ (Y,B2, E2) is described over the parameters, that is since it depends on
the boundedness of the mappings of {ϕe : (X,Be)→ (Y,B2

ψ(e))}, for all e ∈ E, it is sufficient to prove that the subfamily Be ⊆ LX is the
unique initial structure of the given source {ϕe : X → (Y,B2

ψ(e))}, for any e ∈ E. It is also provided by Abel and Sostak [1]. �

If one generalizes the above claim to the family of mappings, then the following is obtained.

Theorem 5. For any given source {(ϕ,ψ)i : (X,E)→ (Yi,Bi, Ei) | i ∈ Γ}, there exists a unique initial lift {(ϕ,ψ)i : (X,B, E)→
(Yi,Bi, Ei) | i ∈ Γ} in the category of SL−BOR.

Theorem 6. Let Y be a set, (X,B1, E1) be a soft L-bornological space and the soft mapping (ϕ,ψ) : (X,B1, E1)→ Y be surjective. Then
the mapping B : E2 → 2L

Y

which is described below is a soft L-bornology on (Y,E2) which makes the soft mapping (ϕ,ψ) : (X,B1, E1)→
(Y,B, E2) bounded.
Bψ(e) = {ϕ→(B) ∈ LY | B ∈ B1

e}, for each e ∈ E1.

Proof: Since the functions ϕ and ψ are both surjective, then consider the mapping ϕe : (X,B1
e)→ Y for a fixed parameter e ∈ E1. Then

it is easy to verify that the family Bψ(e) described above is an L-bornology on Y which makes the function ϕe : (X,B1
e)→ (Y,Bψ(e)) is

bounded. By the arbitrariness of the parameter, this witnesses the proof. �

Corollary 1. Products exist in the category SL−BOR.

2.2 LM-valued soft bornological spaces

In this subsection, we present the parameterized extension of the LM -valued bornology described in Definition 6. Hence we provide the
definition of an LM -valued soft bornological space and identify the parameterized degree of being bounded for an L-fuzzy soft set in such
spaces. Besides, we observe some fundamental properties of this extended concept with the help of the parameters.

Definition 11 An LM -valued soft bornology on a set X with respect to the parameters of E, is a mapping B : E →MLX

such that for
all e ∈ E, B(e) ∈MLX

; i.e., B(e) : LX →M is an LM -valued bornology on X. This means that if B : E →MLX

is an LM -valued soft
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bornology, then B(e) := Be : LX →M is an LM -valued bornology in the sense of Definition 6, for each e ∈ E and vice versa. Hence an
LM -valued soft bornology on a set X , is actually a parameterized family of LM -valued bornologies on X.

An LM -valued soft bornology on a set X with respect to the parameters of E, is denoted by B(X,E). In this case, the triple (X,B, E) is
called an LM -valued soft bornological space.

Example 2 (1) Let (X,B, E) be a soft bornological space, that is B is a bornology of soft sets on X . If for each e ∈ E, we define
B(e) := χB(e) : 2X → 2, then we can consider (X,B, E) as an LM -valued soft bornological space.

(2) Let (X,B, E) be a soft L-bornological space. If for each e ∈ E, we define B(e) := χB(e) : LX → 2, then we can consider (X,B, E)
as an LM -valued soft bornological space.

Definition 12 Let (X,B, E) be an LM -valued soft bornological space and (f,E,X) be an L-fuzzy soft set. Then the value Be(f(e)) is
interpreted as the parameterized degree of boundeness of the L-fuzzy soft set (f,E,X) with respect to the parameter e ∈ E.

Definition 13 Let L be a subset of LX that is closed under finite unions, then the mapping D : E →ML is said to be an LM -valued soft
bornology base if for all e ∈ E, the followings are satisfied.

(1) ∀α ∈Mo, ∃U ⊆ LX s.t. ∨U = 1LX and De(U) ≥ α,∀U ∈ U .
(2) De(A ∨B) = De(A) ∧ De(B), for each A,B ∈ L.

Theorem 7. LetD : E →ML be an LM -valued soft bornology base onX. Then the mapping B∗ := 〈D〉 : E →MLX

defined by B∗e(A) =
∨{De(B) | B ∈ L, A ≤ B} is an LM -valued soft bornology on X.

Proof: In order to prove the claim, it is sufficient to show the third axiom of the definition, since the others are easy to see.
B∗e(A1 ∨A2) = ∨{De(B) | B ≥ A1 ∨A2}

= ∨{De(B1 ∨B2 | Bi ≥ Ai, i = 1, 2)}
= ∨{De(B1) ∧ De(B2) | Bi ≥ Ai, i = 1, 2}
≥ ∨{De(B1) | B1 ≥ A1} ∧ ∨{De(B2) | B2 ≥ A2} = B∗e(A1) ∧ B∗e(A2), for each e ∈ E.

Since for each e ∈ E, B∗e is an LM -valued bornology on X , then B∗ is an LM -valued soft bornology on X . �

Definition 14 A fuzzy soft mapping (ϕ,ψ) : (X,B1, E1)→ (Y,B2, E2) is called bounded between LM -valued soft bornological spaces
if the fuzzy functions ϕe : (X,B1(e))→ (Y,B2(ψ(e))) are bounded for all e ∈ E1; i.e., B2(ψ(e)) ◦ ϕ→ ≥ B1(e) for all e ∈ E1.

In other words,
(ϕ,ψ) : (X,B1, E1)→ (Y,B2, E2) is bounded if and only if B2

ψ(e)(ϕ
→(A)) ≥ B1

e(A) for each A ∈ LX and for each e ∈ E1.

Theorem 8. Composition of two bounded fuzzy soft mappings is bounded, too.

Proof: Since the boundedness of fuzzy soft mappings described by the boundedness of some fuzzy mappings based on the parameters, the
proof is easy to verify. �

Since the identity fuzzy mapping idX : (X,B(e))→ (X,B(e)) is bounded for any e ∈ E, then the identical fuzzy soft mapping
(idX , idE) : (X,B, E)→ (X,B, E) is bounded. In conclude one may infer that the following.

Theorem 9. LM -valued soft bornological spaces and bounded fuzzy soft mappings between them form a category which is denoted by
SBOR(L,M).

Definition 15 Let B(L,M,X) be the family of all LM -valued soft bornologies on X with respect to the parameters of E. Define a partial
order ” ≤ ” by setting for B1,B2 ∈ B(L,M,X) : B1 ≤ B2 :⇔ B1

e(A) ≥ B2
e(A) for all e ∈ E and A ∈ LX .

In this case, we say that B1 is coarser (or stronger) than B2.

Theorem 10. The partially ordered set (B(L,M,X),�) is a complete lattice.

Proof: In order to obtain the bottom element, we constitute the mapping B⊥ : E →MLX

as B⊥e (A) = 1M for each e ∈ E. Then it is obvious
that B⊥ is the coarsest element of B(L,M,X). To obtain the top element, for a given soft set (F,E,X) and a fixed parameter e ∈ E, first
define a fuzzy set fα(x) = α if x ∈ F (e), otherwise fα(x) = 0L, where α ∈ L. Now define the mapping B> : E →MLX

as

B>e (A) =

{
1M , if ∃F ∈ S(X,E), |F (e)| < ℵ0,∃α such that A ≤ fα,
0M , otherwise

Then B> is the finest LM -valued soft bornology in B(L,M,X). Further given a family of {Bi : E →MLX

| i ∈ Γ} of LM -valued soft
bornologies on X , we define the join B∗ : E →MLX

by setting B∗e(A) = ∧i∈ΓBie(A) for all A ∈ X . Hence it is a join semi-lattice. The
existence of the meets in the family of B(L,M,X) can be demonstrated in a similar way of LM -valued bornology with the observations of
the parameters. �

Theorem 11. Let B : E →MLX

be an LM -valued soft bornology on X and α ∈M, then the mapping Bα : E → 2L
X

defined by for each
e ∈ E, Bαe = {A ∈ LX | Be(A) ≥ α} is a soft L-bornology on X.

Proof: Let B : E →MLX

be an LM -valued soft bornology onX . Then Be : LX →M is an LM -valued bornology in the sense of Definition
6. Hence, each level sets Bαe = {A ∈ LX | Be(A) ≥ α} is an L-bornology in the sense of Definition 5, for any parameters of E. This makes
the mapping Bα : E → 2L

X

a soft L-bornology as claimed. �
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Further, for a fixed parameter e ∈ E, the family of α-levels {Bαe | α ∈M} of L-brnology is lower semi-continuous, in the following sense

Bαe = ∩{Bβe | β � α, β ∈M}, ∀α ∈M.

It is evident that B0M
e = 1LX as the intersection of empty set. Since M is a completely distributive lattice, an LM -valued soft bornology B

can be characterized by its lower semi-continuous decomposition into parameterized level L-bornologies as {Bαe = ∨β�αB
β
e | α ∈M}, for

any e ∈ E.
Conversely, one can construct an LM -valued soft bornology from a given family of soft L-bornologies as follows: Let {Cα | α ∈ c(M)}

be a family of soft L-bornologies such that α ≤ β implies Cβe ⊆ Cαe . Then the mapping B : E →MLX

which is defined by Be(A) = ∨{α ∈
c(M) | A ∈ Cαe } for all e ∈ E, is an LM -valued soft bornology on X. In addition, Bαe = ∩{Cβe | β ∈ c(M), β � α}, for any e ∈ E.

Theorem 12. Let (ϕ,ψ) : (X,E)→ (Y,B2, E2) be a fuzzy soft mapping and let L := {A = ϕ−1(B) | B ∈ LY }. Then D : E →ML

which is described by for any e ∈ E, De(A) = B2
ψ(e)(B), is an LM -valued soft bornology on X. Also the soft mapping (ϕ,ψ) is soft

bounded according to the induced LM -valued soft bornology.

Proof: It is easy to verify, therefore omitted. �

By concerning the above initial bornology construction, we may generalize it to the family of mappings and obtain the following.

Theorem 13. For any given source {(ϕ,ψ)i : (X,E)→ (Yi,Bi, Ei) | i ∈ Γ}, there exists a unique initial lift {(ϕ,ψ)i : (X,B, E)→
(Yi,Bi, Ei) | i ∈ Γ} in the category SBOR(L,M) of LM -valued soft bornological spaces.

Theorem 14. Let (ϕ,ψ) : (X,B1, E1)→ (Y,E2) be a surjective fuzzy soft mapping. Then the mapping B : E2 →MLX

which is described
by for any e ∈ E1, Bψ(e)(B) = B1

e(ϕ−1(B)), is an LM -valued soft bornology on Y, which makes the soft mapping bounded.

Proof: Since it is easy to verify, therefore omitted. �

Corollary 2. Products exist in the category SBOR(L,M).

When we compare the definitions proposed in this section, we observe that the category SL−BOR of soft L-bornological spaces is exactly
a subcategory of the SBOR(L,M) of LM -valued soft bornological spaces.

3 Conclusion

In this study, we defined the notions of soft L-bornological spaces and LM -valued soft bornological spaces as the extensions of the fuzzy
bornological spaces to the more general cases by using the parameters. Therefore, we provided the word of "boundedness" meaningful for the
fuzzy soft sets in the presented spaces. We considered fundamental descriptions and their relations in categorical point of view. In conclude,
we hope that the results presented in this research will open a new perspective for applied sciences. For further research, we plan to apply soft
boundedness in the selection principles theory.
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Abstract: Recall that a submodule N of M is called fully invariant, if f(N) ⊆ N for all f ∈ End(MR). In this paper, we call a sub-
module N is f -closed, if N is fully invariant such that M/N is nonsingular. The fundamental properties of f -closed submodules
are investigated. Our focus is to develop the class of f -CLS-modules in which every f -closed submodule is a direct summand.
We obtain characterizations between the generalizations of extending modules and f -CLS-modules.

Keywords: CLS-module, Extending module, Fully invariant submodule.

1 Introduction

Throughout the paper, all rings are associative with unity and modules are unital right modules. We use R and M to denote such a ring
and a module, respectively. Recall that a module M is said to be extending [3], if every complement submodule is a direct summand of M ,
or equivalently, every submodule of M is essential in a direct summand of M . Several authors have studied the assorted generalization of
extending modules with respect to different sets of submodules. A submodule X is called fully invariant [4], provided that g(X) ⊆ X for all
g ∈ End(MR). There are many examples of fully invariant submodules in various algebraic constructions. Authors in [1] introduced a general-
ization of extending modules by using fully invariant submodules. A moduleM is called FI-extending [1], if every fully invariant submodule of
M is essential in a direct summand of M . Module theoretical properties of FI-extending modules were analyzed in [1]. Observe from [7] that
a submodule X of M is called z-closed when M/X is nonsingular. These submodules are named as complement in [5]. A module M is called
aCLS-module [7], if every z-closed submodule ofM is a direct summand ofM . Notice that extending modules fulfillCLS-module condition.

In this paper, we introduce the notions of f -closed submodule and f -CLS-module. We say a submodule X of M is f -closed, if X is fully
invariant in M and M/X is nonsingular. The properties of f -closed submodules are explored. Moreover, we call a module M is an f -CLS-
module, if every f -closed submodule is a direct summand. The concept of f -CLS-modules generalizes that of CLS-module by asking that
only every f -closed submodule is a direct summand rather than every z-closed submodule. This new class contains not only CLS-modules
but also FI-extending modules. We provide connections between f -CLS-modules and related notions. Some structural properties such as
direct sums and direct summands are discussed. In contrast to CLS-modules, the former class is closed under finite direct sums. Moreover,
a decomposition result with respect to second singular submodule is acquired. Finally, we give a characterization for the f -CLS-modules in
terms of lifting homomorphisms from f -closed submodule to the module. Examples are given to illustrate our results.

For the notations L ≤M , L ≤e M , L ≤c M , L ≤d M , LEM , Z(M), Z2(M) and End(MR), we mean that L is a right R-submodule
of M , L is an essential submodule of M , L is a complement submodule of M , L is a direct summand of M , L is a fully invariant submodule
of M , the singular submodule of M , the second singular submodule of M , and the endomorphism ring of M , respectively. Recall that a ring is
called Abelian, if every idempotent elements are central. For unknown notation and terminology, we refer to [3, 5, 8].

2 The class of f -CLS-modules

We start this section to determine the basic properties of f -closed submodules. For the properties of fully invariant submodules, we refer to [4]
in the following result.

Lemma 1. [4] Let M be a module.

(i) Assume {Xi | i ∈ I} is the family of fully invariant submodules of M . Then
⋂
i∈I

Xi and
∑
i∈I

Xi are fully invariant submodule of M .

(ii) Let X1 ≤ X2 ≤M such that X1 EX2 and X2 EM . Then X1 EM .

(iii) Assume M =
⊕
i∈I

Mi and X EM . Then X =
⊕
i∈I

(X ∩Mi), where X ∩Mi EMi for each i ∈ I .
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Definition 1. A submodule N of M is f -closed (denoted by, N ≤f M ) provided that N is a fully invariant submodule of M and M/N is
nonsingular.

Lemma 2. (i) Any intersection of f -closed submodule of M is an f -closed submodule of M .

(ii) Let A1, A2 ≤M such that A1 ≤ A2. If A1 ≤f A2 and A2 ≤f M , then A1 ≤f M .

Proof: (i) Let X1 ≤f M and X2 ≤f M . Then X1 EM and X2 EM such that Z(M/X1) = 0 and Z(M/X2) = 0. Notice from
Lemma 1, X1 ∩X2 EM . Define the homomorphism θ :M →M/(X1 ∩X2), by θ(m) = (m+X1,m+X2). Then M/(X1 ∩X2) ∼=
θ(M) ≤ (M/X1)⊕ (M/X2). Since Z(M/X1) = 0 and Z(M/X2) = 0, Z(θ(M)) = 0. It follows that Z(M/(X1 ∩X2)) = 0. Therefore
X1 ∩X2 ≤f M .

(ii) Suppose A1 ≤f A2 and A2 ≤f M . It follows from Lemma 1 that A1 EM . Since (M/A1)/(A2/A1) ∼=M/A2, it can be checked
that Z(M/A1) = 0. Hence A1 ≤f M .

�

Lemma 3. Every f -closed submodule of M is a complement in M .

Proof: Let X ≤f M . Then X EM and Z(M/X) = 0. Assume that there exists T ≤M such that X ≤e T ≤c M . Then T/X is singular,
and hence T/X ⊆ Z(M/X). Since Z(M/X) = 0, T = X . Thus X has no proper essential extension, X is a complement in M .

�

The next example explains that the converse of Lemma 3 need not to be true, in general.

Example 1. Let F be a field and VF be a vector space over the field F with dim(VF ) ≥ 2. Consider R as an R-module such that

R =

[
F V
0 F

]
=

{[
a v
0 a

]
: a ∈ F, v ∈ V

}
.

Let W =

[
0 Fv
0 0

]
be a submodule of RR. Then W is a complement in RR, but W is not an f -closed submodule in RR.

Definition 2. A module M is f -CLS-module, if every f -closed submodule of M is a direct summand of M .

In the following result, we provide that the class of f -CLS-modules contains both CLS-modules and FI-extending modules.

Proposition 1. Consider the following assertions for a module M :

(1)M is an extending module.

(2)M is a CLS-module.

(3)M is an FI-extending module.

(4)M is an f -CLS-module.

Then (1)⇒ (2)⇒ (4) and (1)⇒ (3)⇒ (4), but these arrows are not reversible, in general.

Proof: (1)⇒ (2) and (1)⇒ (3). These implications are clear from [7, Corollary 5] and [2, Proposition 3.7], respectively.

(2)⇒ (4). It is straightforward from definitions.

(3)⇒ (4). Let V ≤f M . Then V EM such that Z(M/V ) = 0. Thus V ≤e T ≤d M for some submodule T of M . Hence T/V is sin-
gular, so T/V ≤ Z(M/V ) = 0. Then V = T . Consequently, M is an f -CLS-module.

(2) ; (1) and (3) ; (1). LetMZ = (Z/Zp)⊕ (Z/Zp3) for any prime p. ThenMZ is aCLS-module which is not extending by [7, Exam-
ple 6]. On the other hand, it is FI-extending module by [6, p.1814] and [2, Proposition 3.7].

(4) ; (2). LetR =

[
Z Z
0 Z

]
be the upper triangular matrix ring over Z. It is well known thatRR is FI-extending, so it is a f -CLS-module

by the above implication. However, RR is not extending. Since Z(RR) = 0, RR is not CLS-module by [8, Corollary 5.60].

(4) ; (3). Let R =

[
F V
0 F

]
=

{[
a v
0 a

]
: a ∈ F, v ∈ V

}
, whereF is a field and VF is a vector space over the field F with dim(VF ) =

2. Note that R is a commutative indecomposable ring. Hence RR is not FI-extending. It can be seen that RR is the only f -closed submodule
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of RR. Therefore it is an f -CLS-module.
�

Proposition 2. (i) If M is nonsingular, then M is an f -CLS-module if and only if M is an FI-extending module.

(ii) If M is a multiplication (resp., duo) module, then M is an f -CLS-module if and only if M is a CLS-module.

Proof: (i) LetM is an f -CLS-module andX EM . Then there exists a submodule T ofM such thatX ≤e T ≤c M . SinceM is nonsingular,
it follows from [8, Lemma 5.58] and [2, Proposition 2.4] that T ≤f M . Thus T is a direct summand ofM which yields thatM is FI-extending.

(ii) It follows from the fact that every submodule of a multiplication (resp., duo) module is fully invariant.
�

The next result explains when the aforementioned property is inherited by submodules.

Proposition 3. If M be an f -CLS-module, then every f -closed submodule of M is an f -CLS-module.

Proof: Let A ≤f M and Y ≤f A. Hence Y ≤f M by Lemma 2(ii). Therefore Y is a direct summand of M . Thus M = Y ⊕ Y ′ for some
submodule Y ′ of M . It follows from Lemma 1 that A = A ∩ (Y ⊕ Y ′) = Y ⊕ (A ∩ Y ′). Then Y is a direct summand of A. Thus A is a
f -CLS-module.

�

Observe from [7] that CLS-modules is not closed under direct sums. Contrary to CLS-modules, f -CLS-modules enjoy with the direct
sums property.

Theorem 1. Let M =
k⊕

i=1
Mi for some Mi ≤M . If Mi is an f -CLS-module for all 1 ≤ i ≤ k, then M is an f -CLS-module.

Proof: The proof follows from the induction argument on k. Thus, it is enough to prove the result for the case k = 2. Let M =M1 ⊕M2 and
Y ≤f M . Thus Y is a fully invariant submodule in M and M/Y is nonsingular. By Lemma 1, Y = (Y ∩M1)⊕ (Y ∩M2) such that Y ∩
M1 EM1 and Y ∩M2 EM2. Observe thatM1/(Y ∩M1) ∼= (M1 + Y )/Y which is nonsingular. Thus Y ∩M1 ≤f M1. Thereby Y ∩M1
is a direct summand ofM1. HenceM1 = (Y ∩M1)⊕ T1 for some submodule T1 ofM1. Similarly, Y ∩M2 is also a direct summand ofM2.
Thus M2 = (Y ∩M2)⊕ T2 for some submodule T2 of M2. Therefore M =M1 ⊕M2 = (Y ∩M1)⊕ (Y ∩M2)⊕ T1 ⊕ T2 = Y ⊕ T ,
where T = T1 ⊕ T2. Hence M is an f -CLS-module.

�

We explore when the direct summand of an f -CLS-module fulfills the f -CLS-module condition in the subsequent result.

Proposition 4. Let M =M1 ⊕M2 be an f -CLS-module for some M1,M2 ≤M . If M1 EM , then M1 and M2 are f -CLS-modules.

Proof: Let M =M1 ⊕M2 be an f -CLS-module and M1 EM . Let X1 ≤f M1. Then X1 EM1 and M1/X1 is nonsingular. Hence X1 E
M by Lemma 1, and M/X1 is nonsingular by [5, Proposition 1.22]. Thus X1 ≤f M , so X1 is a direct summand of M . Then M = X1 ⊕X2
for some submodules X1, X2 of M . It follows thatM1 =M1 ∩ (X1 ⊕X2) = X1 ⊕ (M1 ∩X2), so X1 is a direct summand of M1. Thence
M1 is an f -CLS-module. Now, let X2 ≤f M2. Further M1 ⊕X2 is a fully invariant in M by [2, Lemma 4.11]. Observe that M/(M1 ⊕
X2) ∼=M2/X2 is nonsingular. HenceM1 ⊕X2 ≤f M . ThusM1 ⊕X2 is a direct summand ofM , soX2 is a direct summand ofM2. Hence
M2 is a f -CLS-module.

�

Corollary 1. Let M be a module with an Abelian endomorphism ring. If M is an f -CLS- module, then every direct summand of M is an
f -CLS-module.

Proof: Observe that every direct summand is fully invariant when the module has an Abelian endomorphism ring. Thus the proof follows from
Proposition 4.

�

Corollary 2. SupposeM =
k⊕

i=1
Mi, whereMi EM for all 1 ≤ i ≤ k. ThenM is an f -CLS-module if and only ifMi is an f -CLS-module.

Proof: It is a consequence of Theorem 1 and Proposition 4.
�
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Now we acquire the decomposition result with respect to the second singular submodule for the class of f -CLS-modules.

Proposition 5. Let M be an f -CLS-module and K an f -closed submodule of M . Then M = Z2(M)⊕ T ⊕ Y such that K and Y are
f -CLS-modules, where K = Z2(M)⊕ T .

Proof: Let M be an f -CLS-module and K ≤f M . Then M = K ⊕K′ for some submodule K′ of M . Since K EM , K and K′ are
f -CLS-modules by Proposition 4. Recall that Z2(M) ⊆ K, as M/K is nonsingular. Note that Z2(M)EK and Z(K/Z2(M)) = 0, so
Z2(M) ≤f K. It follows that K = Z2(M)⊕ T for some some submodule T of K. Therefore M = Z2(M)⊕ T ⊕K′. Hence K′ = Y is
the desired direct summand.

�

Finally, we obtain a characterization of f -CLS-modules with respect to lifting homomorphism from f -closed submodules to the module.

Theorem 2. M is an f -CLS-module if and only if for each f -closed submodule N of M and R-homomorphism ϕ : N → X , there exists
θ :M → X such that θ|N = ϕ, for any R-modules X and M .

Proof: Let M be an f -CLS-module and N ≤f M . Then N is a direct summand of M . Let f : N → X be a homomorphism. Define
g :M → X by g = fπ, where π :M → N is a projection map. Hence g|N = f . Conversely, assume M fulfills the former property. Let
K ≤f M . Hence ι : K → K identity map can be extended to g :M → K. Therefore M = K ⊕ ker g. Consequently M is an f -CLS-
module.

�

3 Conclusions

In this study, we investigate the class of modules whose f -closed submodules are direct summands. Some structural properties are obtained.
As a further work, some generalizations of extending modules can be explored, by using the class of f -closed submodules.

4 References
1 G.F. Birkenmeier, B.J. Müller, S.T. Rizvi, Modules in which every fully invariant submodules essential in a direct summand, Comm. Algebra 30(3)(2002), 1395-1415.
2 G.F. Birkenmeier, A. Tercan, C.C. Yücel, The extending condition relative to sets of submodules, Comm. Algebra, 42 (2014), 764-778.
3 N.V. Dung, D.V. Huynh, P.F. Smith, R. Wisbauer, Extending Modules, Pitman, London, 1994.
4 L. Fuchs, Infinite Abelian Groups I, Academic Press, New York, 1970.
5 K.R. Goodearl, Ring Theory: Nonsingular Rings and Modules, Dekker, New York, 1976.
6 P.F. Smith, A. Tercan, Generalizations of CS-modules, Commun Algebra, 21(1993), 1809-1847.
7 A. Tercan, On CLS-modules, Rocky Mount J Math., 25(1995), 1557-1564.
8 A. Tercan, C.C. Yücel, Module Theory, Extending Modules and Generalizations, Birkhäuser, Basel, 2016.

164 © CPOST 2021



Conference Proceeding Science and Technology, 4(1), 2021, 165–182

Conference Proceeding of 4th International E-Conference on Mathematical Advances and
Applications (ICOMAA-2021).

A Study on Matrix Sequence of Generalized
Third-Order Jacobsthal Numbers

ISSN: 2651-544X
http://dergipark.gov.tr/cpost

Yüksel Soykan1 Evren Eyican Polatlı2,∗
1Department of Mathematics, Faculty of Science and Arts, Zonguldak Bülent Ecevit University, Zonguldak, Turkey, ORCID:0000-0002-1895-211X
2Department of Mathematics, Faculty of Science and Arts, Zonguldak Bülent Ecevit University, Zonguldak, Turkey, ORCID:0000-0001-6990-7346
* Corresponding Author E-mail: evreneyican@hotmail.com

Abstract: In this paper, we introduce and investigate the generalized third-order Jacobsthal matrix sequence and we deal with, in
detail, three special cases of this sequence which we call them third-order Jacobsthal, third-order Jacobsthal-Lucas and modified
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1 Introduction and preliminaries

A generalized third order Jacobsthal sequence {Vn}n≥0 = {Vn(V0, V1, V2)}n≥0 is defined by the third-order recurrence relations

Vn = Vn−1 + Vn−2 + 2Vn−3 (1)

with the initial values V0 = c0, V1 = c1, V2 = c2 not all being zero.
The sequence {Vn}n≥0 can be extended to negative subscripts by defining

V−n = −1

2
V−(n−1) −

1

2
V−(n−2) +

1

2
V−(n−3)

for n = 1, 2, 3, .... Therefore, recurrence (1) holds for all integer n.
Binet formula of generalized third order Jacobsthal numbers can be given as

Vn =
b1α

n

(α− β)(α− γ) +
b2β

n

(β − α)(β − γ) +
b3γ

n

(γ − α)(γ − β)

where
b1 = V2 − (β + γ)V1 + βγV0, b2 = V2 − (α+ γ)V1 + αγV0, b3 = V2 − (α+ β)V1 + αβV0. (2)

Here, α, β and γ are the roots of the cubic equation x3 − x2 − x− 2 = 0. Moreover

α = 2

β =
−1 + i

√
3

2

γ =
−1− i

√
3

2
.

Note that

α+ β + γ = 1,

αβ + αγ + βγ = −1,
αβγ = 2.

The first few generalized third order Jacobsthal numbers with positive subscript and negative subscript are given in the following Table 1.
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Table 1. A few generalized third order Jacobsthal numbers
n Vn V−n
0 V0
1 V1

1
2V2 −

1
2V1 −

1
2V0

2 V2 − 1
4V2 + 3

4V1 −
1
4V0

3 V2 + V1 + 2V0 − 1
8V2 −

1
8V1 + 7

8V0
4 2V2 + 3V1 + 2V0

7
16V2 −

9
16V1 −

9
16V0

5 5V2 + 4V1 + 4V0 − 9
32V2 + 23

32V1 −
9
32V0

6 9V2 + 9V1 + 10V0 − 9
64V2 −

9
64V1 + 55

64V0
7 18V2 + 19V1 + 18V0

55
128V2 −

73
128V1 −

73
128V0

8 37V2 + 36V1 + 36V0 − 73
256V2 + 183

256V1 −
73
256V0

Now we present three special case of the sequence {Vn}. Third-order Jacobsthal sequence{Jn}n≥0, third-order Jacobsthal-Lucas sequence
{jn}n≥0 and modified third-order Jacobsthal sequence {Kn}n≥0 are defined, respectively, by the third-order recurrence relations

Jn+3 = Jn+2 + Jn+1 + 2Jn, J0 = 0, J1 = 1, J2 = 1, (3)

jn+3 = jn+2 + jn+1 + 2jn, j0 = 2, j1 = 1, j2 = 5, (4)

Kn+3 = Kn+2 +Kn+1 + 2Kn, K0 = 3,K1 = 1,K2 = 3. (5)

The sequences {Jn}n≥0 and {jn}n≥0 are defined in [5] and {Kn}n≥0 is given in [2]. The sequences {Jn}n≥0, {jn}n≥0 and {Kn}n≥0
can be extended to negative subscripts by defining

J−n = −1

2
J−(n−1) −

1

2
J−(n−2) +

1

2
J−(n−3),

j−n = −1

2
j−(n−1) −

1

2
j−(n−2) +

1

2
j−(n−3),

K−n = −1

2
K−(n−1) −

1

2
K−(n−2) +

1

2
K−(n−3)

for n = 1, 2, 3, ... respectively. For more information on generalized third-order Jacobsthal numbers, see [7].
In the rest of the paper, for easy writing, we drop the superscripts and write Jn, jn and Kn for J(3)

n , j
(3)
n and K(3)

n respectively. Note that
Jn is the sequence A077947 in [8] associated with the expansion of 1/(1− x− x2 − 2x3), jn is the sequence A226308 in [8] and Kn is the
sequence A186575 in [8] associated with the expansion of (1 + 2x+ 6x2)/(1− x− x2 − 2x3) in powers of x.

Next, we present the first few values of the third-order Jacobsthal, third-order Jacobsthal-Lucas and modified third-order Jacobsthal numbers
with positive and negative subscripts:

Table 2. The first few values of the special third-order numbers with positive and negative subscripts.
n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Jn 0 1 1 2 5 9 18 37 73 146 293 585 1170 2341
J−n 0 1

2 − 1
4 − 1

8
7
16 − 9

32 − 9
64

55
128 − 73

256 − 73
512

439
1024 − 585

2048 − 585
4096

jn 2 1 5 10 17 37 74 145 293 586 1169 2341 4682 9361
j−n 1 −1 1 1

2 − 5
4

7
8

7
16 − 41

32
55
64

55
128 − 329

256
439
512

439
1024

Kn 3 1 3 10 15 31 66 127 255 514 1023 2047 4098 8191
K−n − 1

2 − 3
4

17
8 − 15

16 − 31
32

129
64 − 127

128 − 255
256

1025
512 − 1023

1024 − 2047
2048

8193
4096 − 8191

8192
For all integers n, third-order Jacobsthal, Jacobsthal-Lucas and modified Jacobsthal numbers can be expressed using Binet’s formulas as

Jn =
αn+1

(α− β)(α− γ) +
βn+1

(β − α)(β − γ) +
γn+1

(γ − α)(γ − β) ,

jn =
(2α2 − α+ 2)αn

(α− β)(α− γ) +
(2β2 − β + 2)βn

(β − α)(β − γ) +
(2γ2 − γ + 2)γn

(γ − α)(γ − β) ,

Kn = αn + βn + γn,

respectively.

Next, we give the ordinary generating function
∞∑

n=0
Vnx

n of the sequence Vn.

Lemma 1. Suppose that fVn
(x) =

∞∑
n=0

Vnx
n is the ordinary generating function of the generalized third-order Jacobsthal sequence

{Vn}n≥0. Then,
∞∑

n=0
Vnx

n is given by

∞∑
n=0

Vnx
n =

V0 + (V1 − V0)x+ (V2 − V1 − V0)x2

1− x− x2 − 2x3
. (6)
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The previous Lemma gives the following results as particular examples.

Corollary 1. Generated functions of third-order Jacobsthal, Jacobsthal-Lucas and modified Jacobsthal numbers are

∞∑
n=0

Jnx
n =

x

1− x− x2 − 2x3
,

∞∑
n=0

jnx
n =

2− x+ 2x2

1− x− x2 − 2x3
,

∞∑
n=0

Knx
n =

3− 2x− x2

1− x− x2 − 2x3
,

respectively.

2 The matrix sequences of third-order Jacobsthal and third-order Jacobsthal-Lucas numbers

Recently, there have been so many studies of the sequences of numbers in the literature that concern about subsequences of the Horadam
(Generalized Fibonacci) numbers and generalized Tribonacci numbers such as Fibonacci, Lucas, Pell and Jacobsthal numbers; third-order
Pell, third-order Pell-Lucas, Padovan, Perrin, Padovan-Perrin, third-order Jacobsthal, third order Jacobsthal and third order Jacobsthal-Lucas
numbers. The sequences of numbers were widely used in many research areas, such as physics, engineering, architecture, nature and art. On
the other hand, the matrix sequences have taken so much interest for different type of numbers. We present some works on matrix sequences of
the numbers in the following Table 2.

Table 2. A few special study on the matrix sequences of the numbers.
Name of sequence work on the matrix sequences of the numbers

Generalized Fibonacci [3, 4, 6, 14–18, 21]
Generalized Tribonacci [1, 10–12, 19, 20]
Generalized Tetranacci [9]

In this section we define generalized third-order Jacobsthal matrix sequence and investigate their properties.

Definition 2. For any integer n ≥ 0, the third-order Jacobsthal matrix (Vn) and third-order Jacobsthal-Lucas matrix (Mn) are defined by

Vn = Vn−1 + Vn−2 + 2Vn−3 (7)

with initial conditions

V0 =

 V1 V2 − V1 2V0
V0 V1 − V0 V2 − V1 − V0

1
2 (V2 − V1 − V0)

1
2 (3V0 + V1 − V2) 1

2 (3V1 − V0 − V2)

 ,

V1 =

 V2 2V0 + V1 2V1
V1 V2 − V1 2V0
V0 V1 − V0 V2 − V1 − V0

 ,

V2 =

 2V0 + V1 + V2 2V1 + V2 2V2
V2 2V0 + V1 2V1
V1 V2 − V1 2V0

 .

The sequence {Vn}n≥0 can be extended to negative subscripts by defining

V−n = −1

2
V−(n−1) −

1

2
V−(n−2) +

1

2
V−(n−3)

for n = 1, 2, 3, ... respectively. Therefore, recurrence (7) holds for all integers n.

Three special cases of generalized third-order Jacobsthal matrix sequence (take Vn = Jn, Vn = jn, Vn = Kn, respectively) can be defined
as follows.

Definition 3. For any integer n ≥ 0, the third-order Jacobsthal matrix (Jn) and third-order Jacobsthal-Lucas matrix (Mn) and modified
third-order Jacobsthal matrix (Kn) are defined by

Jn = Jn−1 + Jn−2 + 2Jn−3,
Mn = Mn−1 +Mn−2 + 2Mn−3,

Kn = Kn−1 +Kn−2 + 2Kn−3,
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respectively, with initial conditions

J0 =

 1 0 0
0 1 0
0 0 1

 ,J1 =

 1 1 2
1 0 0
0 1 0

 ,J2 =

 2 3 2
1 1 2
1 0 0

 ,

M0 =

 1 4 4
2 −1 2
1 1 −2

 ,M1 =

 5 5 2
1 4 4
2 −1 2

 ,M2 =

 10 7 10
5 5 2
1 4 4

 ,

K0 =

 1 2 6
3 −2 −1
− 1

2
7
2 − 3

2

 ,K1 =

 3 7 2
1 2 6
3 −2 −1

 ,K2 =

 10 5 6
3 7 2
1 2 6


The sequences {Jn}n≥0, {Mn}n≥0 and {Kn}n≥0 can be extended to negative subscripts by defining

J−n = −1

2
J−(n−1) −

1

2
J−(n−2) +

1

2
J−(n−3),

M−n = −1

2
M−(n−1) −

1

2
M−(n−2) +

1

2
M−(n−3),

K−n = −1

2
K−(n−1) −

1

2
K−(n−2) +

1

2
K−(n−3),

for n = 1, 2, 3, ... respectively.
The following theorem gives the nth general terms of the generalized third-order Jacobsthal matrix sequence.

Theorem 4. For any integer n, we have the following formulas of the matrix sequences:

Vn =

 Vn+1 Vn + 2Vn−1 2Vn
Vn Vn−1 + 2Vn−2 2Vn−1
Vn−1 Vn−2 + 2Vn−3 2Vn−2

 (8)

Proof. Suppose that n ≥ 0. We prove (8) by strong mathematical induction on n. If n = 0 then, since V−1 = 1
2V2 −

1
2V1 −

1
2V0, V−2 =

− 1
4V2 + 3

4V1 −
1
4V0, V−3 = − 1

8V2 −
1
8V1 + 7

8V0, we have

V0 =

 V1 V0 + 2V−1 2V0
V0 V−1 + 2V−2 2V−1
V−1 V−2 + 2V−3 2V−2


=

 V1 V2 − V1 2V0
V0 V1 − V0 V2 − V1 − V0

1
2 (V2 − V1 − V0)

1
2 (3V0 + V1 − V2) 1

2 (3V1 − V0 − V2)


which is true. Assume that the equality holds for n ≤ k. For n = k + 1, we have

Vk+1 = Vk+1−1 + Vk+1−2 + 2Vk+1−3

= Vk + Vk−1 + 2Vk−2

=

 Vk+1 Vk + 2Vk−1 2Vk
Vk Vk−1 + 2Vk−2 2Vk−1
Vk−1 Vk−2 + 2Vk−3 2Vk−2

+

 Vk−1+1 Vk−1 + 2Vk−1−1 2Vk−1
Vk−1 Vk−1−1 + 2Vk−1−2 2Vk−1−1
Vk−1−1 Vk−1−2 + 2Vk−1−3 2Vk−1−2


+2

 Vk−2+1 Vk−2 + 2Vk−2−1 2Vk−2
Vk−2 Vk−2−1 + 2Vk−2−2 2Vk−2−1
Vk−2−1 Vk−2−2 + 2Vk−2−3 2Vk−2−2


=

 Vk+1 + Vk + 2Vk−1 Vk + 3Vk−1 + 4Vk−2 + 4Vk−3 2Vk + 2Vk−1 + 4Vk−2
Vk + Vk−1 + 2Vk−2 Vk−1 + 3Vk−2 + 4Vk−3 + 4Vk−4 2Vk−1 + 2Vk−2 + 4Vk−3
Vk−1 + Vk−2 + 2Vk−3 Vk−2 + 3Vk−3 + 4Vk−4 + 4Vk−5 2Vk−2 + 2Vk−3 + 4Vk−4


=

 Vk+2 Vk+1 + 2Vk 2Vk+1
Vk+1 Vk + 2Vk−1 2Vk
Vk Vk−1 + 2Vk−2 2Vk−1


=

 Vk+1+1 Vk+1 + 2Vk+1−1 2Vk+1
Vk+1 Vk+1−1 + 2Vk+1−2 2Vk+1−1
Vk+1−1 Vk+1−2 + 2Vk+1−3 2Vk+1−2

 .

Thus, by strong induction on k + 1, this proves (8).
For the case n ≤ 0, similarly, (8) can be proved by strong mathematical induction on n. �
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The following theorem gives the nth general terms of the third-order Jacobsthal, third-order Jacobsthal-Lucas and modified third-order
Jacobsthal matrix sequences.

Corollary 2. For any integer n, we have the following formulas of the matrix sequences:

Jn =

 Jn+1 Jn + 2Jn−1 2Jn
Jn Jn−1 + 2Jn−2 2Jn−1
Jn−1 Jn−2 + 2Jn−3 2Jn−2

 ,

Mn =

 jn+1 jn + 2jn−1 2jn
jn jn−1 + 2jn−2 2jn−1
jn−1 jn−2 + 2jn−3 2jn−2

 ,

Kn =

 Kn+1 Kn + 2Kn−1 2Kn

Kn Kn−1 + 2Kn−2 2Kn−1
Kn−1 Kn−2 + 2Kn−3 2Kn−2

 .

We now give the Binet’s formula for the generalized third-order Jacobsthal matrix sequence.

Theorem 5. For every integer n, the Binet’s formula of the generalized third-order Jacobsthal matrix sequence are given by

Vn = Aαn +Bβn + Cγn

where

A =
αV2 + α(α− 1)V1 + 2V0

α (α− γ) (α− β) , B =
βV2 + β(β − 1)V1 + 2V0

β (β − γ) (β − α) , C =
γV2 + γ(γ − 1)V1 + 2V0

γ (γ − β) (γ − α)

Proof. We need to prove the theorem only for n ≥ 0. By the assumption, the characteristic equation of (7) is x3 − x2 − x− 2 = 0 and the
roots of it are α, β and γ. So it’s general solution is given by

Vn = Aαn +Bβn + Cγn.

Using initial condition which is given in Definition 2, and also applying lineer algebra operations, we obtain the matrices A,B,C as desired.
This gives the formula for Vn. �

The following theorem gives the Binet’s formulas of the third-order Jacobsthal, third-order Jacobsthal-Lucas and modified third-order
Jacobsthal matrix sequences.

Corollary 3. For every integer n, the Binet formulas of the third-order Jacobsthal and third-order Jacobsthal-Lucas matrix sequences are
given by

Jn = A1α
n +B1β

n + C1γ
n,

Mn = A2α
n +B2β

n + C2γ
n,

Kn = A3α
n +B3β

n + C3γ
n,

where

A1 =
αJ2 + α(α− 1)J1 + 2J0

α (α− γ) (α− β) , B1 =
βJ2 + β(β − 1)J1 + 2J0

β (β − γ) (β − α) , C1 =
γJ2 + γ(γ − 1)J1 + 2J0

γ (γ − β) (γ − α) ,

A2 =
αM2 + α(α− 1)M1 + 2M0

α (α− γ) (α− β) , B2 =
βM2 + β(β − 1)M1 + 2M0

β (β − γ) (β − α) , C2 =
γM2 + γ(γ − 1)M1 + 2M0

γ (γ − β) (γ − α) ,

A3 =
αK2 + α(α− 1)K1 + 2K0

α (α− γ) (α− β) , B3 =
βK2 + β(β − 1)K1 + 2K0

β (β − γ) (β − α) , C3 =
γK2 + γ(γ − 1)K1 + 2K0

γ (γ − β) (γ − α) .

Now we will obtain these functions in terms of generalized third-order Jacobsthal matrix sequence as a consequence of Theorems 4 and 5.
To do this, we will give the formulas for these numbers by means of the related matrix sequences. In fact, in the proof of next corollary, we will
just compare the linear combination of the 2nd row and 1st column entries of the matrices.

Corollary 4. For every integers n, the Binet’s formulas for the generalized third-order Jacobsthal numbers is given as

Vn =
b1α

n

(α− β)(α− γ) +
b2β

n

(β − α)(β − γ) +
b3γ

n

(γ − α)(γ − β)

where

b1 = V2 − (β + γ)V1 + βγV0, b2 = V2 − (α+ γ)V1 + αγV0, b3 = V2 − (α+ β)V1 + αβV0.
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Proof. From Theorem 5, we have

Vn = Aαn +Bβn + Cγn

=
αV2 + α(α− 1)V1 + 2V0

α (α− γ) (α− β) αn +
βV2 + β(β − 1)V1 + 2V0

β (β − γ) (β − α) βn

+
γV2 + γ(γ − 1)V1 + 2V0

γ (γ − β) (γ − α) γn

=
αn−1

(α− γ) (α− β)

 . . .
αV2 + α (α− 1)V1 + 2V0 . .

. . .


+

βn−1

(β − γ) (β − α)

 . . .
βV2 + β (β − 1)V1 + 2V0 . .

. . .


+

γn−1

(γ − β) (γ − α)

 . . .
γV2 + γ (γ − 1)V1 + 2V0 . .

. . .

 .

(we only write the 2nd row and 1st column entries of the matrices). By Theorem 4, we know that

Vn =

 Vn+1 Vn + 2Vn−1 2Vn
Vn Vn−1 + 2Vn−2 2Vn−1
Vn−1 Vn−2 + 2Vn−3 2Vn−2

 .

Now, if we compare the 2nd row and 1st column entries with the matrices in the above two equations, then we obtain

Vn =
αn−1

(α− γ) (α− β) (αV2 + α (α− 1)V1 + 2V0)

+
βn−1

(β − γ) (β − α) (βV2 + β (β − 1)V1 + 2V0)

+
γn−1

(γ − β) (γ − α) (γV2 + γ (γ − 1)V1 + 2V0)

=
b1α

n

(α− β)(α− γ) +
b2β

n

(β − α)(β − γ) +
b3γ

n

(γ − α)(γ − β)

where
b1 = V2 − (β + γ)V1 + βγV0, b2 = V2 − (α+ γ)V1 + αγV0, b3 = V2 − (α+ β)V1 + αβV0.

Note that

αV2 + α (α− 1)V1 + 2V0 = α(V2 + (α− 1)V1 +
2

α
V0)

= α(V2 − (β + γ)V1 + βγV0) = αb1,

βV2 + β (β − 1)V1 + 2V0 = β(V2 + (β − 1)V1 +
2

β
V0)

= β(V2 − (α+ γ)V1 + αγV0) = βb2,

γV2 + γ (γ − 1)V1 + 2V0 = γ(V2 + (γ − 1)V1 +
2

γ
V0)

= γ(V2 − (α+ β)V1 + αβV0) = γb3.

�
Now, we present summation formulas for the generalized third-order Jacobsthal matrix sequence.

Theorem 6. For all integers m, j we have

n−1∑
k=0

Vmk+j =
Vmn+m+j + 2mVmn−m+j + (1−Km)Vmn+j − Vm+j − 2mVj−m + (Km − 1)Vj

Km + 2m(1−K−m)− 1
(9)

Proof. Note that

n−1∑
i=0

Vmi+j =

n−1∑
i=0

(Aαmi+j +Bβmi+j + Cγmi+j)

= Aαj
(
αmn − 1

αm − 1

)
+Bβj

(
βmn − 1

βm − 1

)
+ Cγj

(
γmn − 1

γm − 1

)
Simplifying and rearranging the last equalities in the last two expression imply (9) as required. �
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As in Corollary 4, in the proof of next Corollary, we just compare the linear combination of the 2nd row and 1st column entries of the
relevant matrices to obtain summation formula for the generalized third-order Jacobsthal sequence..

Corollary 5. For all integers m, j we have

n−1∑
k=0

Vmk+j =
Vmn+m+j + 2mVmn−m+j + (1−Km)Vmn+j − Vm+j − 2mVj−m + (Km − 1)Vj

Km + 2m(1−K−m)− 1
.

We now give generating functions of Vn .

Theorem 7. The generating function for the generalized third-order Jacobsthal matrix sequences is given as

∞∑
n=0

Vnxn =
V0 + (V1 − V0)x+ (V2 − V1 − V0)x2

1− x− x2 − 2x3

=
1

1− x− x2 − 2x3

 a11 a12 a13
a21 a22 a23
a31 a32 a33


where

a11 = V1 + (−V1 + V2)x+ 2V0x
2

a21 = V0 + (−V0 + V1)x+ (−V0 − V1 + V2)x
2

a31 =
1

2
(V2 − V1 − V0) +

1

2
(3V0 + V1 − V2)x+

1

2
(−V2 + 3V1 − V0)x2

a12 = V2 − V1 + (2V0 + 2V1 − V2)x+ (−2V0 + 2V1)x
2

a22 = V1 − V0 + (V0 − 2V1 + V2)x+ (3V0 + V1 − V2)x2

a32 =
1

2
(3V2 − 5V1 − V0)x2 +

1

2
(V2 + V1 − 5V0)x+

1

2
(3V0 + V1 − V2)

a13 = (−2V0 − 2V1 + 2V2)x
2 + (−2V0 + 2V1)x+ 2V0

a23 = V2 − V1 − V0 + (3V0 + V1 − V2)x+ (−V0 + 3V1 − V2)x2

a33 =
1

2
(3V2 − 5V1 − V0)x+

1

2
(7V0 − V1 − V2)x2 +

1

2
(−V2 + 3V1 − V0)

Proof. Suppose that g(x) =
∑∞

n=0 Vnx
n is the generating function for the sequence {Vn}n≥0. Using the definition of the matrix sequence

of generalized third-order Jacobsthal numbers (2), and substracting x
∑∞

n=0 Vnx
n, x2

∑∞
n=0 Vnx

n and 2x3
∑∞

n=0 Vnx
n from

∑∞
n=0 Vnx

n

we obtain

(1− x− x2 − 2x3)

∞∑
n=0

Vnxn =

∞∑
n=0

Vnxn − x
∞∑

n=0

Vnxn − x2
∞∑

n=0

Vnxn − 2x3
∞∑

n=0

Vnxn

=

∞∑
n=0

Vnxn −
∞∑

n=0

Vnxn+1 −
∞∑

n=0

Vnxn+2 − 2

∞∑
n=0

Vnxn+3

=
∞∑

n=0

Vnxn −
∞∑

n=1

Vn−1xn −
∞∑

n=2

Vn−2xn − 2

∞∑
n=3

Vn−3xn

= (V0 + V1x+ V2x2)− (V0x+ V1x2)− V0x2

+

∞∑
n=3

(Vn − Vn−1 − Vn−2 − 2Vn−3)xn

= V0 + V1x+ V2x2 − V0x− V1x2 − V0x2

= V0 + (V1 − V0)x+ (V2 − V1 − V0)x2.

Rearranging above equation, we obtain

∞∑
n=0

Vnxn =
V0 + (V1 − V0)x+ (V2 − V1 − V0)x2

1− x− x2 − 2x3

which equals the
∑∞

n=0 Vnx
n in the Theorem. This completes the proof. �
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The following corollary gives the generating functions of the third-order Jacobsthal, third-order Jacobsthal-Lucas and modified third-order
Jacobsthal matrix sequences.

Corollary 6. The generating functions for the third-order Jacobsthal, third-order Jacobsthal-Lucas and modified third-order Jacobsthal matrix
sequences are given as

∞∑
n=0

Jnxn =
1

1− x− x2 − 2x3

 1 2x2 + x 2x

x 1− x 2x2

x2 x− x2 −x2 − x+ 1

 ,

∞∑
n=0

Mnx
n =

1

1− x− x2 − 2x3

 4x2 + 4x+ 1 −2x2 + x+ 4 4x2 − 2x+ 4

2x2 − x+ 2 2x2 + 5x− 1 −4x2 + 2x+ 2

−2x2 + x+ 1 4x2 − 2x+ 1 4x2 + 4x− 2

 ,

∞∑
n=0

Knx
n =

1

1− x− x2 − 2x3

 6x2 + 2x+ 1 −4x2 + 5x+ 2 −2x2 − 4x+ 6

−x2 − 2x+ 3 7x2 + 4x− 2 −3x2 + 7x− 1

− 3
2x

2 + 7
2x−

1
2

1
2x

2 − 11
2 x+ 7

2
17
2 x

2 + 1
2x−

3
2

 ,

The well known generating function for generalized third-order Jacobsthal numbers is as in (6). However, we will obtain these functions in
terms of generalized third-order Jacobsthal matrix sequences as a consequence of Theorem 7. To do this, we will again compare the the 2nd
row and 1st column entries with the matrices in Theorem 7. Thus we have the following corollary.

Corollary 7. The generating function for the generalized third-order Jacobsthal sequence {Vn} is given as

∞∑
n=0

Vnx
n =

V0 + (V1 − V0)x+ (V2 − V1 − V0)x2

1− x− x2 − 2x3
.

Using Theorem 4 and Corollary 2, we see that

V−1 =

 V0 V1 − V0 V2 − V1 − V0
1
2 (V2 − V1 − V0)

1
2 (3V0 + V1 − V2) 1

2 (3V1 − V0 − V2)
1
4 (3V1 − V0 − V2)

1
4 (3V2 − 5V1 − V0) 1

4 (7V0 − V1 − V2)

 ,

V−2 =

 1
2 (V2 − V1 − V0)

1
2 (3V0 + V1 − V2) 1

2 (3V1 − V0 − V2)
1
4 (3V1 − V0 − V2)

1
4 (3V2 − 5V1 − V0) 1

4 (7V0 − V1 − V2)
1
8 (7V0 − V1 − V2)

1
8 (7V1 − 9V0 − V2) 1

8 (7V2 − 9V1 − 9V0)

 ,

and

J−1 =

 0 1 0
0 0 1
1
2 − 1

2 − 1
2

 , J−2 =

 0 0 1
1
2 − 1

2 − 1
2

− 1
4

3
4 − 1

4

 ,

M−1 =

 2 −1 2
1 1 −2
−1 2 2

 , M−2 =

 1 1 −2
−1 2 2
1 −2 1

 ,

K−1 =

 3 −2 −1
− 1

2
7
2 − 3

2
− 3

4
1
4

17
4

 , K−2 =

 − 1
2

7
2 − 3

2
− 3

4
1
4

17
4

17
8 − 23

8 − 15
8

 .

We now give generating functions of the generalized third-order Jacobsthal matrix sequence Vn for negative indices.

Theorem 8. For negative indices, the generating function for the generalized third-order Jacobsthal matrix sequence is given as

∞∑
n=0

V−nxn =
2V0 + (V2 − V1)x+ V1x2

2 + x+ x2 − x3

=
1

2 + x+ x2 − x3

 b11 b12 b13
b21 b22 b23
b31 b32 b33


where

b11 = 2V1 + (2V0 + V1)x+ V2x
2

b21 = 2V0 + (−V1 + V2)x+ V1x
2

b31 = V2 − V1 − V0 + (−V0 + V1)x+ V0x
2
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and

b12 = 2V2 − 2V1 + x (V1 − 2V0 + V2) + x2 (2V0 + V1)

b22 = 2V1 − 2V0 + (2V0 + 2V1 − V2)x+ (−V1 + V2)x
2

b32 = −V2 + V1 + 3V0 + (V0 − 2V1 + V2)x+ (−V0 + V1)x
2

and

b13 = 4V0 + (−2V1 + 2V2)x+ 2V1x
2

b23 = 2V2 − 2V1 − 2V0 + (−2V0 + 2V1)x+ 2V0x
2

b33 = −V2 + 3V1 − V0 + (3V0 + V1 − V2)x+ (−V0 − V1 + V2)x
2

Proof. Then, using Definition 2, and substracting − 1
2x
∑∞

n=0 V−nx
n, − 1

2x
2∑∞

n=0 V−nx
n and 1

2x
3∑∞

n=0 V−nx
n from

∑∞
n=0 V−nx

n

we obtain

(1 +
1

2
x+

1

2
x2 − 1

2
x3)

∞∑
n=0

V−nxn =

∞∑
n=0

V−nxn +
1

2
x

∞∑
n=0

V−nxn +
1

2
x2
∞∑

n=0

V−nxn −
1

2
x3
∞∑

n=0

V−nxn

=

∞∑
n=0

V−nxn +
1

2

∞∑
n=0

V−nxn+1 +
1

2

∞∑
n=0

V−nxn+2 − 1

2

∞∑
n=0

V−nxn+3

=

∞∑
n=0

V−nxn +
1

2

∞∑
n=1

V−n+1x
n +

1

2

∞∑
n=2

V−n+2x
n − 1

2

∞∑
n=3

V−n+3x
n

= (V0 + V−1x+ V−2x2) +
1

2
(V0x+ V−1x2) +

1

2
V0x2

+

∞∑
n=3

(V−n +
1

2
V−n+1 +

1

2
V−n+2 −

1

2
V−n+3)x

n

= (V0 + V−1x+ V−2x2) +
1

2
(V0x+ V−1x2) +

1

2
V0x2

= V0 +
1

2
(V2 − V1)x+

1

2
V1x2

where

V−1 =
1

t
(V2 − rV1 − sV0),

V−2 =
1

t2
(−sV2 + tV1 + s2V0 + rsV1 − rtV0).

Rearranging above equation, we get
∞∑

n=0

V−nxn =
2V0 + (V2 − V1)x+ V1x2

2 + x+ x2 − x3

which equals the
∑∞

n=0 V−nx
n in the Theorem. �

The following corollary gives the generating functions of the third-order Jacobsthal, third-order Jacobsthal-Lucas and modified third-order
Jacobsthal matrix sequences with negative indices .

Corollary 8. The generating functions for the third-order Jacobsthal, third-order Jacobsthal-Lucas and modified third-order Jacobsthal matrix
sequences with negative indices are given as

∞∑
n=0

J−nxn =
1

2 + x+ x2 − x3

 x2 + x+ 2 x2 + 2x 2x2

x2 x+ 2 2x

x x2 − x 2

 ,

∞∑
n=0

M−nxn =
1

2 + x+ x2 − x3

 5x2 + 5x+ 2 5x2 + 2x+ 8 2x2 + 8x+ 8

x2 + 4x+ 4 4x2 + x− 2 4x2 − 2x+ 4

2x2 − x+ 2 −x2 + 5x+ 2 2x2 + 2x− 4

 ,

∞∑
n=0

K−nxn =
1

2 + x+ x2 − x3

 3x2 + 7x+ 2 7x2 − 2x+ 4 2x2 + 4x+ 12

x2 + 2x+ 6 2x2 + 5x− 4 6x2 − 4x− 2

3x2 − 2x− 1 −2x2 + 4x+ 7 −x2 + 7x− 3

 ,

respectively.
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Now, we will obtain generating functions for generalized third-order Jacobsthal numbers in terms of generalized third-order Jacobsthal
matrix sequences with negative indices as a consequence of Theorem 8. To do this, we will again compare the the 2nd row and 1st column
entries with the matrices in Theorem 8. Thus we have the following corollary.

Corollary 9. The generating functions for the generalized third-order Jacobsthal sequence {V−n}n≥0 is given as

∞∑
n=0

V−nx
n =

2V0 + (−V1 + V2)x+ V1x
2

2 + x+ x2 − x3
.

The previous corollary gives the following results as particular examples.

Corollary 10. Generated functions of third-order Jacobsthal, third-order Jacobsthal-Lucas and modified third-order Jacobsthal numbers with
negative indices are

∞∑
n=0

J−nx
n =

2J0 + (−J1 + J2)x+ J1x
2

2 + x+ x2 − x3
=

x2

2 + x+ x2 − x3
,

∞∑
n=0

j−nx
n =

2j0 + (−j1 + j2)x+ j1x
2

2 + x+ x2 − x3
=

4 + 4x+ x2

2 + x+ x2 − x3
,

∞∑
n=0

K−nx
n =

2K0 + (−K1 +K2)x+K1x
2

2 + x+ x2 − x3
=

6 + 2x+ x2

2 + x+ x2 − x3
,

respectively.

3 Some identities

In this section, we assume that m and n are arbitrary integers, unless otherwise mentioned. In this section, we obtain some identities of
generalized third-order Jacobsthal and third-order Jacobsthal, third-order Jacobsthal-Lucas and modified third-order Jacobsthal numbers. First,
we can give a few basic relations between {Vn} and {Jn}.

Lemma 9. The following equalities are true:

(a)8Vn = (7V0 − V1 − V2)Jn+4 + (−9V0 + 7V1 − V2)Jn+3 + (−9V0 − 9V1 + 7V2)Jn+2.
(b)4Vn = (−V0 + 3V1 − V2)Jn+3 + (−V0 − 5V1 + 3V2)Jn+2 + (7V0 − V1 − V2)Jn+1.
(c)2Vn = (−V0 − V1 + V2)Jn+2 + (3V0 + V1 − V2)Jn+1 + (−V0 + 3V1 − V2)Jn.
(d)Vn = V0Jn+1 + (V1 − V0)Jn + (V2 − V1 − V0)Jn−1.
(e)Vn = V1Jn + (V2 − V1)Jn−1 + 2V0Jn−2.

Proof. Note that all the identities hold for all integers n. We prove (a). Writing

Vn = a× Jn+4 + b× Jn+3 + c× Jn+2

and solving the system of equations

V0 = a× J4 + b× J3 + c× J2
V1 = a× J5 + b× J4 + c× J3
V2 = a× J6 + b× J5 + c× J4

we find that a = 1
8 (7V0 − V1 − V2), b =

1
8 (−9V0 + 7V1 − V2), c = 1

8 (7V2 − 9V1 − 9V0). The other equalities can be proved similarly. �
Note that all the identities in the above lemma can be proved by induction as well.
Next, we present a few basic relations between {Jn} and {Vn}.

Lemma 10. The following equalities are true:

(a)2(4V 3
0 + 4V 2

0 V1 + 2V 2
0 V2 + 3V0V

2
1 − 5V0V1V2 − V0V 2

2 + 3V 3
1 − 2V1V

2
2 + V 3

2 )Jn = (−V 2
1 − V1V2 − 2V0V1 + V 2

2 )Vn+4 + (3V 2
1 +

V1V2 + 2V0V1 − V 2
2 − 2V0V2)Vn+3 + (4V 2

0 + 4V0V1 + 2V0V2 + V 2
1 − V1V2 − V 2

2 )Vn+2.
(b)(4V 3

0 + 4V 2
0 V1 + 2V 2

0 V2 + 3V0V
2
1 − 5V0V1V2 − V0V 2

2 + 3V 3
1 − 2V1V

2
2 + V 3

2 )Jn = (V 2
1 − V0V2)Vn+3 + (2V 2

0 + V0V1 + V0V2 − V1V2)Vn+2 +
(−V 2

1 − V1V2 − 2V0V1 + V 2
2 )Vn+1.

(c)(4V 3
0 + 4V 2

0 V1 + 2V 2
0 V2 + 3V0V

2
1 − 5V0V1V2 − V0V 2

2 + 3V 3
1 − 2V1V

2
2 + V 3

2 )Jn = (2V 2
0 + V0V1 + V 2

1 − V2V1)Vn+2 + (V 2
2 − 2V0V1 −

V0V2 − V1V2)Vn+1 + 2(V 2
1 − V0V2)Vn.

(d)(4V 3
0 + 4V 2

0 V1 + 2V 2
0 V2 + 3V0V

2
1 − 5V0V1V2 − V0V 2

2 + 3V 3
1 − 2V1V

2
2 + V 3

2 )Jn = (2V 2
0 − V0V1 − V0V2 + V 2

1 − 2V1V2 + V 2
2 )Vn+1 +

(2V 2
0 + V0V1 − 2V2V0 + 3V 2

1 − V2V1)Vn + 2(2V 2
0 + V0V1 + V 2

1 − V2V1)Vn−1.
(e)(4V 3

0 + 4V 2
0 V1 + 2V 2

0 V2 + 3V0V
2
1 − 5V0V1V2 − V0V 2

2 + 3V 3
1 − 2V1V

2
2 + V 3

2 )Jn = (4V 2
0 − 3V0V2 + 4V 2

1 − 3V1V2 + V 2
2 )Vn + (6V 2

0 +
V0V1 − V0V2 + 3V 2

1 − 4V1V2 + V 2
2 )Vn−1 + 2(2V 2

0 − V0V1 − V0V2 + V 2
1 − 2V1V2 + V 2

2 )Vn−2.
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Now, we give a few basic relations between {Vn} and {jn}.

Lemma 11. The following equalities are true:

(a)96Vn = (−27V0 + 5V1 + 5V2)jn+4 + (37V0 − 27V1 + 5V2)jn+3 + (37V0 + 37V1 − 27V2)jn+2.
(b)48Vn = (5V0 − 11V1 + 5V2)jn+3 + (5V0 + 21V1 − 11V2)jn+2 + (−27V0 + 5V1 + 5V2)jn+1.
(c)24Vn = (5V0 + 5V1 − 3V2)jn+2 + (−11V0 − 3V1 + 5V2)jn+1 + (5V0 − 11V1 + 5V2)jn.
(d)12Vn = (−3V0 + V1 + V2)jn+1 + (5V0 − 3V1 + V2)jn + (5V0 + 5V1 − 3V2)jn−1.
(e)6Vn = (V0 − V1 + V2)jn + (V0 + 3V1 − V2)jn−1 + (−3V0 + V1 + V2)jn−2.

Next, we present a few basic relations between {jn} and {Vn}.

Lemma 12. The following equalities are true:

(a)(V0 + V1 + V2)(4V
2
0 + 3V 2

1 + V 2
2 − 2V0V2 − 3V1V2)jn = (2V 2

0 + 3V 2
1 − V 2

2 + 3V0V1 − V0V2)Vn+4 + (2V 2
0 − 3V 2

1 + 2V 2
2 − 3V0V1 +

2V0V2 − 3V1V2)Vn+3 + 2(−2V 2
0 − 2V0V2 − 3V1V0 + V 2

2 )Vn+2.
(b)(V0 + V1 + V2)(4V

2
0 + 3V 2

1 + V 2
2 − 2V0V2 − 3V1V2)jn = (4V 2

0 + V 2
2 + V0V2 − 3V1V2)Vn+3 + (−2V 2

0 − 3V0V1 − 5V0V2 + 3V 2
1 +

V 2
2 )Vn+2 + 2(2V 2

0 + 3V 2
1 − V 2

2 + 3V0V1 − V0V2)Vn+1.
(c)(V0 + V1 + V2)(4V

2
0 + 3V 2

1 + V 2
2 − 2V0V2 − 3V1V2)jn = (2V 2

0 + 3V 2
1 + 2V 2

2 − 3V0V1 − 4V0V2 − 3V1V2)Vn+2 + (8V 2
0 + 6V 2

1 −
V 2
2 + 6V0V1 − V0V2 − 3V1V2)Vn+1 + 2(4V 2

0 + V 2
2 + V0V2 − 3V1V2)Vn.

(d)(V0 + V1 + V2)(4V
2
0 + 3V 2

1 + V 2
2 − 2V0V2 − 3V1V2)jn = (10V 2

0 + 9V 2
1 + V 2

2 + 3V0V1 − 5V0V2 − 6V1V2)Vn+1 + (10V 2
0 + 3V 2

1 +
4V 2

2 − 3V0V1 − 2V0V2 − 9V1V2)Vn + 2(2V 2
0 + 3V 2

1 + 2V 2
2 − 3V0V1 − 4V0V2 − 3V1V2)Vn−1.

(e)(V0 + V1 + V2)(4V
2
0 + 3V 2

1 + V 2
2 − 2V0V2 − 3V1V2)jn = (20V 2

0 + 12V 2
1 + 5V 2

2 − 7V0V2 − 15V1V2)Vn + (14V 2
0 + 15V 2

1 + 5V 2
2 −

3V0V1 − 13V0V2 − 12V1V2)Vn−1 + 2(10V 2
0 + 9V 2

1 + V 2
2 + 3V0V1 − 5V0V2 − 6V1V2)Vn−2.

Now, we give a few basic relations between {Vn} and {Kn}.

Lemma 13. The following equalities are true:

(a)588Vn = (−85V0 − 57V1 + 55V2)Kn+4 + (195V0 + 27V1 − 57V2)Kn+3 + (−29V0 + 195V1 − 85V2)Kn+2.
(b)294Vn = (55V0 − 15V1 − V2)Kn+3 + (−57V0 + 69V1 − 15V2)Kn+2 + (−85V0 − 57V1 + 55V2)Kn+1.
(c)147Vn = (−V0 + 27V1 − 8V2)Kn+2 + (−15V0 − 36V1 + 27V2)Kn+1 + (55V0 − 15V1 − V2)Kn.
(d)147Vn = (−16V0 − 9V1 + 19V2)Kn+1 + (54V0 + 12V1 − 9V2)Kn + 2(−V0 + 27V1 − 8V2)Kn−1.
(e)147Vn = (38V0 + 3V1 + 10V2)Kn + (−18V0 + 45V1 + 3V2)Kn−1 + 2(−16V0 − 9V1 + 19V2)Kn−2.

Next, we present a few basic relations between {Kn} and {Vn}.

Lemma 14. The following equalities are true:

(a)4(4V 3
0 + 4V 2

0 V1 + 2V 2
0 V2 + 3V0V

2
1 − 5V0V1V2 − V0V 2

2 + 3V 3
1 − 2V1V

2
2 + V 3

2 )Kn = (−4V 2
0 + 4V0V1 − 14V0V2 + 15V 2

1 + 5V1V2 −
3V 2

2 )Vn+4 + (28V 2
0 + 12V0V1 + 22V0V2 − 9V 2

1 − 15V1V2 + V 2
2 )Vn+3 + (−12V 2

0 − 40V0V1 − 2V0V2 − 21V 2
1 − 11V1V2 + 17V 2

2 )Vn+2.
(b)2(4V 3

0 + 4V 2
0 V1 + 2V 2

0 V2 + 3V0V
2
1 − 5V0V1V2 − V0V 2

2 + 3V 3
1 − 2V1V

2
2 + V 3

2 )Kn = (12V 2
0 + 8V0V1 + 4V0V2 + 3V 2

1 − 5V1V2 −
V 2
2 )Vn+3 + (−8V 2

0 − 18V0V1 − 8V0V2 − 3V 2
1 − 3V1V2 + 7V 2

2 )Vn+2 + (−4V 2
0 + 4V0V1 − 14V0V2 + 15V 2

1 + 5V1V2 − 3V 2
2 )Vn+1.

(c)(4V 3
0 + 4V 2

0 V1 + 2V 2
0 V2 + 3V0V

2
1 − 5V0V1V2 − V0V 2

2 + 3V 3
1 − 2V1V

2
2 + V 3

2 )Kn = (2V 2
0 − 2V0V2 − 5V1V0 + 3V 2

2 − 4V1V2)Vn+2 +
(4V 2

0 + 6V0V1 − 5V0V2 + 9V 2
1 − 2V 2

2 )Vn+1 + (12V 2
0 + 8V0V1 + 4V0V2 + 3V 2

1 − 5V1V2 − V 2
2 )Vn.

(d)(4V 3
0 + 4V 2

0 V1 + 2V 2
0 V2 + 3V0V

2
1 − 5V0V1V2 − V0V 2

2 + 3V 3
1 − 2V1V

2
2 + V 3

2 )Kn = (6V 2
0 + V0V1 − 7V0V2 + 9V 2

1 − 4V1V2 + V 2
2 )Vn+1 +

(14V 2
0 + 3V0V1 + 2V0V2 + 3V 2

1 − 9V1V2 + 2V 2
2 )Vn + 2(2V 2

0 − 2V0V2 − 5V1V0 + 3V 2
2 − 4V1V2)Vn−1.

(e)(4V 3
0 + 4V 2

0 V1 + 2V 2
0 V2 + 3V0V

2
1 − 5V0V1V2 − V0V 2

2 + 3V 3
1 − 2V1V

2
2 + V 3

2 )Kn = (20V 2
0 + 4V0V1 − 5V0V2 + 12V 2

1 − 13V1V2 +
3V 2

2 )Vn + (10V 2
0 − 9V0V1 − 11V0V2 + 9V 2

1 − 12V1V2 + 7V 2
2 )Vn−1 + 2(6V 2

0 + V0V1 − 7V0V2 + 9V 2
1 − 4V1V2 + V 2

2 )Vn−2.

4 Relation between generalized third-order Jacobsthal matrix sequences and its special cases

In this section, we assume that m and n are arbitrary integers, unless otherwise mentioned.
The following theorem shows that there always exist interrelation between generalized third-order Jacobsthal and third-order Jacobsthal

matrix sequences.

Theorem 15. For the matrix sequences {Vn} and {Jn}, we have the following identities.

(a)8Vn = (7V0 − V1 − V2)Jn+4 + (−9V0 + 7V1 − V2)Jn+3 + (−9V0 − 9V1 + 7V2)Jn+2.
(b)4Vn = (−V0 + 3V1 − V2)Jn+3 + (−V0 − 5V1 + 3V2)Jn+2 + (7V0 − V1 − V2)Jn+1.
(c)2Vn = (−V0 − V1 + V2)Jn+2 + (3V0 + V1 − V2)Jn+1 + (−V0 + 3V1 − V2)Jn.
(d)Vn = V0Jn+1 + (V1 − V0)Jn + (V2 − V1 − V0)Jn−1.
(e)Vn = V1Jn + (V2 − V1)Jn−1 ++2V0Jn−2.
(f)2(4V 3

0 + 4V 2
0 V1 + 2V 2

0 V2 + 3V0V
2
1 − 5V0V1V2 − V0V 2

2 + 3V 3
1 − 2V1V

2
2 + V 3

2 )Jn = (−V 2
1 − V1V2 − 2V0V1 + V 2

2 )Vn+4 + (3V 2
1 +

V1V2 + 2V0V1 − V 2
2 − 2V0V2)Vn+3 + (4V 2

0 + 4V0V1 + 2V0V2 + V 2
1 − V1V2 − V 2

2 )Vn+2.
(g)(4V 3

0 + 4V 2
0 V1 + 2V 2

0 V2 + 3V0V
2
1 − 5V0V1V2 − V0V 2

2 + 3V 3
1 − 2V1V

2
2 + V 3

2 )Jn = (V 2
1 − V0V2)Vn+3 + (2V 2

0 + V0V1 + V0V2 −
V1V2)Vn+2 + (−V 2

1 − V1V2 − 2V0V1 + V 2
2 )Vn+1.

(h)(4V 3
0 + 4V 2

0 V1 + 2V 2
0 V2 + 3V0V

2
1 − 5V0V1V2 − V0V 2

2 + 3V 3
1 − 2V1V

2
2 + V 3

2 )Jn = (2V 2
0 + V0V1 + V 2

1 − V2V1)Vn+2 + (V 2
2 − 2V0V1 −

V0V2 − V1V2)Vn+1 + 2(V 2
1 − V0V2)Vn.
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(i)(4V 3
0 + 4V 2

0 V1 + 2V 2
0 V2 + 3V0V

2
1 − 5V0V1V2 − V0V 2

2 + 3V 3
1 − 2V1V

2
2 + V 3

2 )Jn = (2V 2
0 − V0V1 − V0V2 + V 2

1 − 2V1V2 + V 2
2 )Vn+1 +

(2V 2
0 + V0V1 − 2V2V0 + 3V 2

1 − V2V1)Vn + 2(2V 2
0 + V0V1 + V 2

1 − V2V1)Vn−1.
(j)(4V 3

0 + 4V 2
0 V1 + 2V 2

0 V2 + 3V0V
2
1 − 5V0V1V2 − V0V 2

2 + 3V 3
1 − 2V1V

2
2 + V 3

2 )Jn = (4V 2
0 − 3V0V2 + 4V 2

1 − 3V1V2 + V 2
2 )Vn + (6V 2

0 +
V0V1 − V0V2 + 3V 2

1 − 4V1V2 + V 2
2 )Vn−1 + 2(2V 2

0 − V0V1 − V0V2 + V 2
1 − 2V1V2 + V 2

2 )Vn−2.

Proof. From Lemmas 9 and 10, (a)-(j) follow. �
The following theorem shows that there always exist interrelation between generalized third-order Jacobsthal and third-order Jacobsthal-

Lucas matrix sequences.

Theorem 16. For the matrix sequences {Vn} and {Mn}, we have the following identities.

(a)96Vn = (−27V0 + 5V1 + 5V2)Mn+4 + (37V0 − 27V1 + 5V2)Mn+3 + (37V0 + 37V1 − 27V2)Mn+2.
(b)48Vn = (5V0 − 11V1 + 5V2)Mn+3 + (5V0 + 21V1 − 11V2)Mn+2 + (−27V0 + 5V1 + 5V2)Mn+1.
(c)24Vn = (5V0 + 5V1 − 3V2)Mn+2 + (−11V0 − 3V1 + 5V2)Mn+1 + (5V0 − 11V1 + 5V2)Mn.
(d)12Vn = (−3V0 + V1 + V2)Mn+1 + (5V0 − 3V1 + V2)Mn + (5V0 + 5V1 − 3V2)Mn−1.
(e)6Vn = (V0 − V1 + V2)Mn + (V0 + 3V1 − V2)Mn−1 + (−3V0 + V1 + V2)Mn−2.
(f)(V0 + V1 + V2)(4V

2
0 + 3V 2

1 + V 2
2 − 2V0V2 − 3V1V2)Mn = (2V 2

0 + 3V 2
1 − V 2

2 + 3V0V1 − V0V2)Vn+4 + (2V 2
0 − 3V 2

1 + 2V 2
2 − 3V0V1 +

2V0V2 − 3V1V2)Vn+3 + 2(−2V 2
0 − 2V0V2 − 3V1V0 + V 2

2 )Vn+2.
(g)(V0 + V1 + V2)(4V

2
0 + 3V 2

1 + V 2
2 − 2V0V2 − 3V1V2)Mn = (4V 2

0 + V 2
2 + V0V2 − 3V1V2)Vn+3 + (−2V 2

0 − 3V0V1 − 5V0V2 + 3V 2
1 +

V 2
2 )Vn+2 + 2(2V 2

0 + 3V 2
1 − V 2

2 + 3V0V1 − V0V2)Vn+1.
(h)(V0 + V1 + V2)(4V

2
0 + 3V 2

1 + V 2
2 − 2V0V2 − 3V1V2)Mn = (2V 2

0 + 3V 2
1 + 2V 2

2 − 3V0V1 − 4V0V2 − 3V1V2)Vn+2 + (8V 2
0 + 6V 2

1 −
V 2
2 + 6V0V1 − V0V2 − 3V1V2)Vn+1 + 2(4V 2

0 + V 2
2 + V0V2 − 3V1V2)Vn.

(i)(V0 + V1 + V2)(4V
2
0 + 3V 2

1 + V 2
2 − 2V0V2 − 3V1V2)Mn = (10V 2

0 + 9V 2
1 + V 2

2 + 3V0V1 − 5V0V2 − 6V1V2)Vn+1 + (10V 2
0 + 3V 2

1 +
4V 2

2 − 3V0V1 − 2V0V2 − 9V1V2)Vn + 2(2V 2
0 + 3V 2

1 + 2V 2
2 − 3V0V1 − 4V0V2 − 3V1V2)Vn−1.

(j)(V0 + V1 + V2)(4V
2
0 + 3V 2

1 + V 2
2 − 2V0V2 − 3V1V2)Mn = (20V 2

0 + 12V 2
1 + 5V 2

2 − 7V0V2 − 15V1V2)Vn + (14V 2
0 + 15V 2

1 + 5V 2
2 −

3V0V1 − 13V0V2 − 12V1V2)Vn−1 + 2(10V 2
0 + 9V 2

1 + V 2
2 + 3V0V1 − 5V0V2 − 6V1V2)Vn−2.

Proof. From Lemmas 11 and 12, (a)-(j) follow. �
The following theorem shows that there always exist interrelation between generalized third-order Jacobsthal and modified third-order

Jacobsthal matrix sequences.

Theorem 17. For the matrix sequences {Vn} and {Kn} we have the following identities.

(a)588Vn = (−85V0 − 57V1 + 55V2)Kn+4 + (195V0 + 27V1 − 57V2)Kn+3 + (−29V0 + 195V1 − 85V2)Kn+2.
(b)294Vn = (55V0 − 15V1 − V2)Kn+3 + (−57V0 + 69V1 − 15V2)Kn+2 + (−85V0 − 57V1 + 55V2)Kn+1.
(c)147Vn = (−V0 + 27V1 − 8V2)Kn+2 + (−15V0 − 36V1 + 27V2)Kn+1 + (55V0 − 15V1 − V2)Kn.
(d)147Vn = (−16V0 − 9V1 + 19V2)Kn+1 + (54V0 + 12V1 − 9V2)Kn + 2(−V0 + 27V1 − 8V2)Kn−1.
(e)147Vn = (38V0 + 3V1 + 10V2)Kn + (−18V0 + 45V1 + 3V2)Kn−1 + 2(−16V0 − 9V1 + 19V2)Kn−2.
(f)4(4V 3

0 + 4V 2
0 V1 + 2V 2

0 V2 + 3V0V
2
1 − 5V0V1V2 − V0V 2

2 + 3V 3
1 − 2V1V

2
2 + V 3

2 )Kn = (−4V 2
0 + 4V0V1 − 14V0V2 + 15V 2

1 + 5V1V2 −
3V 2

2 )Vn+4 + (28V 2
0 + 12V0V1 + 22V0V2 − 9V 2

1 − 15V1V2 + V 2
2 )Vn+3 + (−12V 2

0 − 40V0V1 − 2V0V2 − 21V 2
1 − 11V1V2 + 17V 2

2 )Vn+2.
(g)2(4V 3

0 + 4V 2
0 V1 + 2V 2

0 V2 + 3V0V
2
1 − 5V0V1V2 − V0V 2

2 + 3V 3
1 − 2V1V

2
2 + V 3

2 )Kn = (12V 2
0 + 8V0V1 + 4V0V2 + 3V 2

1 − 5V1V2 −
V 2
2 )Vn+3 + (−8V 2

0 − 18V0V1 − 8V0V2 − 3V 2
1 − 3V1V2 + 7V 2

2 )Vn+2 + (−4V 2
0 + 4V0V1 − 14V0V2 + 15V 2

1 + 5V1V2 − 3V 2
2 )Vn+1.

(h)(4V 3
0 + 4V 2

0 V1 + 2V 2
0 V2 + 3V0V

2
1 − 5V0V1V2 − V0V 2

2 + 3V 3
1 − 2V1V

2
2 + V 3

2 )Kn = (2V 2
0 − 2V0V2 − 5V1V0 + 3V 2

2 − 4V1V2)Vn+2 +
(4V 2

0 + 6V0V1 − 5V0V2 + 9V 2
1 − 2V 2

2 )Vn+1 + (12V 2
0 + 8V0V1 + 4V0V2 + 3V 2

1 − 5V1V2 − V 2
2 )Vn.

(i)(4V 3
0 + 4V 2

0 V1 + 2V 2
0 V2 + 3V0V

2
1 − 5V0V1V2 − V0V 2

2 + 3V 3
1 − 2V1V

2
2 + V 3

2 )Kn = (6V 2
0 + V0V1 − 7V0V2 + 9V 2

1 − 4V1V2 + V 2
2 )Vn+1 +

(14V 2
0 + 3V0V1 + 2V0V2 + 3V 2

1 − 9V1V2 + 2V 2
2 )Vn + 2(2V 2

0 − 2V0V2 − 5V1V0 + 3V 2
2 − 4V1V2)Vn−1.

(j)(4V 3
0 + 4V 2

0 V1 + 2V 2
0 V2 + 3V0V

2
1 − 5V0V1V2 − V0V 2

2 + 3V 3
1 − 2V1V

2
2 + V 3

2 )Kn = (20V 2
0 + 4V0V1 − 5V0V2 + 12V 2

1 − 13V1V2 +
3V 2

2 )Vn + (10V 2
0 − 9V0V1 − 11V0V2 + 9V 2

1 − 12V1V2 + 7V 2
2 )Vn−1 + 2(6V 2

0 + V0V1 − 7V0V2 + 9V 2
1 − 4V1V2 + V 2

2 )Vn−2.

Proof. From Lemmas 13 and 14, (a)-(j) follow. �
To prove the following Lemma 19 (c) we need the next lemma.

Lemma 18. Let A,B,C as in Theorem 5 and A1, B1, C1;A2, B2, C2;A3, B3, C3 as in Corollary 3. Then the following relations hold:

A2
1 = A1, B

2
1 = B1, C

2
1 = C1,

AB = BA = AC = CA = CB = BC = (0) ,

A1B1 = B1A1 = A1C1 = C1A1 = C1B1 = B1C1 = (0) ,

A2B2 = B2A2 = A2C2 = C2A2 = C2B2 = B2C2 = (0) ,

A3B3 = B3A3 = A3C3 = C3A3 = C3B3 = B3C3 = (0) .

Proof. Using α+ β + γ = 1, αβ + αγ + βγ = −1 and αβγ = 2, required equalities can be established by matrix calculations. �

Lemma 19. For all integers m and n, we have the following identities.

(a)J0Vn = VnJ0 = Vn.
(b)V0Jn = JnV0 = Vn.
(c)JmJn = JnJm = Jm+n
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(d)JmVn = VnJm = Vm+n.
(e)JmMn =MnJm =Mm+n.
(f)JmKn = KnJm = Km+n.
(g)V0Vn = VnV0.
(h)VnVm = VmVn = V0Vm+n.
(i)J−n = (Jn)−1.
(j)V−n = (V0)1−n(V−1)n

Proof. Identities can be established easily.

(a)Since J0 is the identity matrix, (a) follows.
(b)It can be seen by using Lemma 9.
(c)(c) is given in [10]. We supply the proof for completeness. Using Lemma 18 we obtain

JmJn = (A1α
m +B1β

m + C1γ
m)(A1α

n +B1β
n + C1γ

n)

= A2
1α

m+n +B2
1β

m+n + C2
1γ

m+n +A1B1α
mβn +B1A1α

nβm

+A1C1α
mγn + C1A1α

nγm +B1C1β
mγn + C1B1β

nγm

= A1α
m+n +B1β

m+n + C1γ
m+n

= Jm+n.

(d)From (b), we have

JmVn = JmJnj0.

Now from (c) and again from (b), we obtain JmVn = Jm+nV0 = Vm+n.
It can be shown similarly that VnJm = Vm+n.

(e)Take Vn =Mn in (d).
(f)Take Vn = Kn in (d).
(g)After matrix multiplication, just compare the row and column entries of the matrices.
(h)Using (d) and (g) and (b) we get

V0Vm+n = V0VnJm = VnV0Jm = VnVm.

Again, using (d) and (g) and (b), we obtain

V0Vm+n = V0VmJn = VmV0Jn = VmVn.

This completes the proof of (h).
(i)Suppose first that n ≥ 0. We prove by mathematical induction. If n = 0 then we have

J0 =

 1 0 0
0 1 0
0 0 1

 =

 1 0 0
0 1 0
0 0 1

−1 = (J0)−1

which is true and

J−1 =

 0 1 0
0 0 1
1
2 − 1

2 − 1
2

 =

 1 1 2
1 0 0
0 1 0

−1 = (J1)−1

which is true. Assume that the equality holds for n ≤ k. For n = k + 1, by using (c), we obtain

(Jk+1)
−1 = (JkJ1)−1 = (J1)−1(Jk)−1 = J−1J−k

=

 0 1 0
0 0 1
1
2 − 1

2 − 1
2

 J−k+1 J−k + 2J−k−1 2J−k
J−k J−k−1 + 2J−k−2 2J−k−1
J−k−1 J−k−2 + 2J−k−3 2J−k−2


=

 J−k J−k−1 + 2J−k−2 2J−k−1
J−k−1 J−k−2 + 2J−k−3 2J−k−2

1
2J−k+1 − 1

2J−k−1 −
1
2J−k

1
2J−k + 1

2J−k−1 −
3
2J−k−2 − J−k−3 J−k − J−k−1 − J−k−2


=

 J−k J−k−1 + 2J−k−2 2J−k−1
J−k−1 J−k−2 + 2J−k−3 2J−k−2
J−k−2 J−k−3 + 2J−k−4 2J−k−3


=

 J−(k+1)+1 J−(k+1) + 2J−(k+1)−1 2J−(k+1)
J−(k+1) J−(k+1)−1 + 2J−(k+1)−2 2J−(k+1)−1
J−(k+1)−1 J−(k+1)−2 + 2J−(k+1)−3 2J−(k+1)−2


= J−(k+1)
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Thus, by induction on n, this proves (g) for n ≥ 0. Suppose now that n ≤ 0. Say m = −n. Then (g) can be written as

Jm = (J−m)−1

and we prove this. Since m ≥ 0, from the first part of the proof, we have

J−m = (Jm)−1

and so
(J−m)−1 = ((Jm)−1)−1 = Jm

which completes the proof.
(j)Taking −n+ 1 for m and 1 for n in V0Vm+n = VmVn which is given in (h), we obtain that

V0V−n = V−n+1V−1. (10)

If we multiply both side of the equation (10) with V0 we have the relation

V0V0V−n = V0V−n+1V−1
= V−n+2V−1V−1.

Repeating this process we then obtain

Vn−10 V−n = Vn−1.

Thus, it follows that

V−n = V1−n0 Vn−1.

This completes the proof. �

Note that using Lemma 19 (j) and (d), we obtain

V−n = (V0)1−n(V−1)n = (VnJ−n)1−nVn−1 = J 1−n
−n V

1−n
n Vn−1

and then by Lemma (i), we get

V−n = J n−1
n V1−nn Vn−1.

Using Lemma 19 and comparing matrix entries, we have next result.

Corollary 11. For generalized third-order Jacobsthal, third-order Jacobsthal, third-order Jacobsthal-Lucas and modified third-order
Jacobsthal numbers, we have the following identities:

(a)Vm+n = JmVn+1 + (Jm−1 + 2Jm−2)Vn + 2Jm−1Vn−1 = Jm+1Vn + Jm (Vn−1 + 2Vn−2) + 2Jm−1Vn−1.
(b)Jm+n = JmJn+1 + (Jm−1 + 2Jm−2) Jn + 2Jm−1Jn−1 = Jm+1Jn + Jm (Jn−1 + 2Jn−2) + 2Jm−1Jn−1.
(c)jm+n = Jmjn+1 + (Jm−1 + 2Jm−2) jn + 2Jm−1jn−1 = Jm+1jn + Jm (jn−1 + 2jn−2) + 2Jm−1jn−1.
(d)Km+n = JmKn+1 + (Jm−1 + 2Jm−2)Kn + 2Jm−1Kn−1 = Jm+1Kn + Jm (Kn−1 + 2Kn−2) + 2Jm−1Kn−1.
(e)V0Vm+n+1 + (V1 − V0)Vm+n + (V2 − V1 − V0)Vm+n−1 = Vm+1Vn + (Vm + 2Vm−1)Vn−1 + 2VmVn−2 = VmVn+1 + (Vm−1 +

2Vm−2)Vn + 2Vm−1Vn−1.
(f)Jm+n = Jm+1Jn + (Jm + 2Jm−1)Jn−1 + 2JmJn−2 = JmJn+1 + (Jm−1 + 2Jm−2)Jn + 2Jm−1Jn−1.
(g)2jm+n+1 − jm+n + 2jm+n−1 = jm+1jn + (jm + 2jm−1)jn−1 + 2jmjn−2 = jmjn+1 + (jm−1 + 2jm−2)jn + 2jm−1jn−1.
(h)3Km+n+1 − 2Km+n −Km+n−1 = Km+1Kn + (Km + 2Km−1)Kn−1 + 2KmKn−2 = KmKn+1 + (Km−1 + 2Km−2)Kn + 2Km−1Kn−1.

Proof. We prove (a) and (e) by using Lemma 19 (d) and (h). The others are special cases of (a) and (e). Lemma 19 (d), i.e., JmVn =
VnJm = Vm+n, can be writtten as Jm+1 Jm + 2Jm−1 2Jm

Jm Jm−1 + 2Jm−2 2Jm−1
Jm−1 Jm−2 + 2Jm−3 2Jm−2

 Vn+1 Vn + 2Vn−1 2Vn
Vn Vn−1 + 2Vn−2 2Vn−1
Vn−1 Vn−2 + 2Vn−3 2Vn−2


=

 Vn+1 Vn + 2Vn−1 2Vn
Vn Vn−1 + 2Vn−2 2Vn−1
Vn−1 Vn−2 + 2Vn−3 2Vn−2

 Jm+1 Jm + 2Jm−1 2Jm
Jm Jm−1 + 2Jm−2 2Jm−1
Jm−1 Jm−2 + 2Jm−3 2Jm−2


=

 Vm+n+1 Vm+n + 2Vm+n−1 2Vm+n

Vm+n Vm+n−1 + 2Vm+n−2 2Vm+n−1
Vm+n−1 Vm+n−2 + 2Vm+n−3 2Vm+n−2


Now, by multiplying the matrices and then by comparing the 2nd rows and 1st columns entries, we get the required identities in (a).
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Lemma 19 (h), i.e., VnVm = VmVn = V0Vm+n, can be writtten as Vn+1 Vn + 2Vn−1 2Vn
Vn Vn−1 + 2Vn−2 2Vn−1
Vn−1 Vn−2 + 2Vn−3 2Vn−2

 Vm+1 Vm + 2Vm−1 2Vm
Vm Vm−1 + 2Vm−2 2Vm−1
Vm−1 Vm−2 + 2Vm−3 2Vm−2


=

 Vm+1 Vm + 2Vm−1 2Vm
Vm Vm−1 + 2Vm−2 2Vm−1
Vm−1 Vm−2 + 2Vm−3 2Vm−2

 Vn+1 Vn + 2Vn−1 2Vn
Vn Vn−1 + 2Vn−2 2Vn−1
Vn−1 Vn−2 + 2Vn−3 2Vn−2


=

 V1 V2 − V1 2V0
V0 V1 − V0 V2 − V1 − V0

1
2 (V2 − V1 − V0)

1
2 (3V0 + V1 − V2) 1

2 (3V1 − V0 − V2)

 Vm+n+1 Vm+n + 2Vm+n−1 2Vm+n

Vm+n Vm+n−1 + 2Vm+n−2 2Vm+n−1
Vm+n−1 Vm+n−2 + 2Vm+n−3 2Vm+n−2


Now, by multiplying the matrices and then by comparing the 2nd rows and 1st columns entries, we get the required identities in (e). �

As an application of Lemma 19 (i) and Corollary 11 (b), we present the following example.

Example 20. For all integers n, we have the following identities.

J−n =
1

2n−1
(J2

n−1 − JnJn−2)

and
(Jn+2 + Jn+1 + Jn)(J

2
n+2 + 3J2

n+1 + 4J2
n − 3Jn+2Jn+1 − 2Jn+2Jn) = 2n+1.

Solution. Note that for all integers n, we have

Jn−1 =
1

2
(Jn+2 − Jn+1 − Jn), (11)

Jn−2 =
1

4
(−Jn+2 + 3Jn+1 − Jn) , (12)

Jn−3 =
1

8
(−Jn+2 − Jn+1 + 7Jn) . (13)

By using (taking m = n) Corollary 11 (b) and (11)-(12) we get

J2n =
1

2
J2
n+2 +

1

2
J2
n+1 −

1

2
J2
n + 3Jn+1Jn − Jn+2Jn − Jn+2Jn+1. (14)

In [[13], Corollary 12 (a)], the following formula is presented for J−n :

J−n =
1

2n+1
(3J2

n + 2J2n + Jn+2Jn − 7Jn+1Jn).

Using (14), we obtain

J−n =
1

2n+1
(J2

n+2 + J2
n+1 + 2J2

n − 2Jn+2Jn+1 − Jn+2Jn − Jn+1Jn). (15)

By comparing the 2nd rows and 1st columns entries of both sides of the relation J−n = (Jn)−1 which is given in Lemma 19 (i), we get

J−n =
1

2

J2
n−1 − JnJn−2

J3
n−1 + J2

nJn−3 + J2
n−2Jn+1 − Jn+1Jn−1Jn−3 − 2JnJn−1Jn−2

. (16)

Note that by using (11)-(13) we get

J2
n−1 − JnJn−2 =

1

4
(J2

n+2 + J2
n+1 + 2J2

n − 2Jn+2Jn+1 − Jn+2Jn − Jn+1Jn)

and

J3
n−1 + J2

nJn−3 + J2
n−2Jn+1 − Jn+1Jn−1Jn−3 − 2JnJn−1Jn−2

=
1

8
(4J3

n + 4J2
nJn+1 + 2J2

nJn+2 + 3JnJ
2
n+1 − 5JnJn+1Jn+2 − JnJ2

n+2 + 3J3
n+1 − 2Jn+1J

2
n+2 + J3

n+2)

=
1

8
(Jn+2 + Jn+1 + Jn)(J

2
n+2 + 3J2

n+1 + 4J2
n − 3Jn+2Jn+1 − 2Jn+2Jn)

and so (16) can be written as

J−n =
J2
n+2 + J2

n+1 + 2J2
n − 2Jn+2Jn+1 − Jn+2Jn − Jn+1Jn

(Jn+2 + Jn+1 + Jn)(J2
n+2 + 3J2

n+1 + 4J2
n − 3Jn+2Jn+1 − 2Jn+2Jn)

. (17)

So the rights sides of the equations (15) and (17) must be equal. This completes the solution. �
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Theorem 21. For all integers m and n, we have the following identities.

(a)4VmVn = VnVm = (V0 + V1 − V2)2Jm+n+4 − 2(3V0 + V1 − V2)(V0 + V1 − V2)Jm+n+3 + (11V 2
0 − 5V 2

1 − V 2
2 + 2V0V1 − 6V0V2 +

6V1V2)Jm+n+2 − 2(V0 − 3V1 + V2)(3V0 + V1 − V2)Jm+n+1 + (V0 − 3V1 + V2)
2Jm+n.

(b)2VmVn = 2VnVm = (−V0 − V1 + V2)Vm+n+2 + (3V0 + V1 − V2)Vm+n+1 + (−V0 + 3V1 − V2)Vm+n.
(c)2JmVn = 2VnJm = (−V0 − V1 + V2)Jm+n+2 + (3V0 + V1 − V2)Jm+n+1 + (−V0 + 3V1 − V2)Jm+n.
(d)24JmVn = 24VnJm = (5V0 + 5V1 − 3V2)Mm+n+2 + (−11V0 − 3V1 + 5V2)Mm+n+1 + (5V0 − 11V1 + 5V2)Mm+n.
(e)147JmVn = 147VnJm = (−V0 + 27V1 − 8V2)Km+n+2 + 3(−5V0 − 12V1 + 9V2)Km+n+1 + (55V0 − 15V1 − V2)Km+n.

Proof.

(a)It follows from Theorem 15 (c) and Lemma 19 (c).
(b)It follows from Theorem 15 (c) and Lemma 19 (d).
(c)It follows from Theorem 15 (c) and Lemma 19 (c).
(d)It follows from Theorem 16 (c) and Lemma 19 (e).
(e)It follows from Theorem 17 (c) and Lemma 19 (f). �

Note that in Theorem 21 we use (c)’s of Theorems 15, 16 and 17. Using (a),(b),(d),(e),(f),(g)(h),(i),(j)’s of Theorems 15, 16 and 17 we can
establish other recurence relations.

Using Theorem 21 and comparing matrix entries, we have next result.

Theorem 22. For generalized third-order Jacobsthal, third-order Jacobsthal, third-order Jacobsthal-Lucas and modified third-order
Jacobsthal numbers, we have the following identities:

(a)4(VmVn+1 + (Vm−1 + 2Vm−2)Vn + 2Vm−1Vn−1) = 4(Vm+1Vn + Vm(Vn−1 + 2Vn−2) + 2Vm−1Vn−1) = (V0 + V1 − V2)2Jm+n+4 −
(6V0 + 2V1 − 2V2)(V0 + V1 − V2)Jm+n+3 − (−11V 2

0 − 2V0V1 + 6V0V2 + 5V 2
1 − 6V1V2 + V 2

2 )Jm+n+2 − (2V0 − 6V1 + 2V2)(3V0 +
V1 − V2)Jm+n+1 + (V0 − 3V1 + V2)

2Jm+n.
(b)2(VmVn+1 + (Vm−1 + 2Vm−2)Vn + 2Vm−1Vn−1) = 2(Vm+1Vn + Vm(Vn−1 + 2Vn−2) + 2Vm−1Vn−1) = (−V0 − V1 + V2)Vm+n+2 +
(3V0 + V1 − V2)Vm+n+1 + (−V0 + 3V1 − V2)Vm+n.

(c)2(JmVn+1 + ((Jm−1 + 2Jm−2)Vn + 2Jm−1Vn−1) = 2(Jm+1Vn + Jm(Vn−1 + 2Vn−2) + 2Jm−1Vn−1) = (−V0 − V1 + V2)Jm+n+2 +
(3V0 + V1 − V2)Jm+n+1 + (−V0 + 3V1 − V2)Jm+n.

(d)24(JmVn+1 + (Jm−1 + 2Jm−2)Vn + 2Jm−1Vn−1) = 24(Jm+1Vn + Jm(Vn−1 + 2Vn−2) + 2Jm−1Vn−1) = (5V0 + 5V1 − 3V2)jm+n+2 +
(−11V0 − 3V1 + 5V2)jm+n+1 + (5V0 − 11V1 + 5V2)jm+n.

(e)147(JmVn+1 + (Jm−1 + 2Jm−2)Vn + 2Jm−1Vn−1) = 147(Jm+1Vn + Jm(Vn−1 + 2Vn−2) + 2Jm−1Vn−1) = (−V0 + 27V1 − 8V2)Km+n+2 +
(−15V0 − 36V1 + 27V2)Km+n+1 + (−15V1 + 55V0 − V2)Km+n.

Proof. By multiplying matrices and then by comparing the 2nd rows and 1st columns entries in Theorem 21 (a), we get the required identities
in (a). The remaining of identities can be proved by considering again Theorem 21. �

Taking Vn = Jn in Theorem 22, we obtain the following corollary.

Corollary 12. For third-order Jacobsthal numbers, we have the following identities:

(a)JmJn+1 + (Jm−1 + 2Jm−2)Jn + 2Jm−1Jn−1 = Jm+1Jn + Jm(Jn−1 + 2Jn−2) + 2Jm−1Jn−1 = Jm+n.
(b)12(JmJn+1 + (Jm−1 + 2Jm−2)Jn + 2Jm−1Jn−1) = 12(Jm+1Jn + Jm(Jn−1 + 2Jn−2) + 2Jm−1Jn−1) = jm+n+2 + jm+n+1 −

3jm+n.
(c)147(JmJn+1 + (Jm−1 + 2Jm−2)Jn + 2Jm−1Jn−1) = 147(Jm+1Jn + Jm(Jn−1 + 2Jn−2) + 2Jm−1Jn−1) = 19Km+n+2 − 9Km+n+1 −

16Km+n.

Taking Vn = jn in Theorem 22, we get the following corollary.

Corollary 13. For third-order Jacobsthal-Lucas numbers, we have the following identities:

(a)jmjn+1 + (jm−1 + 2jm−2)jn + 2jm−1jn−1 = jm+1jn + jm(jn−1 + 2jn−2) + 2jm−1jn−1 = Jm+n+4 + 2Jm+n+3 − 3Jm+n+2 −
4Jm+n+1 + 4Jm+n.

(b)jmjn+1 + (jm−1 + 2jm−2)jn + 2jm−1jn−1 = jm+1jn + jm(jn−1 + 2jn−2) + 2jm−1jn−1 = jm+n+2 + jm+n+1 − 2jm+n.
(c)Jmjn+1 + ((Jm−1 + 2Jm−2) jn + 2Jm−1jn−1 = Jm+1jn + Jm(jn−1 + 2jn−2) + 2Jm−1jn−1 = Jm+n+2 + Jm+n+1 − 2Jm+n.
(d)Jmjn+1 + (Jm−1 + 2Jm−2)jn + 2Jm−1jn−1 = Jm+1jn + Jm(jn−1 + 2jn−2) + 2Jm−1jn−1 = jm+n.
(e)49(Jmjn+1 + (Jm−1 + 2Jm−2)jn + 2Jm−1jn−1) = 49(Jm+1jn + Jm(jn−1 + 2jn−2) + 2Jm−1jn−1) = 30Km+n + 23Km+n+1 −

5Km+n+2.

Taking Vn = Kn in Theorem 22, we obtain the following corollary.

Corollary 14. For modified third-order Jacobsthal numbers, we have the following identities:

(a)4(KmKn+1 + (Km−1 + 2Km−2)Kn + 2Km−1Kn−1) = 4(Km+1Kn +Km(Kn−1 + 2Kn−2) + 2Km−1Kn−1) = Jm+n+4 − 14Jm+n+3 +
55Jm+n+2 − 42Jm+n+1 + 9Jm+n.

(b)2(KmKn+1 + (Km−1 + 2Km−2)Kn + 2Km−1Kn−1) = 2(Km+1Kn +Km(Kn−1 + 2Kn−2) + 2Km−1Kn−1) = −Km+n+2 +
7Km+n+1 − 3Km+n.

(c)2(JmKn+1 + ((Jm−1 + 2Jm−2)Kn + 2Jm−1Kn−1) = 2(Jm+1Kn + Jm(Kn−1 + 2Kn−2) + 2Jm−1Kn−1) = −Jm+n+2 + 7Jm+n+1 −
3Jm+n.
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(d)24(JmKn+1 + (Jm−1 + 2Jm−2)Kn + 2Jm−1Kn−1) = 24(Jm+1Kn + Jm(Kn−1 + 2Kn−2) + 2Jm−1Kn−1) = 11jm+n+2 − 21jm+n+1 +
19jm+n.

(e)JmKn+1 + (Jm−1 + 2Jm−2)Kn + 2Jm−1Kn−1 = Jm+1Kn + Jm(Kn−1 + 2Kn−2) + 2Jm−1Kn−1 = Km+n.

The next two theorems provide us the convenience to obtain the powers of generalized third-order Jacobsthal, third-order Jacobsthal, third-
order Jacobsthal-Lucas and Naraya-perrin matrix sequences.

Theorem 23. For all integers m,n and r, the following identities hold:

(a)Jm
n = Jmn,

(b)Jm
n+1 = Jm

1 Jmn,
(c)Jn−rJn+r = J 2

n = J n
2 .

Proof. We prove for m,n, r ≥ 0. The other cases can be proved similarly.

(a)We can write Jm
n as

Jm
n = JnJn...Jn (m times).

Using Theorem 19 (c) iteratively, we obtain the required result:

Jm
n = JnJn...Jn︸ ︷︷ ︸

m times

= J2nJnJn...Jn︸ ︷︷ ︸
m−1 times

= J3nJnJn...Jn︸ ︷︷ ︸
m−2 times

...

= J(m−1)nJn
= Jmn.

(b)As a similar approach in (a) we have

Jm
n+1 = Jn+1.Jn+1...Jn+1 = Jm(n+1) = JmJmn = J1Jm−1Jmn.

Using Theorem 19 (c), we can write iteratively Jm = J1Jm−1,Jm−1 = J1Jm−2, ..., J2 = J1J1. Now it follows that

Jm
n+1 = J1J1...J1︸ ︷︷ ︸

m times

Jmn = Jm
1 Jmn.

(c)Theorem 19 (c) gives

Jn−rJn+r = J2n = JnJn = J 2
n

and also
Jn−rJn+r = J2n = J2J2...J2︸ ︷︷ ︸

n times

= J n
2 .

We have analogues results for the matrix sequence Vn.

Theorem 24. For all integers m,n and r, the following identities hold:

(a)Vn−rVn+r = V2n,
(b)Vmn = Vm0 Jm+n.

Proof.

(a)We use Binet’s formula of generalized third-order Jacobsthal sequence which is given in Theorem 5. So

Vn−rVn+r − V2n
= (Aαn−r +Bβn−r + Cγn−r)(Aαn+r +Bβn+r + Cγn+r)− (Aαn +Bβn + Cγn)2

= ABαn−rβn−r(αr − βr)2 +ACαn−rγn−r(αr − γr)2 +BCβn−rγn−r(βr − γr)2

= 0

since AB = AC = BC = 0 (see Lemma 18). Now we get the result as required.
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(b)By Theorem 23, we have
Vm0 Jmn = V0V0...V0︸ ︷︷ ︸

m times

JnJn...Jn︸ ︷︷ ︸
m times

.

When we apply Lemma 19 (b) iteratively, it follows that

Vm0 Jmn = (V0Jn)(V0Jn)...(V0Jn)
= VnVn...Vn = Vmn .

This completes the proof. �
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Abstract: In this study, we consider a price adjustment model which is a common and very important tool in market equilibrium.
We provide the fundamental solutions of the model by an analytical/approximate method defined with the conformable derivative
operator. Also, we take the Laplace transform into account to be able to obtain accurate and analytical solution. We represent our
results by illustrative figures to point out the efficiency of fractional parameter. We prove the efficiency and accuracy of the Laplace
transform and the series method constructed with the conformable operator in providing the solution to the mentioned financial
model by considering the theoretical results and illustrative applications. It can be pointed out that the proposed method is an
accurate way to solve such problems that include fractional-order parameter. One of the prominent properties of the method is the
possibility of using it in solving the similar equations including fractional derivatives having different types of kernels.

Keywords: Analytical solution, Conformable derivative, Financial interpret, Laplace transform, Price adjustment model.

1 Introduction

Applications of fractional derivatives have attracted the attention of researchers in the last half-century, and today there is a lot of work on
it. With the development of technology, it is seen from recent studies that integer-order derivatives are sometimes not sufficient in modelling
events that occur in nature. As a result of this situation, a number of mathematicians focused on fractional derivative strategies. In 2014, the
conformable fractional derivative procedure, which was defined by Khalil et al. [1] with the help of the limit definition of the derivative, provides
features that other derivative approaches do not provide. The fact that the conformable fractional derivative approach provides the chain rule
is of great importance in the analytical solution of partial differential equations. Therefore, recently analytical solutions of partial differential
equations with conformable fractional derivatives have been obtained using different methods.

In 2014, Khalil et al. [1] defined a new derivative operator which was named as "conformable". This derivative has been used extensively to
solve some real-life problems by various scientists such as [3–11].

On the other hand, numerical and analytical solution methods are attracting attention all over the world. In all sciences, it is important to
establish the system of equations that models a process. However, solving that model analytically and at least numerically, is highly significant.
In recent years, a large number of new solution methods have been developed and some existing methods have been improved [12–21].

Many economic models are presented with the mathematical equipments, which show to consider the problems in market aiming the equi-
librium. We can see lots of implementations related to these models. The view of expense timing is based on the sketchily competitious
establishment in which the request inclines to be lower and at multifarious expense rather than a certain expense. For more details see [22].
A competitive market is with the competitive equilibrium that comes to mean the amount of belongings requested by receivers equals to
the amount of belongings prepared by vendors. The amount requested and the amount prepared can be given by request function qa(t) and
provision function qb(t) by:

qa(t) = a0 − a1ψ(t), qb(t) = −b0 + b1ψ(t).

In the above equations, we define ψ(t) as the expense of belongings. Additionally, a0, b0, a1, b1 are positive constants which are the elements
impressing the amount requested and amount prepared. We get the equilibrium expense as:

ψ∗ =
a0 + b0
a1 + b1

,

for qa(t) = qb(t), when the requested amount equals the provided amount. Therefore, the expense inclines to stand stable and there is no lack
and surplus in economics in a such case. We take into consideration the expense timing equation as [23]:

ψ′(t) = k(qa − qb),
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where k > 0 is the speed of timing constant. If we put the qa(t) and qb(t) into Eq. (1), then we have

ψ′(t) + k(a1 + b1)ψ(t) = k(a0 + b0).

Then, we can obtain:

ψ(t) =
a0 + b0
a1 + b1

−
[
ψ(0) +

a0 + b0
a1 + b1

]
exp (−k(a1 + b1)t) .

We describe the ψ(0) as the expense at the time t = 0. We define qa and qb by:

qa(t) = a0 − a1ψ(t) + a2ψ
′(t), qb(t) = −b0 + b1ψ(t)− b2ψ′(t).

We equalize qa(t), qb(t) and obtain:

ψ′(t)− a1 + b1
a2 + b2

ψ(t) = −a0 + b0
a2 + b2

. (1)

Then, we obtain

ψ(t) =
a0 + b0
a1 + b1

−
[
ψ(0) +

a0 + b0
a1 + b1

]
exp

(
(a1 + b1)

(a2 + b2)
t

)
. (2)

2 Preliminaries

For the concept of fractional derivative, we adopt the conformable derivative operator. This derivative is very good at properly handling initial
value problems where the initial conditions are given.

Definition 1. The conformable derivative is given by [1]

C
0 T

β
τ {h(τ)} = lim

η→0

h
(
τ + ητ1−β

)
− h (τ)

η
, (3)

for all τ > 0, β ∈ (0, 1] and where h ∈ L1(a, b).

Definition 2. The Laplace transform (LT) related to the conformable derivative C0 T
β
τ {h(τ)} is given by [2]

Lβ{Cρ Tβτ {h(τ)}}(κ) = κLβ{h(τ)} − h(ρ), (4)

where ρ ∈ R, β ∈ (0, 1] and h : (ρ,∞)→ R is a differentiable real valued function.

Definition 3. Let h be an n−times differentiable at τ. Then the conformable derivative of h order β is defined as [1]:

C
0 T

β
τ {h(τ)} = lim

η→0

h(dβe−1)
(
τ + ητ (dβe−β)

)
− h(dβe−1) (τ)

η
, (5)

for all τ > 0, β ∈ (n, n+ 1] .

Lemma 1. Let h be an n−times differentiable at τ. Then

C
0 T

β
τ {h(τ)} = τdβe−βhdβe (τ) , (6)

for all τ > 0, β ∈ (n, n+ 1] [1].

3 Modified Laplace Decomposition Method

We define the solution method by using the conformable derivative operator and we compare the behaviors of the solutions according to types
of methods which have been defined in the previous sections. Here we suggest an infinite series solution method namely modified Laplace
decomposition method (MLDM). Firstly, we consider the general case of the price adjustment model which is defined in Eq. (1):

C
0 T

β
τ ψ + F [ψ] +G [ψ] = H (τ) , (7)

subject to the initial condition
ψ (0) = g (τ) , (8)

where 0 < β ≤ 1, g (τ) is a known function and C
0 T

β
τ ψ is the time-conformable operator of order β of given function ψ (τ). In Eq. (7) we

denote with the function F [ψ] the linear part, with the functionG [ψ] the nonlinear term and with the functionH (τ) the nonhomogeneous part.
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Using the Laplace transforms of the conformable operator which is given in Definition 2, we define the L{ψ (τ)} = ψ̃ (κ) . The mentioned
method supposes an infinite series solution for wanted function given by

ψ (τ) =

∞∑
m=0

ψm (τ) . (9)

In Eq. (7), the nonlinear terms shown by G [ψ] are derived as

G [ψ] =

∞∑
m=0

Θm (ψ0, ψ1, . . . , ψm) , (10)

where Θm is the Adomian polynomial which can be obtained by

Θm (ψ0, ψ1, . . . , ψm) =
1

m!

 dm

dωm
G

 ∞∑
ζ=0

ωζψζ


ω=0

, m ≥ 0. (11)

It is easy to compute Adomian polynomials of the mentioned nonlinear part in this study by setting a code.

3.1 Modified Laplace Decomposition Series for the Conformable Operator

In this subsection, we define the modified decomposition components constructed by the conformable operator for Eq. (7). Taking the Laplace
transform of both sides of Eq. (7) and taking the fact that in Lemma 1, we get

ψ̃ (κ) =
1

κ
L
{
τβ−1H (τ)

}
− 1

κ
L
{
τβ−1 [F [ψ] +G [ψ]]

}
+

1

κ
ψ (0) . (12)

Then we apply the inverse LT of Eq. (12), we have

ψ (τ) = Φ (τ)− L−1
{

1

κ
L
{
τβ−1F [ψ]

}}
− L−1

{
1

κ
L
{
τβ−1G [ψ]

}}
, (13)

where Φ (τ) = φ (ξ, 0) + L−1
{

1
κL
{
τβ−1H (τ)

}}
. If the term Φ (τ) can be supposed as Φ (τ) = Φ0 (τ) + Φ1 (τ) , then one can construct

the recursive algorithm for the first component ψ0 (τ) and the general term ψm+1 (τ) with respect to the modified Laplace decomposition
method (MLDM) as

ψ0 (τ) = Φ0 (τ) (14)

and

ψ1 (τ) = Φ1 (τ)− L−1
{

1

κ
L
{
τβ−1F [ψ0]

}}
− L−1

{
1

κ
L
{
τβ−1Θ0 (τ)

}}
, (15)

respectively. As a result, the recurrence relation becomes

ψm+1 (ξ, ζ) = −L−1
{

1

κ
L
{
τβ−1F [ψm]

}}
− L−1

{
1

κ
L
{
τβ−1Θm (τ)

}}
. (16)

Therefore, it can be approximated the solution ψ (τ) by considering the series ψ (τ) =
∑∞
m=0 ψm (τ) .

c© CPOST 2021 185



4 Solution to the price adjustment model

In this sub-part of the study we obtain the solution of the model by using conformable operator. Then, we consider the mentioned problem in
Eqs. (1) which is constructed by conformable operator. Then we get the following steps:

ψ0 (τ) =
a1 + b1
a2 + b2

,

ψ1 (τ) =

(
(a1+b1)

2

(a2+b2)2
− a0+b0
a2+b2

)
Γ(β)tβ

Γ(β + 1)
,

ψ2 (τ) = −
Γ(β)tβ

(
a22b0Γ(2β + 1)− 3a21b1Γ(2β)tβ − a31Γ(2β)tβ

)
(a2 + b2) 3Γ(β + 1)Γ(2β + 1)

−
Γ(β)tβ

(
2a2b0b2Γ(2β + 1) + a2b0b1Γ(2β)tβ + b31(−Γ(2β))tβ

)
(a2 + b2) 3Γ(β + 1)Γ(2β + 1)

−
Γ(β)tβ

(
a0 (a2 + b2)

(
a2Γ(2β + 1) + b2Γ(2β + 1) + b1Γ(2β)tβ

)
+ b0b

2
2Γ(2β + 1) + b0b1b2Γ(2β)tβ

)
(a2 + b2) 3Γ(β + 1)Γ(2β + 1)

−
Γ(β)tβ

(
a1

(
a2b0 + a0 (a2 + b2)− 3b21 + b0b2

)
Γ(2β)tβ

)
(a2 + b2) 3Γ(β + 1)Γ(2β + 1)

,

...

In this way, we can have other parts of the series. Then we get the solution to the stated problem as ψ (τ) = ψ0 (τ) + ψ1 (τ) + ψ2 (τ) +
ψ3 (τ) + · · · .

1 2 3 4
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Fig. 1: Numerical simulation with conformable operator α = 0.9.

5 Conclusion

In this paper, we have investigated and provided an approximate-analytical solution to the price adjustment model in detail by Laplace transform
coupled with the modified decomposition method. Moreover, we have used the conformable derivative. We have proved the efficiency of the
mentioned integral transformation for the price adjustment problem. In addition to these effective results, we have demonstrated our findings
with a figure. We have constituted and constructed the mentioned solution with the suggested method for the first time in this work. Another
major advantage of the method presented in this article is that it can be used to solve other similar linear/nonlinear problems by using this
suggested method. This point can be considered as research works in the future by researchers in this field.
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Abstract: In this study, we investigate the dynamics of the babesiosis transmission on bovine populations and ticks. The most
prominent role in the transmission of the parasite is the ticks from the ixodidae family. The vector tick takes factors (merozoites
in erythrocytes) from the diseased animal while sucking blood. To model and investigate the transmissions of this parasite and
address this important issue, we consider the disease in a fractional epidemiological model. This paper, therefore, discusses the
mechanisms of transmission of babesiosis defined in the Caputo fractional derivative sense to study the propagation mechanisms
of babesiosis. The application of fixed-point theory is used to derive the concept of the qualitative properties of the mentioned
model. The solution is obtained by using the Adams-Bashforth type predictor-corrector scheme. Numerical simulations are per-
formed, and the effect of the fractional order derivatives are investigated graphically.

Keywords: Babesiosis disease, Caputo fractional derivative, Epidemiology, Adams-Bahsforth scheme.

1 Introduction

Bovine babesiosis (BB) is transmitted through tick bites and is one of the most common diseases in humid areas to assault bovine populations.
There is a substantial financial loss in hot and warm regions due to the bovine depletion of BB with a reduction of bovine products and by-
products. Furthermore, environmental conditions in all these regions encourage the reproduction and survival of ticks so that bovine animals
continue to interact with these vectors [1]. Therefore, when parasites infect the ovaries of the female ticks, a vertical spread in the bovines and
ticks is probably to occur [1]. The origins of behavior in syndromes have been known for a long time and are an important real-life problem. The
susceptible-infected-recovered (SIR) model was developed by Kermack and Mc Kendrick [2]. It is the most relevant model to use to understand
infectious diseases. A particular case of an ordinary differential equation system is used to study various types of diseases. Aranda et al. [3]
presented the bovine babesiosis and tick infection epidemiological model.

Differential equations are often used to explain the behavior of real-life phenomena. However, sometimes describing the real-life phe-
nomenon modeled by differential equations with an integer order may be difficult. If someone is interested in knowing the behaviors of the
problem at a fractional-order derivative, it may not be possible. Also, exploring the dynamics between two points can be difficult when the
derivatives are defined in an integer-order. Fractional calculus has been (FC) introduced in science and engineering to overcome these forms of
limitations found in integer-order derivatives. Because of its inherited properties and the definition of memory [4, 5], fractional–order models
are more practical and better suited to specific phenomena than integer–order models. Many papers related to FC have recently been published
using different methods [6–9]. Fractional derivatives and integrals have nonlocal characteristics, which means that the next state in a model
depends not only on the present state but also on all previous states. Caputo and Fabrizio [10], have recently proposed a new definition of
fractional differentiation with an exponential kernel rather than a power-law that is commonly used in the Liouville-Caputo sense. Such newly
defined derivatives remove any singularity and effectively describe the memory effect [11–17].

The fractional differential equations (FDEs) are usually associated with systems with multiple time scale dynamics and memory effects
arising in different biological systems [18–25]. Mathematical models with FDEs have proven essential to understand the dynamics of the
epidemic models of BB. In this regard, various authors have analyzed the dynamics of the non-integer order model of BB diseases. Zafar et
al. [26] studied the stability and existence of steadiness points and investigated the stability of the endemic equilibrium (EE) point locally and
asymptotically. Aranda et al. [3] suggested a discrete model for the transmission of BB diseases. Saad-Roy et al. [28] introduced the BB disease
model on Juvenile Cattle.

2 Preliminaries

Here, we propose the basic definitions that we will use in the paper.
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Definition 1. [29] The Riemann-Liouville form of fractional integral operator of order ϑ > 0 of a function f : (0,∞)→R is defined by

RL
0 D

−ϑ
t f(t) =

1

Γ (ϑ)

∫ t
0
(t− τ)ϑ−1f(τ)dτ, t > 0, (1)

or

RL
0 I

ϑ

t f(t) =
1

Γ (ϑ)

∫ t
0
(t− τ)ϑ−1f(τ)dτ, t > 0, (2)

where ϑ > 0 and Γ (.) is Gamma function.

Definition 2. [29] The Riemann-Liouville form of fractional derivative of order ϑ > 0 of a function f : (0,∞)→ R is given by

RL
0 D

ϑ

t f(t) =


1

Γ(n−ϑ)

(
d
dt

)n ∫t
0

f(τ)
(t−τ)ϑ−n+1 dτ, 0 ≤ n− 1 < ϑ < n, n = [ϑ],(

d
dt

)n
f(t), ϑ = n ∈ N.

(3)

Definition 3. [29] The Caputo fractional derivative of order ϑ > 0 of the function that has been given in Definition 2 is presented as

C
0 D

ϑ

t f(t) =


1

Γ(n−ϑ)
∫t
0

(d/dτ)nf(τ)

(t−τ)ϑ−n+1 dτ, 0 ≤ n− 1 < ϑ < n, n = [ϑ], n ∈ N,(
d
dt

)n
f(t), ϑ = n, n ∈ N.

(4)

For the convenience, we use the notation of Iϑf(t) to represent the Caputo fractional integral operator C0 I
ϑ

t f(t).

Definition 4. [29] The Laplace transform (LT) of the Caputo operator of a function f(t) of order ϑ > 0 is defined as

L
[
C
0 D

ϑ

t f (t)

]
= %ϑf(%)−

n−1∑
v=0

f (v)(0)%ϑ−v−1. (5)

Definition 5. [29] The LT of the function tϑ1−1Eϑ,ϑ1
(±µtϑ) is defined as

L
[
tϑ1−1Eϑ,ϑ1

(±µtϑ)
]
=
%ϑ−ϑ1

%ϑ ∓ µ
, (6)

where Eϑ,ϑ1
is the MLF with two-parameter where ϑ, ϑ1 > 0.

3 Model Formulation

The creation of mathematical models of diseases under certain assumptions provides important information about the future course of these
diseases. Thanks to this information, different types of strategies can be developed for the spread or prevention of the related diseases to a lesser
population. This situation has also been taken into account for the babesiosis disease, and many mathematical models have been developed for
this disease. In this section, we present the biological model of babesiosis. The assumptions mentioned in Aranda et al. [27] are used.

Based on the assumptions, the following integer-order nonlinear system of equations may be presented to model the dynamics of transmission
of the suggested disease [27, 30]:

X ′(t) = (µϑB + αϑ)(1−X(t)− Y (t))− βϑBX(t)V (t),

Y ′(t) = βϑBX(t)V (t)− λϑBY (t),

V ′(t) = βϑT (1− V (t))Y (t)− µϑT pV (t).

The parameters of the model are identified in Table 1.
Although integer order equations give some successful results, it is obvious that FDEs give more realistic results to real phenomenons than
integer order equations. The main feature that distinguishes FDEs from integer order is that FDEs nonlocal property that is not found in integer
differential equations. In addition, many epidemic diseases naturally related to with memory and hereditary properties. This event can be suc-
cessfully mirrored using FDEs. Moreover, FDEs minimizes the errors caused by parameters that we have to neglect while modeling. Because
of these useful features of FDEs, many disease models have been studied using fractional order differential equations.

In the fractional systems, dimensionally consistent is a very important tool, in which the units of measurement from the left- and right-hand
sides of the equations are coherent. This consistent can be provided by modifying the parameters involved in the right-hand side of the equa-
tions, e.g. raising them to power ϑ. In this context, we have extended the model given in (7) to the fractional-order which is presented in the
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following system:

C
0 D

ϑ

t X = (µϑB + αϑ)(1−X(t)− Y (t))− βϑBX(t)V (t),

C
0 D

ϑ

t Y = βϑBX(t)V (t)− λϑBY (t),

C
0 D

ϑ

t V = βϑT (1− V (t))Y (t)− µϑT pV (t).

with initial conditions

X(0) = X0 ≥ 0, Y (0) = Y0 ≥ 0, V (0) = V0 ≥ 0. (7)

Table 1 The biological meanings of parameters along with their taken values

Par. Meaning Value Sources

µϑB Bovine birth rate 0.0002999 [30, 31]
αϑ Fraction of those that are controlled and moved to the susceptible population 0.001 [30, 31]
βϑB Infected tick rate 0.006 [30, 31]
λϑB Rate of those that are treated from the parasite 0.000265 [30, 31]
βϑT At rate infection of a susceptible tick may occur when the infected bovine bites 0.00048 [30, 31]
µϑT Natural birth rate 0.0016091 [30, 31]
pϑ The possibility that a susceptible tick may have been born from an infected one 0.1 [30, 31]

X(0) The rate of infected with symptoms who have been in quarantine total 0.3756 [30, 31]
Y (0) Mortality rate due to complications 0.5184 [30, 31]
V (0) Mortality rate due to complications 0.6 [30, 31]

4 Numerical Solution of the Model

In this part of the study, numerical solutions have been addressed to check the reliability and efficiency of the present technique. All the
numerical calculations are obtained by the Adams-Bashforth numerical scheme. Moreover, the variation of each sub-population over time has
been simulated for different values of the fractional parameter ϑ by using the taken parameter values given in Table 1. In addition, considering
the parameters that significantly change the direction of the disease, graphics have been obtained for different values of these parameters. We
have shown dynamical behavior of each state variable from the proposed babesiosis model in Figures 1-3 for varying values of the fractional
order parameter ϑ.

The values of the initial conditions and the parameters are taken from the references [30, 31]. From Fig. 1, one may observe that a susceptible
group that may turn into infected decreases with increasing in time and decreasing values of ϑ. Fig. 2 indicates that the infected bovine group
infected by the Babesia parasite increases with time as the value of ϑ decreases. From, Fig. 3, we may find that the infected ticks group infected
by the Babesia parasite increases with time as ϑ takes decreasing values. But subsequently, its nature becomes the opposite, which means it
decreases over time. The graphical depictions represent that the model is mainly dependent on the fractional order.
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Fig. 1: Solution plot for X(t) vs. time t at different values of ϑ
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Fig. 2: Solution plot for Y (t) vs. time t at different values of ϑ
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Fig. 3: Solution plot for V (t) vs. time t at different values of ϑ

5 Conclusion

In this study, a new fractional order mathematical model of the babesiosis disease in bovine and tick populations has been proposed and
analyzed. Firstly, we have reconstructed a new babesiosis model of integer-order. Then, we have considered the Caputo type fractional derivative
instead of integer derivative, so that the system (7) is dimensionally consistent: the units of measurement from the left- and right-hand sides
of the equations agree. It has been achieved by modifying the parameters involved in the right-hand side of the equations, e.g. raising them to
power ϑ.
The solution for the fractional order model is obtained through the implementation of the Adams-Bashforth predictor-corrector method which
is given in [32]. Related simulations are performed to reflect the effect of the fractional-order. Through simulation, it is obvious that the Caputo
derivative exhibits more interesting behavior when appears to be 1. Finally, this study shows that the mentioned method along with the Caputo
fractional derivative is an efficient way of handling nonlinear FDEs.
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Abstract: Despite the benefits of history of mathematics in mathematics teacher education programs are well known in the liter-
ature, few studies examine the issues of cultural diversity. This article explores the possibilities and limits of mathematics history
for cultural diversity in mathematics based on prospective teachers perspectives. Twelve middle school prospective mathematics
teachers participated in face-to-face interviews following the completion of a History of Mathematics course that focuses on mul-
ticultural dimension of knowledge development processes through the history. According to the results, the course has provided
a space to recognize and become aware of the contribution of diverse cultures through the perceived need of solving daily life
problems across civilizations. The possibilities, nevertheless, have been constrained by ranking the mathematical needs from sur-
vival to intellectual. In the light of these promises and limits, implications of the findings for History of Mathematics courses are
discussed.

Cultural diversity, History of mathematics, Multicultural mathematics, Mathematics Teacher education

1 Introduction

Calls for inclusion of History of Mathematics [HOM] into mathematics teacher education programs are not new. In addition to improve
teachers’ pedagogical repertoire to teach mathematics effectively [1], HOM is a promising space for prospective teachers to engage with the
cultural dimension of mathematics [2]. Experiencing the historical construction of mathematical knowledge can build a cultural understanding
of the subject [1], and can bring an awareness to the growing nature mathematics in diverse settings [3]. Despite the commonly held perception
of mathematics as a product of Western culture [4], HOM can provide an opportunity know and appreciate the other approaches or ways of
thinking to do mathematics that could be found in diverse cultural settings [5].

Opening a chapter for cultural diversity in mathematics history is important as the recent research confirms the need to recognize the
contribution of non-European groups to mathematical knowledge, which is often portrayed as an achievement of selected groups of people in
mathematics textbooks [6]. Differences in history, geographic location, culture and belief do have a significant role in the historical development
of scientific and mathematical knowledge. As each cultural group has its own ways to count things or reorient themselves in their living space
[7], studying HOM with an emphasis on cultural diversity potentially unpack mathematical diversity in the history and enable an understanding
of mathematics as a product of social interactions and human culture.

The aim of this study is to investigate how PMTs recognize and become aware of the contribution of diverse cultures to the development of
mathematical knowledge. The focus on cultural diversity in the context of history considers HOM not only as a pedagogical tool to improve
mathematical learning, but also as a goal [8]. History-as-a-goal argument emphasizes the development of mathematics within and across and
different cultural setting and considers mathematics as a cultural enterprise. When mathematics history attends to the cultural dimension of
mathematics, one can respect and value the work of others, recognize the different context, needs, and purposes, and realize that each society
significantly contributes to the body of mathematical knowledge [9].

HOM is considered as an epistemic endeavor that provides an analysis of development of mathematical knowledge within a culture or
across different cultures [10]. Looking at various mathematical practices across different geographies and periods reveal a more localized
and specific set of mathematical ideas that are different from those constructed as mainstream mathematics [7]. Studying and recognizing of
diverse mathematical systems in a specific socio-cultural environment is considered as a way to challenge mainstream mathematics that is
often associated with the Western civilizations [11]. Activities such as counting, locating, measuring, designing and playing in diverse cultures
provide concrete evidence from diverse cultures approving that all of these activities exist [7]. Analysis of diverse mathematical contributions
brings an alternative trajectory for HOM that takes into account significant developments in mathematics in diverse cultures.

Given the range of conceptual arguments for cultural diversity in the context of HOM, there is a lack of empirical studies examining how the
cultural aspects of the historical development of mathematical knowledge is taken in educational settings such as curriculum, teaching or teacher
education. Within this scarcity, there is a recent study that examines mathematics textbooks in terms multiculturalism, which is conceptualized
as the representation of different sociocultural practices in mathematics history [6]. The examples that the authors find in the textbooks are
promising to attain the cultural diversity in the development of mathematical knowledge, yet they are lack of effective integration of different
cultures since HOM is only presented as anecdotes or as side notes. Authors conclude that there is a need for more systemic research since the
Eurocentric perspective of mathematics history is still dominant in the textbooks despite the recognition of diverse cultures. To contribute the
HOM scholarship that intersects with the issues of cultural diversity, this paper investigates how a HOM course that is grounded in social and
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cultural elements are perceived by PMTs, including what the emphasis on cultural diversity might offer for teacher candidates and what the
constraints are in these processes.

The empirical research on HOM in teacher education programs mainly focuses on the views and preparedness of PMTs to use HOM in
their future mathematics teaching [12]. Overarching theme of the research indicates that prospective teachers are generally positive about using
HOM in their future mathematics teaching [13-15], meaning that they are open to learn HOM and to gain experience in the integration of it [17].
Studies reported the contribution of HOM to improve mathematical knowledge of prospective teachers [16] and to develop positive attitudes
towards mathematics [18], but they have not attained issues of cultural diversity. Although empirical studies in teacher education programs in
the context of HOM are increasing, the body of scholarship has yet to give insight to cultural and humanistic aspects of historical development
of mathematical knowledge. In this context, following research question is asked: What are the potentials and limitations of the emphasis on
cultural diversity in the context of a HOM course for PMTs?

2 Methods

2.1 Participants

Participants were 12 PMTs enrolled in an elective history of mathematics course at a large research university in Turkey. All participants were
in elementary mathematics education degree program for middle schools at bachelor’s level. Five of them were in their third year and seven of
them in the fourth year.

2.2 History of Mathematics Course

This study was conducted in an elective two-credit history of mathematics course for prospective mathematics teachers. The main purpose
of the course was to provide necessary knowledge and skills for PMTs regarding the historical development of mathematical concepts and
thinking. As suggested by the Higher Education Council in Turkey, mathematics history was not merely portrayed through the Eurocentric
trajectory. Instead, the course provided an account of histories of mathematical work through acknowledging and representing the ways in
which various civilizations engaged in different cultures and geographies [19].

The course offered a wide range of practices for PMTs to engage with the cultural dimension of HOM. Following the study of different
civilizations, mathematical problems from each civilization were solved. PMTs were instructed to solve mathematics problems as if they were
in that particular time and space so that they were expected to attain the diverse ways of mathematical reasoning of those social and cultural
groups. Additionally, prospective teachers watched mathematicians’ experiences, opportunities and struggles in various sociocultural contexts.
Throughout the course, there was also focus on the pedagogical dimension of HOM as an instructional strategy to teach mathematics.

2.3 Data Collection and Analysis

Data source was the face-to-face interviews, asking how PMTs made meaning of the existence of diverse cultures and epistemologies throughout
mathematics history. After transcriptions, the instances that PMTs talked about issues that relate culture, diversity and humanity in the context of
historical development of mathematical knowledge were coded with inductive qualitative methods [20]. Through constant comparison method,
the themes are identified.

3 Findings

Two main findings emerged from the data. First, the HOM course offers effective spaces for prospective teachers to understand cultural diversity
in mathematics where they affirm the diverse needs and acknowledge the diverse contribution and human involvement in construction of
mathematical knowledge. Second, these possibilities are constrained by two main issues: PMTs differentiate mathematical needs and rank the
human contribution and involvement on a hierarchy.

3.1 Possibilities of Mathematics History for Cultural Diversity in Mathematics

During the HOM course, PMTs had the opportunity to study mathematics history in diverse cultures and civilizations across the world. Solving
the problems of daily life was one of the fundamental issues for people who needed mathematics and so developed mathematical knowledge
and practices. For example, PMT8 stated that: “Actually, some of them tried to do something as a result of their daily life problems. And in
different places, everyone did something according to the situations they encountered, depending on their culture and environment.”

Solving the problems of daily life with mathematics indicated the situated nature of mathematics, which was influenced by diverse localities,
cultures and environment. For PMTs, mathematics emerged and was used by different civilizations all over the world. Diverse communities
developed mathematical knowledge to respond their needs in everyday life. Given the diverse geographies that were included in the alternative
trajectory of HOM, at the end of the course, PMTs generally affirmed the existence of diverse mathematical needs that were specific to each
culture. They were able to discuss the conditions mathematical knowledge development and involvement of humans in these processes. As
PMT2 explained: "We all saw how much mathematics has undergone change from past to present. I think that people’s own needs were the
main factors in the movement of this knowledge [. . . ] The problems caused by the Nile river pushed them to use mathematics and it has
progressed day by day. As new needs and new problems emerged, people tried to [apply] the knowledge they had to other situations and they
set sail for new horizons at the points where they were insufficient."

Mathematical needs, ranging from agricultural issues to the social problems had been a way to affirm the role of humans through mathematics
history. PMT7 provided an example: "For example, in Egypt, mathematics was developed based on agriculture, and in another place, mathe-
matics has been constructed to meet different needs. That is why, it may be the reason why mathematics was emerged in different civilizations
in different ways and people oriented towards mathematical sciences based on their own needs in that particular period."

Learning HOM across diverse cultures and civilizations opened up possibilities for PMTs to recognize diverse range of mathematical
needs while solving daily life problems and also humanistic dimension of mathematics. For most of the PMTs, development of mathematical
knowledge was situated in a specific context and it was shaped by needs of daily life in that particular period and culture.
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When PMTs were asked for their thoughts, feelings and ideas about learning HOM from a non-European trajectory, all of them positively
responded. PMT1, for instance, considered mathematics had multiple points of emergence rather than single point of birth: “Actually, math-
ematics does not have a single basis. . . thousands. . . actually [HOM from a non-European trajectory] shows that [mathematics] has a lot of
foundations. From this side as an advantage, this is very nice [to know].”

Learning HOM across diverse cultures enabled PMTs to further contextualize how mathematical knowledge emerged in a particular time
and place in addition to mathematical needs. PMTs had opportunity to gain multiple perspectives regarding how mathematical knowledge
developed through the history. PMT3 provided an explanation of her growth: "How mathematics was discovered in Greece, according to what?
At that time, what were people’s views and how were they oriented towards mathematics? Or, in Egypt? [Cultural diversity in HOM] enabled
me to look in multiple directions, actually. . . I was looking only through a single dimension according to what I have seen and needed in my
own life. I have been doing mathematics in a single logic. But when I look back history, when I see different civilizations, it could be Indian,
Egypt or Greeks or Europe. They all looked from different perspectives and this helped me to gain a broader perspective without classifying.
How did diverse civilizations think?"

As seen in the quote above, PMT3 broadened her perspective about HOM when studying other cultures and civilizations. Particularly, she
decentered her own life and mathematical experiences to make meaning of cultural diversity in mathematics history. Connecting her own
and different historical experiences to the front, she considered multiple and diverse contributions of each culture without classifying. She
continued: "For example, I am a person from a particular culture and I look at things in relation to what I have in my mind. But, in [HOM],
since we were able to see how different cultures view mathematics. . . How can I say? We have seen the views of different civilizations as a
religion, as a culture, without making a classification."

Bringing diverse civilizations together in the HOM course stimulated PMTs thinking about cultures that were different from theirs. In this
sense, PMT9 highlighted the hidden civilizations in the mathematics history such as Chinese and Indian. She appreciated studying those cultures
and their contributions to the mathematical knowledge: “If we do not look, explore or investigate, [the Chinese mathematics] remains closed.
Similarly, I was interested in Indian mathematics. If we do not look at [that culture], we would not be aware of them.”

Learning about multiple emergence points of mathematics provided a historical awareness of diverse mathematical contributions. For PMTs,
mathematics became a knowledge that each culture studied and used. Also, PMTs learned about historical integrity and connectedness of
diverse contributions. That is, diverse cultures were not isolated places that gave birth to mathematics. Instead, as PMT2 pointed out, emergence
and development of mathematics was a process where each culture was influenced by one another: "These are interconnected or interrelated
processes. In some presentations, [for instance], the interaction between Arab and Indian civilizations. Because of something, this might be
trades or other issues situated at that time, there is an interaction. Like introduction of Indian and Arab civilizations to the West."

This quote indicated that the alternative trajectory of HOM enabled a focus not only on how mathematical knowledge was developed, but
also how mathematical knowledge bases were connected with one another. In this way, it became possible to problematize one single point of
birth of mathematics. To conclude, prospective mathematics teachers recognized the cultural diversity embedded in mathematical knowledge
by learning diverse contributions made by several societies and communities.

3.2 Constraints of Mathematics History for Cultural Diversity in Mathematics

Once PMTs considered the mathematical needs of daily life as a way to reflect upon the cultural diversity in the context of HOM, those
needs were also ranked in a hierarchical continuum. Mathematics, at first, was used to respond to daily life needs such as food, agriculture
or water sewing. Provided that the survival needs were met, mathematics was for conducting science. As PMT7 argued: "As I examined the
civilizations, once the origin point is the daily needs. After that, as in the case of Hypatia, there was a little more contribution to the science.
Isn’t it? As science improves, the comfort of people increases in daily life. For example, more needs can be answered [. . . ] and the difficulties
they experience become a little easier and new needs are emerged [. . . ] So, the first point of departure is to answer the questions in their mind.
In other words, we see that all scientists are looking for answers to those problems and this enable science to progress. As they find answers,
new questions are emerged and I think [the science] is progressing in this way."

In these explanations, HOM became not a flat platform to understand mathematical discoveries and inventions in their own historical
contexts. Rather, the needs were differentiated on a range of continuum from survival to intellectual according to how mathematics was used.
PMT3 provided an example on this issue: “For example, Greeks [used] the mathematical formulas that they found to study astronomical
sciences, but the Egyptians for field and agriculture. . . ”

In addition to differentiation processes, diverse needs of humans were taken as an instrument to rank the kinds of mathematics in which
specific cultures and civilizations were engaged. That reasoning was transferred to rank people, civilizations and so cultures on a hierarchical
continuum. For example, PMT11 stated that doing mathematics for scientific purposes was reserved for the “distinguished” people: “Mathe-
matics is the job of distinguished people in Rome or in Greece. When we teach mathematics we can say so. . . thinking that only distinguished
people can do that. I think so, too.”

Despite PMTs recognized the diverse needs while developing mathematical knowledge throughout mathematics history, the civilizations
were differentiated in relation with their diverse needs. In other words, provided that humans fulfill their daily life needs, social groups in the
history were considered as ready to do mathematics for scientific purposes. This was highly related with the progressive and linear conception
of mathematical knowledge development without considering dynamic nature of social environments.

4 Discussion

The emphasis on cultural diversity in a HOM course has provided a space for PMTs to recognize and become aware of the contribution of
different civilizations to the historical development of scientific and mathematical knowledge. In this sense, history can enable PMTs to think
and reflect on the humanistic and multicultural facet of mathematical knowledge production through an affirmation of diverse needs and an
acknowledgement of diverse contributions. Nevertheless, these possibilities have been constrained by the ranking the needs from survival to
intellectual, that distinguishes the civilizations in terms of their purposes of doing mathematics.

Needs of daily life have been a way to affirm the cultural diversity and the role of humans in the historical development of mathematical
knowledge. The recognition of diverse needs throughout the history becomes a way to encounter with the humanistic aspects of the development
of mathematical knowledge such as the effects of experience, lives and senses of human beings [21]. However, the involvement of humans and
their mathematical needs has also been ranked from their survival to intellectual. That is, while PMTs try to understand the cultural diversity in
mathematical practices of different civilizations, they simultaneously compare their needs in a context where humans are considered to be able
to deal with their intellectual needs provided that they meet their survival needs. This logic becomes a way to position diverse cultures on a
hierarchical continuum and confirms Grugnetti and Rogers’ argument, indicating that cultural dimension of HOM cannot put everyone in equal
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position while recognizing the diversity in mathematical knowledge [9]. Needs as an affirmation of cultural diversity and as an instrument to
rank different civilizations suggest to bring issues of equity and social justice in the processes of mathematical knowledge development. That
is, this finding indicates the necessity to examine history of science and mathematics with larger social debates, concerning with how relations
of power play out in the knowledge making processes across the history.

HOM with a non-Eurocentric trajectory has stimulated a conversation with PMTs about multicultural facet of mathematics. Instead of taking
a narrow Eurocentric perspective [9], most of PMTs have started to think about multiple locations in which mathematics has been emerged,
discovered and developed. Examination of mathematics history with an emphasis on cultural diversity provides a space for PMTs to reflect on
the mathematical contributions of diverse cultures that are not usually acknowledged in contemporary mathematics textbooks or curriculum [6].
Developed an understanding of multicultural nature of mathematical knowledge, PMTs start to problematize the single origin of mathematical
knowledge by contextualizing mathematical knowledge and practices in diverse places and times.

5 Conclusions and Implications

The aim of this paper is to investigate the cultural and humanistic aspects in the historical development of mathematical knowledge. The focus
on the cultural diversity in mathematical knowledge development can unpack the constraints and opportunities afforded by social context,
including opportunities, difficulties and struggles that mathematicians have experienced over the history. This can reveal a more connected
image of mathematics and mathematicians. The emphasis on cultural diversity could be a way of demystifying how mathematical knowledge is
accumulated over time and also demythologizing the “white male myth” discourses in the mainstream mathematics education [4]. As Radford
and his colleagues put, HOM is a place to overcome “one-sidedness” of meanings, to enter into a conversation with others cultures and to
explore the actual experiences of mathematicians and their diverse needs and processes of mathematical knowledge development [10]. That
is, HOM that emphasizes humanistic and cultural aspects of knowledge production can enable affirmative notions of mathematics ability that
recognize every human being capable to do mathematics and related mathematical practices such as counting, ordering, classifying, locating or
designing.

Cultural diversity in the context of HOM is, at the same time, can only be taken as the celebration of diversity rather than a contestation
of mythical discourses that reproduce inequalities. As seen in the ranking of mathematical needs, the hierarchical gradation of cultures and
civilizations are reproduced in the interpretative accounts of prospective mathematics teachers. In future HOM courses, these issues need to be
addressed so that historical development of mathematical knowledge would not be perceived as belonging to particular groups of people and
civilizations.

To conclude, learning HOM together with its cultural and humanistic aspect can potentially provide possibilities to respond the issues of
diversity in the mathematical knowledge production throughout the history. That said, further empirical and conceptual work is needed to
address those constrains so that history of science and mathematics scholarship becomes responsible to the current landscape of education.
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Abstract: In our observations of an in-service primary teacher’s lessons on the measurement of length, we were interested
by her responses to some unexpected questions from the students. Therefore we proceeded to answer the following research
questions: What kind of unexpected moments occurred during the in-service primary teacher’s lessons on the measurement of
length? How did the teacher respond to these unexpected moments? In our reflections, we draw on the Knowledge Quartet
[1], a theoretical framework for the analysis of mathematical knowledge in teaching. In particular, we draw on the contributory
codes of the Contingency dimension of the Knowledge Quartet. Our study was located in a school in Turkey, where the in-service
primary teacher-participant taught a fourth-grade class with 36 students. She taught nine 40-minute lessons to cover the objectives
regarding the measurement of length in the curriculum. These lessons were observed and video-recorded by one researcher, who
made field notes in order to identify what seemed to be unexpected contributions – ideas and questions - from the students. Ten
unexpected moments were identified in the observed lessons, and relevant contributory codes of the Contingency dimension of
the Knowledge Quartet framework [1] were assigned to each of these moments. Semi-structured interviews were conducted with
the teacher after each lesson, in order to interpret and understand the reasons for her responses to these contingent moments.
Three particular moments arising from students’ unexpected questions in the lessons were identified for further analysis. The
nature of the teacher’s response to each of these events was classified as one of three response-types identified by Rowland et
al.[2].
Keywords: Contingency, Knowledge, Measurement, Teachers.

1 Introduction

Since measurement, one of the content strands of mathematics curriculum in many countries, is commonly used in daily life, everybody should
learn about measures and measurement [3]. Because of its importance, students in Turkey start to learn measurement concepts from first grade,
in order to make sense of the world around them.

Despite this early introduction of measurement concepts, students score lower grades in the measurement content strand when compared
with the other content strands in international tests such as Trends in International Mathematics and Science Study (TIMSS) and the Programme
for International Student Assessment [PISA] [4]. In order to help students understand measurement concepts conceptually, and to increase their
grades in tests of attainment, “we need much stronger measurement instruction in the early years” ([5], p. 299).

The very first measurement concept learned by students, and one with which students have some difficulty, is the measurement of length.
Fennema and Franke [6] assert that how teachers teach a concept influences what students learn. Similarly, the way in which teachers respond
to their students’ ideas and questions is important for students’ conceptual understanding [7]. Therefore, it is reasonable to expect that students’
difficulties of length measurement can be attributed to how the topic is taught, and in particular, how teachers respond to their students’ ideas
and questions.

Every (mathematics) class begins with a series of imagined scenarios in the teacher’s mind. Leinhardt [8] refers to the series of imagined
scenarios is termed as the lesson ‘agenda’ - the agenda is the intended lesson structure. Another term, ‘lesson image’, is used by Morine-
Dershimer [9] to capture a general picture of what the teacher expects to happen as the lesson progresses. The lesson image includes the
content and associated learning objectives, the way the content would be taught, the tasks that the students would engage in, and how teachers
would respond to students [10]. However, sometimes events do not go according to the intended agenda, or lesson image, and the teacher then
encounters surprises – some unexpected events. Rowland, Turner, Thwaites, and Huckstep [2] refer to these unplanned events as ‘contingent’
moments. These researchers found that in mathematics classrooms, such contingent moments are located in, and triggered by, three types of
situations or events: (1) responding to students’ responses and questions, (2) teacher insight, and (3) the unexpected (un)availability of tools
and resources [10]. The focus of this paper, responding to students’ responses and questions, is the moments that are initiated by a student’s
unexpected response to a stimulus within the lesson, requiring a response from the teacher to the student.

In response to this trigger, teachers’ responses can be one of three kinds: (1) to ignore, (2) to acknowledge but put aside, and (3) to acknowl-
edge and incorporate [10]. If the teacher just ignores or dismisses, or does not give the student’s response or question further consideration,
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then his/her response type is regarded as ‘ignoring’. That is, the teacher seems as if the student’s response or question was not noticed. The
second kind of response - acknowledging but continuing the plan - refers to moments in which the teacher recognises the student’s response or
question, but does not deviate from the lesson plan. If the teacher goes beyond accepting the student’s response or question by incorporating it
into the lesson and adjusting the lesson agenda, then the teacher’s response is one of ‘acknowledging and incorporating’. The purpose of this
paper is to identify the unexpected moments initiated by students’ questions and ideas, and to analyse the teacher’s responses to these student
contributions. We address the following research questions:

• What kind of unexpected moments occurs during an in-service primary teacher’s lessons on measurement of length?
• How does the teacher respond to these unexpected moments?

2 Methodology

A case study design was used to identify the unexpected moments that occurred during an in-service primary teacher’s lessons on the measure-
ment of length, and her responses to these unexpected moments. This study was conducted in a public school in Turkey, where the in-service
primary teacher-participant, Ozge, taught a fourth-grade class (age 10-11) with 36 students. Ozge taught nine 40-minute lessons to cover the
learning objectives of length measurement in the curriculum. All of these lessons were observed and video-recorded by the first researcher,
who also took field notes. To interpret and understand Ozge’s responses to these unexpected ideas and questions, semi-structured interviews
were conducted following her lessons. Unexpected moments were identified in the observed lessons, and relevant contributory codes of the
Contingency dimension of the Knowledge Quartet framework [11] were assigned to each of these moments.

3 Findings

Ten unexpected moments were identified in Ozge’s length measurement lessons, three of which were coded as responding to a student’s
question. We will consider both the trigger of the unexpected moments and Ozge’s responses to them. We shall include transcripts from the
dialogues between Ozge and her students, or between the students.
Unexpected Moment 1:

The first unexpected moment of the length measurement instruction triggered by a student’s question is about metre to kilometre (m-km)
conversion. The students were told that they have to divide a given length by 1000 to convert it from metres into kilometres. Ozge explained
that “there are some numbers that cannot be divided by 1000 to give a whole number. For instance, there is an example in Figure 1 in the
textbook:”

Fig. 1: Example for m-km conversion textbook

Ozge continued:

Ozge:We said that we could write 1560 km as 1 km 560 m. We can also write this as 1.560 km. That is, while the part before the decimal point
gives km, the part after the decimal point gives m.

Student:But, it is written as 1.56 km, isn’t it?
Ozge:As you may remember, I said that the zeros may be omitted.

Ozge only considered the student’s idea in a cursory fashion. Therefore, whether Ozge’s explanation was always correct or not was questioned
during the post-interview.

Researcher:What do you think about why the result was written as 1.56 km?
Ozge:The zeros after the decimal point may not be written.
Researcher:You said that the fraction part after the decimal point gives us metres. There is 56 after the decimal point. So, can we accept this as

56m?
Ozge:hmm. Actually, we can accept; however, it will be wrong. Then, why was it written like that in the textbook?
Researcher:Can the information written in the textbook be wrong?
Ozge:Maybe.
Researcher:If you asked a question similar to this in your exam and one of your students had written 1 km 56 m, and another one had written 1

km 560 m, how would you assess their solutions?
Ozge:Since the student solved it according to my explanations, I would accept it as correct. However, it should be 1056 m in order to be written

as 1 km 56 m. Why did the textbook give this way? There may be something that I don’t know.
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As can be seen from the dialogue, Ozge does not know how best to respond to the student’s question. That is, if Ozge could have gone back
in time and retaught this part, she still could not offer a clear explanation about it. Telling the students that the part before the decimal point
gives the km and the part after the decimal point gives may result in some misconceptions before the students had sufficient opportunity to
understand the reason for the relationship between a metre and a kilometre. Since Ozge could not understand why her explanation was wrong,
her response to this unexpected moment, triggered by a student’s question, was coded as acknowledging but sidelining the question from the
student.

Unexpected Moment 2:
Another unexpected moment was related to conversion between centimetres and millimetres (cm-mm).
Before telling the students a rule for converting a length from cm to mm, Ozge wanted to investigate her students’ own ideas.

Ozge:Suppose that a question asks us to convert 3.4 cm to mm. How can we do it?
Student1:We will turn 3.4 into 34, multiply by 10.
Ozge:Will we turn into 34 and then multiply by 10?
Student1:Yes.
Ozge:No.
Student2:We will multiply the number to the right of the decimal point by 10.
Ozge:No. Ok, last chance, come on.
Student3:We put 4 aside, then multiply 3 by 10 and add 4.
Ozge:No.

The problem requires students to recognise that 3 cm = 30 mm. So then 3 cm 4 mm = 30 mm + 4 mm. In effect, Student1 offers a correct,
albeit procedural, solution – “multiply by 10”. Ozge seems to mishear the student’s suggestion, and she inserts “and” before “multiply by 10”.
Unfortunately, Student1 does not hear the “and”, and he confirms what Ozge has said: Ozge’s “No” tells him that her answer is/was incorrect.
Student2 seems to be suggesting that only the 4 is multiplied by 10. Ozge says “No” but does not ask Student2 what he intended. Student3
provides a correct idea and correctly converts the cm to mm – “We put 4 aside, then multiply 3 by 10 and add 4” – but this is not what Ozge
expected – and she says “No”.

After Ozge watched this part of the video-recording during the interview, she was asked to reflect on these students’ answers. During the
interview, Ozge explained that although Student3’s answer was actually correct, she did not notice that it was correct. Furthermore, during the
lesson following the above dialogue, Ozge explained that the decimal point should be shifted one step to the left to convert a length given in
mm to a length given in cm. Then, one of her students stated that “I understand now, 3 is the quotient and 4 is the remainder.” As a reply to
the student’s statement, Ozge just stated that “Yes, 3 is the quotient and 4 is the remainder.” As can be understood from the above excerpt and
statement, Ozge acknowledged her students’ ideas; however, could not incorporate them into her lesson effectively.

Unexpected Moment 3:
The last unexpected moment occurred while the students were solving the following question, given in the textbook.

There are three ropes of different lengths, 4 mm, 12 cm, and 17 mm, respectively. If these ropes are joined together end to end, what will be
the length of the new rope?

One of the students came to the board to solve the problem. First, he added the lengths of ropes in similar units - 4 mm and 17 mm - and
presented the answer as 12 cm 21 mm. When the student was about to return to his desk, another student asked Ozge if they could write the
answer as 14 cm 1 mm. Following this question, the dialogue played out between Ozge and the student standing at the board:

Ozge:How many centimetres are there in 21 mm?
Student:2.
Ozge:2cm. Can we add 12 cm to this 2 cm?
Student:Yes.
Ozge:Then, what will be the total?
Student:14 cm.
Ozge:14 cm. What is left of 21 mm?
Student:1 mm.
Ozge:Yes, 1 mm. Let’s write our answer, 14 cm 1 mm.

As she had done in the two unexpected moments presented above, Ozge acknowledged the student’s question. However, there is a difference
in the response type of Ozge compared with the previous ones. Ozge not only acknowledged the student’s idea - working with the mm first -
Ozge followed up the idea and asked the student questions. In this case, we see that Ozge incorporated the student’s idea into the lesson.

4 Conclusion

In this paper, three unexpected moments coded as “responding to a student’s question/idea” were focused. All three questions were related to
conversion between metric units, such as cm to mm. In two of the three events, Ozge’s response was to acknowledge the student’s idea - but
to put it aside. In neither of those events did she question the student in order to understand their meaning, or somehow incorporate it into her
lesson. But in the third unexpected event, Ozge acknowledged the student’s idea and then followed it up in the lesson. In short, Ozge’s responses
were classified as two of the kinds identified by Rowland et al. [10]: ‘to acknowledge but set aside’; and ‘to acknowledge and incorporate’. In
order to make mathematics instruction more meaningful, teachers need to consider how to respond to students’ unexpected ideas or questions
[2]. To respond effectively to these ideas or questions, teachers need, first of all, to try to understand what students are suggesting or asking
[12]. If teachers pause to consider the ideas suggested by students in class, and the questions they ask, they would be more likely to discover
how to build upon these ideas or questions in the light of the lesson objectives [13]. The reason why Ozge was not able to acknowledge and
incorporate some of her students’ ideas and questions in this study may be that she did not really consider what the students suggested or asked,
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and so she could not decide how to use them to fulfil the learning objectives related to the measurement of length. Our approach to the analysis
of this case could be applied to other cases: teachers’ post-lesson reflections (with a mentor/colleague) on their responses to unexpected events
in their lessons are likely to contribute to the development of their mathematics teaching.
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